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Abstract—With the prospect of atomic-scale computing, we
study cumulative energy profiles of spin-spin interactionsin non-
ferromagnetic lattices (Ising spin-glasses)—an established topic
in solid-state physics that is now becoming relevant to atomic-
scale EDA. Recent proposals suggest non-traditional computing
devices based on nature’s ability to find min-energy states.Spinto
utilizes EDA-inspired high-performance algorithms to (i) simulate
natural energy minimization in spin systems and (ii) study its po-
tential for solving hard computational problems. Unlike previous
work, our algorithms are not limited to planar Ising topolog ies. In
one CPU-day, our branch-and-bound algorithm finds min-energy
(ground) states on100 spins, while our local search approximates
ground states on 1, 000, 000 spins. We use this computational
tool to study the significance ofhyper-couplings in the context of
recently implemented adiabatic quantum computers.

I. I NTRODUCTION

As leading CMOS foundaries are gearing for mass produc-
tion of 22nm and 32nm CMOS chips, long-term EDA research
has started to explore the use of atomic properties in com-
puting. This exploration relies on established computational
models of atomic-scale phenomena, but struggles to connect
different levels of abstraction—spin-level micro models and
energy-based statistical macro models.

The spin-glass model was proposed by Edwards and Ander-
son [6] as a variation of the Ising model to study disorder in
crystallized solids. Such systems are composed of particles that
can be in either of two possible energyspinstates. The model
is described in graph-theoretic terms by representing atoms in
a crystal with vertices and bonds between atoms with edges.
Since physical systems found in nature are often disordered,
the edges are assigned random weight values corresponding to
the energy of the bond. Some physical and chemical properties
of a crystal depend on the total energy of the bonds, which
depend on atomic states. Estimating total energy via a graph-
based function facilitates the use of graph algorithms to study
material properties relevant to computing. In particular,we
are interested in finding thespin configurationthat produces
the least amount of energy. This configuration is known as
the ground stateof the system. Barahona [2] proved that, for
general spin systems, theground-state determination problem
(GSD) is NP-hard. Given that many physical systems have a
natural ability to find least-energy states quickly, researchers
are currently attempting to exploit this phenomenon to perform
useful computation. At the atomic scale, energy minimization

can be aided by quantum tunneling, which effectively reduces
the number of local minima. Thus, GSD problems are of
particular interest to quantum-information researchers because
they are suitable candidates for evaluating the performance
of adiabatic quantum computers(AQCs). Recently publicized
AQCs employ an architecture based on Ising spin systems
[13]. First, the system is configured to represent a given
combinatorial problem, i.e., the spin interactions are carefully
controlled rather than random as in statistical mechanics.The
ground state is approximated viaquantum annealing(the
quantum analogue of thermal annealing), then read off as a
bit sequence and interpreted as an answer to the problem.
Bansal et al. [1] proposed an approximation algorithm for GSD
on Ising spin lattices,which essentially simulates these AQC
architectures [8], and thus limits their potential for quantum
speed-ups. To approximate the least energy withǫ accuracy,
the algorithm from [1] requires runtime exponential in1/ǫ,
which is impractical. In contrast, we propose a branch-and-
bound algorithm and a high-performance local search that
quickly finds near-optimal energy values for arbitrary Ising
topologies. Such techniques can be used to critically assess
the performance of non-traditional computing devices based
on energy minimization in spin-glasses and also to determine
best implementation options. Our main contributions are:

• A branch-and-bound algorithm for solving GSD exactly
on spin lattices with up to100 spins.

• A pass-based local search heuristic. Empirical results
show that it scales better than other GSD algorithms and
produces near-optimal solutions.

• A generalization of GSD to include many-spin couplings
(hyper-couplings), and relevant algorithms.

• A study of how the omission of hyper-couplings impacts
the success of AQC number factoring in recent NMR-
based implementations.

The rest of the paper is structured as follows. In Section II
we discuss the spin-glass model and the GSD problem. Section
III presents our algorithms for finding ground states. Section
IV reports empirical results. In Section V, we generalize the
spin-glass model to include hyper-couplings and study their
significance in number factoring.



II. BACKGROUND AND PREVIOUS WORK

In the Edwards-Anderson [6] model, spins are binary±1
values, and the strengths of the atomic couplings are i.i.d.
random variables according to some probability distribution.
The most common distributions used are the Gaussian, and
the ±1-bimodal distributions. LetGising = (V, E) denote an
Ising-model graph withn vertices (spins). Each vertexu ∈
V is denoted by spin valueSu ∈ {±1} and is assigned a
magnetization weighthu. For u, v ∈ V , we define(u, v) ∈ E
to be an edge representing a bond between two adjacent spins
with assigned weightJu,v chosen randomly from the standard
Gaussian distribution (µ = 0, δ = 1). Thus, we expect that
half the bonds in the graph will be negative. Usually, the same
positive- to-negative bond ratio is maintained when the±1-
bimodal distribution is used instead. The internal energy of the
system for a particular configuration of spin valuesσ = {Si}
is given by

E(σ) = −
n

∑

(i,j)∈E

Ji,jSiSj −
∑

i

hiSi (1)

where the first summation considers all pairs of adjacent spins.
Putting together the energies of all spin configurations gives
theHamiltonianof the system. Thus, the ground state is given
by Egs = min(E(σ) | ∀ σ ∈ πn), whereπn is the set of
all possiblen-spin configurations. Whether we are interested
in the lowest-energy value or then-spin configuration with
such energy,| πn |= 2n because each spin can take on one
of two possible values. Since energy minimization is typically
NP-hard, calculating the ground state exactly using exhaustive
search is feasible only for small spin glasses. To provide a
scalable way of finding ground states or approximating their
energies, we need to employ heuristics.

The spin-glass topologies commonly considered in the liter-
ature are two- and three-dimensional lattices. To simulatein-
finite spin glasses, one requiresperiodic boundary conditions,
which connect the spins lying on a dimensional boundary to
the spins on the opposing boundary.
Complexity of GSD. Although most variations of GSD are
known to be NP-hard [2], there are a few cases where the
topology of the graph can be exploited to solve the problem
in polynomial time. Bieche et al. [4] proved that the GSD
problem on planar graphs can be solved in polynomial time by
showing a reduction to the minimum-weight perfect matching
(MWPM) problem. It follows from their work that GSD
instances with zero magnetization (hi = 0) and 0- or 1-
periodic boundary conditions can be solved inO(n3) time.
While MWPM is poly-time solvable, practical runtime and
memory usage do not scale to very large instances. To over-
come these limitations, the work in [10] describes a heuristic
based on the MWPM reduction. Another special case is that
of ferromagnetic (Ji,j > 0) GSD instances, which Barahona
[3] reduced to (s-t)-min-cut or max-flow. Table I shows the
spin-lattice properties that make GSD poly-time solvable and
identifies the algorithms commonly used. Note that the number
of dimensions, the number of boundary conditions and the

Dims. Bound- External Bