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ABSTRACT
We propose a new floorplanner BloBB based on multi-level branch-and-
bound. It is competitive with annealers in terms of runtime and solution
quality. We empirically quantify the gap between optimal slicing and
non-slicing floorplans by comparing optimal packings and best seen re-
sults. Optimal slicing and non-slicing packings for apte, xerox and hp
are reported. We also discover that the soft versions of all MCNC bench-
marks, except for apte, and all GSRC benchmarks can be packed with
zero dead-space.

Additionally, realistic floorplans often have blocks with similar di-
mensions, if design blocks, such as memories, are reused. We show that
this greatly reduces the complexity of black-packing.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: De-
sign Aids — placement and routing; G.4 [Mathematical Software]:
Algorithm Design and Analysis; J.6 [Computer-Aided Engineering]:
Computer-Aided Design.

General Terms: Algorithm, Experimentation.

Keywords: Floorplanning, Block-packing, Slicing, Optimal, Hierarchi-
cal, Soft blocks, Evaluation, Branch-and-bound, Large-scale.

1. INTRODUCTION
Floorplanning is increasingly important to VLSI layout as a means

to manage circuit complexity and deep-submicron effects. It is also
used to pack dice on a wafer for low-volume and test-chip manufac-
turing, where all objectives and constraints are in terms of block area
and shapes [11]. Abstract formulations involve blocks of arbitrary di-
mensions and are commonly NP-hard, but in practice many blocks have
identical or similar dimensions, and designers easily find good floor-
plans by aligning those blocks. Annealing-based algorithms that cur-
rently dominate the field tend to ignore such shortcuts. Moreover, re-
search is currently focused on floorplan representations rather than op-
timization algorithms. Slicing floorplans, represented by Polish expres-
sions and slicing trees [15], are convenient, but may not capture best
solutions. Non-slicing representations include sequence-pair [12] and
bounded slicing grid [13], O-Tree [6], B*-Tree [4], and TCG-S [10].
Corner block list [7] and twin binary tree [17] are proposed to represent
mosaic floorplans. Interestingly, many VLSI designers and EDA tools
still rely on slicing representations which lead to faster algorithms and
produce floorplans with hierarchical structure, more amenable to incre-
mental changes and ECOs.

Reported optimal branch-and-bound algorithms for floorplanning [14]
run out of steam at around 6 blocks, and those for placement at 8-11
blocks [2]. Their scalability can be improved through clustering at the

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
GLSVLSI’04, April 26–28, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-853-9/04/0004 ...$5.00.

cost of losing optimality. However, a known algorithm that minimizes
area bottom-up, by iteratively refining clusters appears very slow [16]. A
top-down hierarchical framework based on annealing reported in [1] is
facilitated by fixed-outline floorplanning. Their implementation is faster
than a flat annealer and finds better floorplans with hundreds and thou-
sands of blocks. It is also shown that conventional annealers fail to sat-
isfy the fixed-outline context, and new techniques are required.

We propose a deterministic bottom-up floorplanner BloBB based on
branch-and-bound. It is faster and more scalable than flat annealers, but
produces comparable results. Unlike annealers, it takes advantage of
blocks with similar dimensions and can optimally pack the three small-
est MCNC benchmarks. BloBB can optimize additional objectives that
can be computed incrementally, such as wirelength. Unlike annealers, it
runs faster with additional constraints, e.g., the fixed-outline constraint.

Since BloBB can produce optimal packings, we can empirically quan-
tify the gap between optimal slicing and non-slicing floorplans. To this
end, [5] evaluates the sub-optimality of existing floorplanners by con-
structing benchmarks with zero dead-space. However, most realistic
examples with hard blocks cannot be packed without dead-space, so
an optimal block-packer allows one to use more realistic benchmarks
for evaluating sub-optimality. We also outline how one can apply our
techniques to handle multi-project reticle floorplanning [11] and soft
block-packing. BloBB’s extension for soft blocks is able to pack the
soft versions of all MCNC benchmarks, except for apte, and all GSRC
benchmarks with zero dead-space. Hence, the benchmarks in [5] appear
less attractive.

The rest of the paper is organized as follows. Necessary preliminaries
are given in Section 2. Sections 3, 4 and 5 describe our optimal non-
slicing, optimal slicing and hierarchical floorplanners respectively. We
discuss empirical results in Section 6 and conclude in Section 7. All
proofs are omitted for brevity. Proofs and more details can be found in
our technical report [3].

2. PRELIMINARIES
The Rectangle Packing Problem. Let M = {B1, . . . ,Bm} be a set of
rigid rectangular blocks. A packing of M defines, for every block Bi, its
orientation θi and planar location (xi,yi). No two blocks may overlap.
One seeks to minimize the area of the bounding box of the floorplan.
In alternative formulations [1], all blocks need to fit into a given bound-
ing box, after which other design objectives, such as wirelength, can be
minimized.
Conventions. In the rest of the paper, the term non-slicing means “not
necessarily slicing”. All sets are ordered. A permutation of order n
is just an ordered n-element set, typically of blocks {B1, . . . ,Bn}. This
defines a precedence relation ≺ on blocks, which are often referred to by
indices, e.g., 2 may denote block B2. To know the width wB and height
hB of block B, one needs to know its orientation. Location of B means
location of its bottom-left corner.
The O-tree Representation. A rooted ordered tree with n + 1 nodes
can be represented by a bit-vector of length 2n, which records a DFS



traversal of the tree. 0 and 1 record downward and upward traversals
respectively (Fig.1a). An O-Tree for n blocks is a triplet (T,π,θ) where
T is a bit-vector of length 2n specifying the tree structure, π is a per-
mutation of order n listing the blocks as they are visited in DFS, θ is
a bit-vector of length n with block orientations (0 for “not rotated” and
1 for “rotated by π/2”). (T,π,θ) represents a packing by sequencing
its blocks according to π. The x-coordinate xB of a newly-added block
B is 0 if its parent P is the root of T, or else xP + wP, the sum of the
width of P (implied by θ) and its x-coordinate. The y-coordinate yB is
the smallest non-negative value that prevents overlaps between B and
blocks appearing before B in π (Fig.1b).

A packing is L-compact (B-compact) iff no block can be moved left
(down) while other blocks are fixed. A packing is LB-compact iff it is
both L-compact and B-compact. The packing in Fig.1b is LB-compact.
Every LB-compact packing can be represented by an O-Tree, and all
packings specified by an O-Tree are obviously B-compact.

The contour data structure is central to O-Tree related representations
since it allows O(n) time for packing realization. A contour of a pack-
ing is simply a contiguous sequence of line segments that describes the
shape of the upper edge of the packing. Such line segments are called
contour line segments. Fig.1c is an example. Using this data struc-
ture while realizing an O-tree, one can find the y-coordinate for each
block in amortized O(1) time, facilitating the realization of an O-Tree
with n blocks in O(n) time [6]. No known representation achieves a
smaller amount of redundancy than O-Tree and hence it is suitable for
our branch-and-bound block-packer.
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Figure 1: (a) The tree represented by T = 0010001111001101; (b) the pack-
ing (T,π,θ) where π = {B5,B3,B8,B2,B4,B6,B7,B1}; (c) the contour of U:
{(0,0),(0,3),(3,7),(7,11),(11,12),(12,15), (15,∞)}

Normalized Polish Expressions (NPEs). A slicing floorplan is a rect-
angle area recursively sliced by horizontal and/or vertical cuts into rect-
angular rooms [8]. A packing is slicing if its bounding rectangle is a
slicing floorplan and each rectangular room contains exactly a block.
Slicing packings can be represented by slicing trees. Each leaf node of a
slicing tree represents a block and each internal node represents a hori-
zontal or vertical cut (Fig.2). We can also consider each internal node to
be a supermodule, consisting of the two blocks or supermodules repre-
sented by its children and merged in the way specified by itself. Given a
slicing tree T , its Polish expression is the sequence of nodes visited in a
post-order traversal of T . It is normalized if it does not contain consecu-
tive +’s or ∗’s. For example, the expression in Fig.2c is normalized, but
that in Fig.2b is not. The set of normalized Polish expressions of length
2n−1 is in a 1-1 correspondence with the set of slicing floorplans with
n blocks and hence it is non-redundant [15].
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Figure 2: (a) A slicing floorplan and a slicing packing; (b) a slicing tree
representing (a), its Polish expression is 123∗∗456+∗+; (c) an equivalent
slicing tree whose Polish expression is 12∗3∗456+∗+.

Given a slicing tree T and the orientations of the blocks, the slicing
packing of T is a packing specified by T such that no vertical (horizon-
tal) cuts can be moved to the left (down), and each block is placed at
the bottom-left corner of the room (Fig.2a). Operators + and ∗ act on
the set of blocks {1, . . . ,n} and supermodules such that A + B (A ∗ B)
is the supermodule obtained by placing B on top of (to the right of) A.
Polish expressions use the postfix notation for such operators. To evalu-
ate a floorplan, we can simply compute the supermodule that contains all
blocks by recursively merging blocks and supermodules. This procedure
can be implemented in O(n) time and will be explained later on.

3. OPTIMAL NON-SLICING PACKING
3.1 Branching
Branching Schedule. We adopt a branching schedule in Table 1 such
that at each layer of the search tree, we define 2 bits of T , 1 block of π,
or 1 bit of θ. Our basic framework is a depth-first search.

Table 1: Branching Schedule
Tree T: 1 4 7 · · · · · · 2 bits each time

Permutation π: 2 5 8 · · · · · · 1 block each time
Orientation θ: 3 6 9 · · · · · · 1 bit each time

A bit-vector identifies a rooted ordered tree iff it has equal numbers
of 0’s and 1’s and every prefix has at least as many 0’s as 1’s. Hence, a
partial bit-vector t with i 0’s and j 1’s can be extended to one represent-
ing a rooted ordered tree with n nodes iff (1) i ≥ j and (2) i ≤ n. These
feasibility conditions can be easily checked in O(1) time upon every in-
cremental change to the bit-vector. Infeasible bit-vectors are pruned, and
we may get a new feasible bit-vector t at every search node of depth 4i.
Information in a Partial Solution. Suppose (T,π,θ) is extended from
(t,σ,δ). Since t has at least i 0’s, the positions of all blocks in σ in T are
set. Furthermore, since δ is as long as σ, the orientations of all blocks in
σ are determined. The position of a block in (T,π,θ) depends only on
itself and its preceding blocks in π [6]. We can then determine the loca-
tions of all blocks in σ before we explore deeper and (t,σ,δ) determines
a partial packing (Fig.3a). By keeping a reversible contour structure that
supports incremental addition and deletion, the addition and deletion of
a block take amortized O(1) time [6]. We say (T,π,θ) to be extended
from (t,σ,δ) iff t, σ, and δ are prefixes of T , π, and θ respectively. It is
an extended packing of (t,σ,δ).

3.2 Lower Bounds and Pruning
In subsequent discussions, we consider a partial packing U = (t,σ,δ)

of i blocks and an extended packing (T,π,θ) of n blocks. Let mk be the
length of the shorter edge (min-edge) of block k for k = 1 . . .n. We do
not distinguish between T and the tree presented by T . Similarly for t.
Minimum Bounding Rectangle. As the positions of the first i blocks
are fixed, the bounding rectangle of U is fully contained in any extended
packing. Thus, the bounding rectangle offers a lower bound for area.
Minimum Dead-Space. Once the position of a block B in σ is set, no
block appearing after B in π whose x-span overlaps with that of B would
lie below B. Therefore, all dead-space below every block in the partial
packing is permanent. This is illustrated in Fig.3b.
Extended Dead-Space. Suppose the contour line segment above block
B is shorter than mink/∈σ mk and has upper edge lower than its neighbors
(e.g. B2 in Fig.3c), then no unused block can rest on it, and the dead-
space above B is permanent.
Maximum Min-Edge Estimation. Consider a block A /∈ σ. In all ex-
tended packings, A is located above the contour of U . A lower bound
for area can be produced by considering several alternative locations for
A above the contour. Indeed, let A have orientation 0 in (T,π,θ) and
x-coordinate xA, such that xA is between end-points of some contour
line segment L. If A is moved left such that xA is the beginning of L,
its x and y coordinates do not increase. Hence the bounding rectangle
of (t,σ,δ) with A in that location is not greater than that of (T,π,θ)



(Fig.4). Therefore, we only have to consider the cases for each con-
tour line segment (even fewer cases need to be considered as shown in
Fig.4c). The minimum of areas of all such rectangles, a0, is a lower
bound for area of complete packings with A having orientation 0. A
similar lower bound a1 corresponds to orientation 1, and leads to a lower
bound min(a0,a1). As a trade-off between the pruning ratio and imme-
diate computational overhead, we only consider the block whose shorter
edge is maxk/∈σ {mk}.
Minimum Min-Edge Estimation. If t has j 0’s and σ has i blocks, then
j ≥ i. If j > i, then we can locate the next ( j− i) unused blocks in T .
We define the minimum square of σ as a square with side mink/∈σ {mk}.
A lower bound for area can be computed by placing ( j − i) minimum
squares onto the partial packing according the locations specified by t
(Fig.5).
LB-Compactness and O-Tree Redundancy. Some packings repre-
sented by O-Trees are not L-compact, and some of them can be specified
by multiple O-Trees. To prune such O-trees we require that the y-span
of each block overlap with that of its parent. Moreover, if B has overlap-
ping y-span with multiple adjacent blocks in the left, then we require the
parent of B to be the lowest of these. For example in Fig.1b, we require
B7 to have parent B6 instead of B1.
Dominance. The bounding rectangle of a packing can be in one of eight
orientations. It suffices to analyze only one of those orientations. We
formalize the notions of corner as follows. In the packing U , a block is
lower-left iff (i) no blocks lying below have an overlapping x-span, and
(ii) no blocks lying on the left have an overlapping y-span. Similarly for
lower-right, upper-left and upper-right. A block is a corner block if it
is one of the above. In Fig.1b, B5 is lower-left, B1 is upper-left, B4 is
lower-right, B4 and B7 are upper-right.

To facilitate pruning, observe that an LB-compact packing always
contains unique lower-left, lower-right and upper-left blocks, and at least
one upper-right block. We declare the rightmost upper-right block to be
the upper-right block. In Fig.1b, B4 is the upper-right block. To avoid
dominated packings, we impose dominance-breaking constraints:
(1) the lower-left block Blower−le f t has orientation 0,
(2) Blower−le f t � R for every corner block R.

It can be shown that one can transform any packing to one satisfying
(1-2) without increasing area. Fig.6a-d show an example. Let Mσ =
maxk/∈σ {k} and Ilr be the index of the current lower-right block. The
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Figure 3: (a) A partial packing (t,σ,δ) with t = 0010001111 and
σ = {B5,B3,B8,B2,B4}. Fig.1b shows a compatible complete packing; (b)
Every block whose x-span intersects with that of B8 lies above B8, hence
the shown dead-space is permanent; (c) the dead-space shown is permanent
since unused blocks cannot rest on B2.

B5 B3

B8

B2
B4

B7  (Lstart, Lend)
(a)

B5 B3

B8

B2
B4

B7 (b)
B2B3

B4B5

B8

x5 x8 x2 x4 xright

(c)

Figure 4: (a) Lstart ≤ x7 < Lend , (b) enforcing x7 = Lstart does not increase
coordinates of B7, (c) a lower bound can be computed from x-coordinates
shown; x8 can be ignored because the upper edge of B5 is lower than that of
B8, and so can be x4.
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Figure 5: If the locations of next 4 blocks in t are known, we place minimum
squares di according to t; di occupies the same position in t as Di.
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Figure 6: The packing P satisfies (3.2) but not (3.1). When we apply an
α-transformation to get P′, P′ does not satisfy (3.2) anymore. Thus we apply
a β-transformation to get P′′′ by flipping P′ to P′′ and then compacting to P′′′.

index of the lower-right block is at most I = max (Ilr,Mσ). Since lower-
left block in the partial packing must remain the lower-left block in any
of its extended packings, we require Bbottom−le f t � BI . Similarly for
upper-left and upper-right blocks.
Blocks with Same Height or Width. If two adjacent blocks B and B′

have the same height and y-coordinate, the cluster formed by B and B′

can be flipped. We break this symmetry by requiring B ≺ B′ if B is to
the left of B′, and similarly, for adjacent blocks with same width and
x-coordinate, e.g., B1 and B6 in Fig.1b. If two blocks Bi and B j in π
have the same width and height (i < j), they are interchangeable and we
require Bi to appear first in σ. These constraints are compatible with
constraints (1-2).

4. OPTIMAL SLICING PACKING
4.1 Branching
Branching Schedule. A slicing packing of n blocks can be specified by
(P,θ) where P is a Polish expression of length 2n−1 and θ is a bit-vector
of length n, storing the orientations of the blocks as described in Section
2. We maintain a growing Polish expression p and bit-vector δ.

Table 2: Branching schedule towards (124∗5+,0111)
expression p: 1 3 5 7 8 10
orientation δ: 2 4 6 9

We explore symbols of p one by one. If a given symbol is an operand,
we explore a bit of δ, otherwise another symbol of p is explored (Table
2). We use the following characterization of Polish expression [15]. A
sequence p over {1, . . . ,n,+,∗} of length m ≤ 2n−1 can be extended to
a normalized Polish expression iff (1) for every i = 1, . . . ,n, i appears at
most once in p, (2) p has more operands than operators and (3) there are
no consecutive +’s and ∗’s in p. The above sequences are called partial
Polish expressions, and can be tested for in O(1) time per incremental
change.
Information in a Partial Solution. We maintain a series of blocks and
supermodules using two stacks: the bundle and the storage.

When we push an operand and its orientation to p and δ respectively,
we push the respective block (with width and height specified) into the
bundle stack. When we push an operator α to p, we are guaranteed to
have at least two blocks or supermodules in the bundle. We pop the
two top-most blocks in the bundle, A and B, and push them in this order
into the storage. We compute the supermodule formed by merging A
and B in the way specified by α. When we pop an operand b and its
orientation from p and θ respectively, we pop the top element of the
bundle, which is necessarily b. When we pop an operator α from p, we
pop the top element of the bundle, and push the two top-most blocks or
supermodules from the storage to the bundle (Fig.7).

During incremental changes to p and δ, stack updates take O(1) time.
When we reach a leaf of the search tree, the supermodule in the bundle
is the bounding rectangle specified by a complete solution (P,θ).

expression: 1 2
bundle: B1 B2
storage:

(a)

1 2 4
B1 B2 B4

(b)

1 2 4 *
B1 M24∗
B4 B2

(c)
Figure 7: (a) The original configuration; (b) adding 4 to (a); (c) adding ∗ to
(b); removing ∗ from (c) yields (b); removing 4 from (b) yields (a).



4.2 Lower Bounds and Pruning
For two supermodules (or blocks) M and N, we define M ≺ N if

BM ≺ BN where BM and BN are the bottom-left blocks of M and N re-
spectively. For two supermodules (or blocks) A and B, we define A + B
as the supermodule formed by placing B on top of A, and A ∗B as that
formed by placing B in the right of A. When we consider two partial
Polish expressions, we implicitly assume that they are associated with
the same bit-vector δ and hence represent two packings.
Minimum Dead-Space. The rectangles A + B and A ∗ B cannot be
changed after A and B are merged. Therefore, the dead-space inside
A+B and A∗B is permanent. This is illustrated in Fig.8a.
Extended Dead-Space. Let R1, . . . ,Rm be in the bundle where R1 is at
the bottom, and Rm is at the top and m≥ 2. The next block or supermod-
ule Mm−1 that Rm−1 merges with must contain Rm. Hence the width and
height of Mm−1 are not greater than those of Rm respectively.

Similarly, ∀ i = 1 . . .m− 1, the next block Mi that Ri merges with
must contain Ri+1 . . .Rm. Hence the width of Mi is not smaller than the
maximum of widths of R j for j = i+1 . . .m. Similarly for its height. In
cases when both the width and height of Ri are smaller than those of Mi,
we can lower-bound the dead-space when Ri merges with Mi (Fig.8b).

1 4 2 3

5

6
7

8

M1 4 * B2 M3 5 + 6 * M7 8 +
(R1) (R2) (R3) (R4)

a1

a2

a3

a4 (a)
N2

R2

R2

a*

a+

(b)

Figure 8: (a) The bundle for 14∗235+6∗78+ with regions of permanent
dead-space a1, a2, a3 and a4; (b) when R2 is merged with M2, M2 must contain
R3 and R4 and hence N2; a+ (a∗) is a lower bound for dead-space in R2 +M2

(R2 ∗M2) and hence min (a+,a∗) is a lower bound for dead-space.

Commutativity. A + M is equivalent to M + A, and A ∗M to M ∗ A.
To break this symmetry when merging supermodules A and M, one can
require A ≺ M. We propose a better pruning mechanism below.

Suppose we are pushing the block B to the bundle, which is not empty,
with the top element A. Then B must be the bottom-left block of the next
supermodule M to merge with A. Hence we require A ≺ B, implying an
ascending order of blocks and supermodules in the bundle.
Abutment. Consider blocks R1, R2 and R3, where R1 ≺ R2 ≺ R3. If
they abut horizontally or vertically, their order does not matter. For ex-
ample, (R1 +R3)+R2 is equivalent to (R1 +R2)+R3. However both
arrangements pass the commutativity constraint.

For chained operators of the same kind, e.g., (R1 + R2)+ R3 or (R1 ∗
R2)∗R3, we require both R1 ≺ R3 and R2 ≺ R3. By the commutativity
constraint R1 ≺ R2. Therefore we only have to check if R2 ≺ R3. Since
an abutment of three or more blocks must be of the form E1E2 + E3 +
. . .+Ei+, the abutment constraint breaks all symmetries of this kind.
Global Bottom-left Block and Its Orientation. We require B1 to be the
bottom-left block of all packings. This constraint is redundant because
the commutativity constraint does not allow pushing B1 to a non-empty
bundle. However we can now prune hopeless partial Polish expressions
much sooner. Similar to the non-slicing case, we require the orientation
of B1 to be 0.
Identical Blocks. If blocks A and B have the same dimensions, then
they are interchangeable. Since the above constraints do not break all
symmetries due to identical blocks, we require in that case that A appear
before B in p if A ≺ B.

5. HIERARCHICAL SLICING PACKING
In this section our optimal slicing floorplanner is extended to a scal-

able hierarchical slicing floorplanner which does not necessarily pro-
duce optimal solutions. The tree-structure of slicing floorplans facili-
tates a divide-and-conquer approach — we group blocks into clusters
and pack each cluster into a supermodule. We then pack supermodules

1
5

2
4

3

(a)
P = 12+345∗+∗
θ = 01100

1

5

2

43
(b)
P̄ = 12∗345+∗+
θ̄ = 10011

Figure 9: When the packing in (a) is flipped to (b), all operators in the Po-
lish expression change. The packing in (a) is (P1P̄2 +P̄3P4P5 ∗+∗,θ1θ̄2θ̄3θ4θ5)

where (Pi,θi) or (P̄i, θ̄i) is the packing of Mi in (a).

into higher-level supermodules.
Conquer Operations. If we flip the packing (P,θ) across a diagonal
preserving the bottom-left block, the resulting packing is represented by
(P̄, θ̄) where θ̄ is the complement of θ and P̄ is equal to P with all pluses
changed to asterisks and vice versa. This is illustrated in Fig.9.

In the rest of the paper (P̄, θ̄) denotes the flipped packing of (P,θ).
We identify a supermodule by its bottom-left block, e.g., if B2 is the
bottom-left block of M, then 2 identifies B2 and M.

Suppose we pack {B1, . . . ,Bn} to r supermodules {Mi} with bottom-
left blocks Bki specified by (Pi,θi) for i = 1 . . .r. We pack the r super-
modules into a supermodule specified by (P,θ) (note that Mi is identified
by ki in P). Let li be the bit in θ that specifies the orientation of Mi. To
completely specify a packing of all blocks, we substitute ki by Pi and li
by θi if li = 0, or P̄i and θ̄i respectively if li = 1 (Fig.9). Note that the
expanded Polish expression may not be normalized and may not satisfy
all constraints in Section 4.2.

For each cluster, we find an optimal packing by branch-and-bound,
subject to constraints from Section 4.2. We also limit the width and
height of clusters by Lmax =

√
AbestR, which in practice prevents super-

modules with extreme aspect ratios that may not pack well at the next
level. In this formula Abest is the area of the best packing found so far,
and the constant R is termed the aspect ratio increment. Note that con-
straining aspect ratio may increase dead-space. We regulate the tradeoff
between dead-space and aspect ratio by means of the dead-space incre-
ment constant χ. Abest is initialized to Aχ before the first search, where
A is the sum of areas of all blocks or supermodules in the cluster. If
no solution is found, we increase Abest from Aχ to Aχ2 and Lmax from√

AbestR to
√

AbestR2. Such increases continue until a solution is found.
We do not limit height and width at the top level of the hierarchy.
Divide Operations. While our conquer operations ensure small run-
time, divide operations are responsible for solution quality. We use a
greedy clustering framework from [14]. For every pair of blocks/clusters
we calculate a quality metric (details below) and prioritize all pairs. The
best pair is clustered if its elements have not been clustered before.
Similarity Between Blocks/Supermodules. For blocks/supermodules
Ri and R j we compute the quality metric by

Wi j =

(

min
(

mi,m j
)

max
(

mi,m j
)

)10

+

(

min
(

Mi,M j
)

max
(

Mi,M j
)

)10

(1)

where mi and m j are the shorter edges (min-edges) for Ri and R j respec-
tively, Mi and M j are the longer edges (max-edges) respectively. Equa-
tion (1) helps to select pairs of blocks with similar edges. Power 10 in
each term emphasizes our preference for blocks with extremely similar
edges, particularly useful in slicing packings. Alternatively, clustering
can be based on connectivity when wirelength is minimized [14].

Similarly to Equation (1), we define the similarity Si j of Ri and R j by

Si j =

(

min
(

mi,m j
)

max
(

mi,m j
)

)2

+

(

min
(

Mi,M j
)

max
(

Mi,M j
)

)2

(2)

Clearly 0 < Si j ≤ 2, and Si j = 2 corresponds to identical blocks. We
introduce the side resolution parameter Smin such that if Si j ≥ Smin, Ri
and R j are considered identical during branch-and-bound for symmetry-
breaking purposes. In optimal packers we set Smin = 2, and smaller
values trade off solution quality for better runtime.



Constraints in Cluster Formation. Suppose blocks {R1, . . . ,Rr} are
partitioned into s clusters Ck1 , . . . ,Cks . When merging clusters Ci and C j
to form a new cluster, we impose the following constraints.
(1) t ≥ κblogκ (r−1)c where κ is the cluster base constant and t is the

number of clusters after the merger;
(2) 1 ≤ |Ci|+

∣

∣C j
∣

∣≤ ρ where ρ is the cluster size bound;

(3) Ai + A j ≤
(

A
r

)

ξ where Ai = |Ci|Ai,bottom−le f t , and Ai,bottom−le f t is

the area of the bottom-left block in Ci. Similarly for A j. ξ is the
cluster area deviation, and A is the total area of all blocks involved.

Constraint (1) ensures that there are enough clusters for another round
of clustering. Constraint (2) limits the number of elements per cluster
to guarantee that branch-and-bound finishes quickly. Constraint (3) en-
sures that the areas of the resulting supermodules do not differ too much.
Ai is a reasonably accurate area estimate of Ci since blocks often pack
into a grid-like structure. The bounds imposed in the above constraints
allow our hierarchical floorplanner to adapt to problem instances.1

6. EXPERIMENTAL RESULTS
Our algorithms are implemented in C++ and is open-sourced under

the name BloBB (Block-packing with Branch-and-Bound). BloBB and
all test cases are available at [19]. All programs are compiled with g++
3.2.2 -O3 and evaluated on a 1.2GHz Linux Athlon workstation. Ta-
ble 3 shows runtimes on randomly-generated test cases, which are more
difficult for our block-packers as they have no symmetry and because
dimensions of their blocks are all different. We use the data in Table 3 to
determine the cluster base κ and the cluster size bound ρ to maximize the
flexibility of the hierarchical floorplanner. Observe that dead-space (%)
in optimal packings decreases in larger floorplans, and the difference
in dead-space between slicing and non-slicing packings is within 1.5%.
We also run BloBB on highly symmetrical test cases consisting of only 2
or 3 types of blocks. In these cases, the difference in area-suboptimality
between slicing and non-slicing packings is within 0.3% only, and the
difference decreases with block counts.2 Since industrial examples lie
between these two extremes, the average difference between slicing and
non-slicing packings is expected to lie between 0.3% and 1.6%.

BloBB packs the three smallest MCNC benchmarks optimally (Fig.10
and Table 4). Such results have never been claimed before, even though
solutions reported in some papers appear to be optimal. Observe that
apte and hp have blocks with identical dimensions and are solved much
faster than random instances of the same size.

Our hierarchical block-packer is evaluated on MCNC and larger GSRC
benchmarks (Table 5). We run BloBB with the same (default) parame-
ters for all test cases and achieve comparable results to those of Parquet
[1], the TCG-S floorplanner and B*-Tree v1.0 from [18]. Parquet is a
fast floorplanner based on sequence-pair, while the TCG-S floorplanner
contributes many best published results for the MCNC benchmarks [10].
B*-Tree v1.0 searches in a much smaller solution space than that of our
hierarchical floorplanner [17]. Based on performance results in Table 5
alone, it is difficult to claim that one floorplanner outperforms others —
each floorplanner has many parameters that can be tuned further. For the
MCNC and GSRC benchmarks BloBB is competitive with the TCG-S
floorplanner and B*-Tree v1.0 by area, while being much faster. No-
tably, all competing tools produce non-slicing floorplans, while in these
experiments BloBB always produces slicing floorplans, which inherits
many desirable properties of slicing packings, such as simpler represen-
tation and easier incremental changes.

BloBB’s adaptive nature is illustrated in Table 5, where runtime is im-

1In rare cases no clusters can be formed even when ξ > 1. In such circumstances
we recommend further increasing ξ.
2For example, in test cases with 10 blocks of 3 different types, optimal non-
slicing packings contain 1.96% dead-space on average while slicing packings
contain 2.20%. In cases with 12 blocks with 2 distinct types, optimal non-slicing
packings have 0.96% dead- space while slicing packings have 1.08%.

pacted by repeated block dimensions and does not necessarily increase
with block counts. To demonstrate the scalability of our floorplanner,
we create the test case n600 by merging all blocks in n100, n200 and
n300. BloBB runs faster than Parquet and B*-Tree v1.0, it also finds
packings with smaller area. Fig.11 shows that most dead-space can be
traced to high-level floorplans where clustering is harder. This suggests
that our divide operations pack blocks into tight clusters.

7. CONCLUSIONS AND ONGOING WORK
We propose new optimal slicing and non-slicing block-packers, as

well as a scalable deterministic bottom-up slicing block-packer. Our
implementation BloBB is competitive with best non-slicing annealers.
For small floorplans, empirical results for optimal block-packers (Table
3) confirm the perceived advantages of non-slicing floorplans. For large
floorplans, data in Table 5 suggest that state-of-the-art annealers may fail
to find best non-slicing floorplans reasonably quickly. Thus, slicing and
hierarchical representations are competitive when runtime is limited.

While we only report results for hard blocks, we can employ the
shape-curve technique from [15] for soft blocks with continuous aspect
ratio. Instead of its width and height, we identify each block/supermodule
by a shape-curve, which describes the possible dimensions it can take.
Since merging blocks/supermodules corresponds to adding their shape-
curves vertically or horizontally, we can apply all the techniques in Sec-
tions 4 and 5. For initial results, we pack the soft versions of all MCNC
benchmarks, except apte, and all GSRC benchmarks with zero dead-
space in less than 80s each. While the blocks can take aspect ratio within
[0.5,2], this constraint is not very restrictive. We can still achieve pack-
ings with zero dead-space in most cases when we restrict the aspect ratio
to lie within [0.59,1.70]. The shape-curve technique can be applied to
hard blocks, and we get improved experimental results. Table 6 com-
pares BloBB’s extension with MB*-Tree on the ami49 X benchmark
suite [9]. It outperforms MB*-Tree in terms of runtime, solution qual-
ity and scalability. Fig.12 shows sample packings produced by BloBB’s
extension. More detailed experimental results are available in [3, 20].

Our block-packer handles additional constraints as stronger bounding
criteria which often improves runtime. Fixed-outline floorplanning is an
important example because annealers typically fail in this context [1].
Interestingly, our area-optimal algorithms tend to achieve aspect ratios
close to 1.0 even when no fixed-outline constraints are imposed (Fig.11).

Since wirelength (HPWL) can be calculated incrementally, it can be
efficiently maintained during branch-and-bound [2]. Therefore, our floor-
planner can be easily extended to optimize a linear combination of wire-
length and area. Alternatively, we can minimize wirelength among all
min-area solutions. Another optimization strategy is to limit the wire-
length by adding a constraint. We can also put highly connected blocks
together during clustering.

Intriguing questions for future work include characterizing easy and
difficult black-packing instances, based on block similarities. In this
context our hierarchical floorplanner may be able to generate easier in-
stances during the partitioning step. Performance may also be improved
by automatically tuning key parameters at runtime.

We believe that branch-and-bound and simulated annealing can be
combined in a hierarchical framework. In Fig.11, most of the dead-space
results from higher-level floorplans. While our fast branch-and-bound is
applied to lower-level floorplans, one may improve higher-level floor-
plans by simulated annealing. Another potentially useful optimization
is the incremental cluster refinement algorithm from [16].

The rectangle packing problem is closely related to the 2D bin-packing
problem, which has a wide range of applications such as multi-project
reticle floorplanning [11]. In reticle floorplanning, slicing packings are
often preferred in each reticle image, because wafers must be cut into
chips by slicing lines. In BloBB, we traverse the space of slicing pack-
ings by maintaining a series of clusters. It means that any partial solution
with all n blocks is a full slicing solution of the 2D bin-packing problem



Table 3: BloBB runtimes.
optimal non-slicing optimal slicing hierarchical

# of dead-space % / dead-space % / dead-space % /
blocks runtime (s) runtime (s) runtime (s)

6 4.12 0.23 5.51 0.015 5.51 0.013
7 3.52 2.82 4.85 0.060 4.85 0.059
8 3.07 38.5 4.49 0.31 4.49 0.29
9 2.48 665 3.81 1.65 3.85 0.24
10 — — 3.90 29.8 5.04 0.46
11 — — 3.52 103.5 5.35 0.44
30 — — — — 9.70 9.32
50 — — — — 10.21 13.2

100 — — — — 9.41 44.2
300 — — — — 10.72 38.0
500 — — — — 11.80 211.3

Average performance of BloBB on 10 randomly-generated test cases. All blocks are dis-
tinct, and their dimensions are distributed uniformly in the range 1..200. The hierarchical
packer is configured with κ = 8, ρ = 9, ξ = 2.00, R = 1.5, χ = 1.5 and Smin = 1.9.

Table 4: Optimal results for MCNC benchmarks produced by BloBB.
Test Block Non-slicing Slicing
case area area / dead-space / runtime area / dead-space / runtime
apte 46.562 46.925 0.78% 2.38 46.925 0.78% 0.23
xerox 19.350 19.796 2.30% 9812 20.017 3.45% 12.8

hp 8.831 8.947 1.32% 891 9.032 2.28% 0.74

Table 5: BloBB (hierarchical) versus Parquet, TCG-S and B*-Tree v1.0.
Test Hierarchical Parquet TCG-S B*-Tree
case area (mm2) / area (mm2) / area (mm2) / area (mm2) /

runtime (s) runtime (s) runtime (s) runtime (s)
apte 47.30 0.035 51.81 0.016 49.74 0.25 48.06 8.26
xerox 20.31 0.078 22.09 0.020 20.31 0.24 20.46 0.037

hp 9.26 0.027 9.59 0.022 9.38 0.34 11.60 25.7
ami33 1.25 1.73 1.25 0.16 1.22 4.48 1.21 14.2
ami49 38.18 3.01 38.89 0.34 38.17 18.3 36.96 15.1
n100 192234 5.62 200328 1.49 199290 143 186686 125
n100b 175263 34.7 178880 1.49 175497 144 166110 126
n200 191040 7.09 197769 6.81 198739 1286 185931 522
n200b 187824 13.34 197904 6.79 249473 847 186313 494
n300 297018 11.04 310213 16.8 324996 4889 300132 1007
n600 713775 22.3 732567 81.8 — — 721905 3122

BloBB and Parquet are evaluated on a 1.2GHz Linux Athlon workstation, while TCG-S
and B*-Tree v1.0 are run on 1.0GHz SUN Sparc workstation. Parameters of BloBB are
set as in Table 3. Default parameters are used for each floorplanner. We run each of them
10 times, except that TCG-S is run once on each of GSRC benchmarks and BloBB once
on all benchmarks. Minimum areas and average runtimes are reported.

Table 6: BloBB’s extension, BloBB versus MB*-Tree.
Test BloBB’s extension BloBB MB*-Tree
case area (mm2) / dead-space % / runtime (s)

ami49 40 1464 / 3.25% / 185s 1551 / 9.38% / 22s 1473 / 3.87% / 1488s
ami49 100 3652 / 3.04% / 110s 3844 / 8.45% / 9.70s 3671 / 3.57% / 3096s
ami49 200 7298 / 2.95% / 128s 7628 / 7.60% / 10.3s 7341 / 3.56% / 15372s
ami49 400 14578 / 2.54% / 414s 15633 / 10.26% / 29.1s —
ami49 800 29251 / 3.15% / 216s 32256 / 13.75% / 42.8s —

In test case ami49 X, there are 49X blocks. For example, ami49 800 consists of 39200
blocks. BloBB and its extension are evaluated on a 1.2GHz Linux Athlon workstation
while results of MB*-Tree are taken from [9], where it is evaluated on a 450MHz SUN
Ultra 60 workstation.

and vice versa! To better handle the 2D bin-packing problem, BloBB’s
pruning can be extended with heuristics specific to bin-packing. Han-
dling reticle floorplanning as a 2D bin-packing problem allows each ret-
icle image to be different, and holds a potential to improve the yield.

Acknowledgments. This work was supported by the Gigascale Sili-
con Research Center (GSRC), an Undergraduate Summer Research Fel-
lowship (UGSR) at the Univ. of Michigan, and an Information Technol-
ogy Research (ITR) grant from the National Science Foundation (NSF).
We thank Prof. Majid Sarrafzadeh from UCLA for helpful discussions.

8. REFERENCES
[1] S.N. Adya, I.L. Markov, “Fixed-outline Floorplanning: Enabling

Hierarchical Design,” IEEE Trans. on VLSI 11(6), pp. 1120-1135, 2003.
http://vlsicad.eecs.umich.edu/BK/parquet/

[2] A.E. Caldwell, A.B. Kahng, and I.L. Markov, “Optimal Partitioners and
End-case Placers for Standard-cell Layout,” IEEE Trans. on CAD, 19(11),
pp. 1304-1314, 2000.

[3] H.H. Chan and I.L. Markov, “Practical Slicing and Non-slicing
Block-Packing without Simulated Annealing,” CSE-TR-487-04, The
University of Michigan, 2004.

[4] Y.-C. Chang et al., “B*-trees: A New Representation for Non-Slicing

1 2 3 4 5 6 7 8 9
(a) apte: slicing and non-slicing

1

2

3
4
5

6 7

8

9

10

11

(b) hp: non-slicing
1

2

3
4

5

6 7

8

9

10

11

(c) hp: slicing

1

2

3
4

5

6

7

8

9

10

(d) xerox: non-slicing

1

2

3

4

5

6

7

8

9
10

(e) xerox: slicing

Figure 10: Optimal packings for apte, xerox and hp produced by BloBB.

(a) n100 (b) n200 (c) n300

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39
40

41

42

43

44

45

46

47

48

49

(d) ami49
Figure 11: Sample packings produced by BloBB (hierarchical).

(a) n300 (b) ami49 40
Figure 12: Sample packings produced by BloBB’s extension. It takes (a) 82s
to pack n300 with zero dead-space and (b) 185s to pack ami49 40 with 3.25%
dead-space. n300 consists of 300 blocks with aspect ratios within [0.63, 1.60],
and ami49 40 consists of 1960 hard blocks.

Floorplans,” DAC 2000, pp. 458–463.
[5] J. Cong, G. Nataneli, M. Romesis, J. Shinnerl, “An Area-

Optimality Study of Floorplanning,” to appear in ISPD 2004.
[6] P.-N. Guo, C.-K. Cheng, T. Yoshimura, “An O-tree Representation of

Non-Slicing Floorplan and Its Applications,” DAC 1999, pp. 268–273.
[7] X. Hong et al., “Corner Block List: An Effective and Efficient Topological

Representation of Non-Slicing Floorplan,” ICCAD 2000, pp. 8–12.
[8] M. Lai and D. Wong, “Slicing Tree Is a Complete Floorplan

Representation,” DATE 2001, pp. 228–232.
[9] H.-C Lee, Y.-W Chang, J.-M Hsu, and H.H. Yang, “Multilevel

Floorplanning/Placement for Large-Scale Modules Using B*-Trees,” DAC
2003, pp. 812-817.

[10] J.-M. Lin and Y.-W. Chang, “TCG-S: Orthogonal Coupling of
P*-admissible Representations for General Floorplans,” DAC 2002,
pp. 842–847.

[11] I. Mandoiu, “Multi-Project Reticle Floorplanning and Wafer Dicing,” to
appear in ISPD 2004.

[12] H. Murata et al., “VLSI Module Placement Based on Rectangle-Packing
by the Sequence-Pair,” IEEE Trans on CAD 15(12), pp. 1518–1524, 1996.

[13] S. Nakatake et al., “Module Placement on BSG-structure and IC Layout
Applications,” ICCAD 1996, pp. 484–491.

[14] H. Onodera, Y. Taniguchi, and K. Tamaru, “Branch-and-Bound Placement
for Building Block Layout,” DAC 1991, pp. 433–439.

[15] D. F. Wong and C. L. Liu, “A New Algorithm for Floorplan Design,” DAC
1986, pp. 101–107.

[16] J. Xu, P.-N. Guo, and C.-K. Cheng, “Cluster Refinement for Block
Placement,” DAC 1997, pp. 762–765.

[17] B. Yao et al., “Floorplan Representations: Complexity and Connections,”
ACM Trans. on Design Autom. of Electronic Systems 8(1), pp. 55–80,
2003.

[18] http://cc.ee.ntu.edu.tw/˜ywchang/research.html
[19] http://vlsicad.eecs.umich.edu/BK/BloBB/
[20] http://vlsicad.eecs.umich.edu/BK/CompaSS/


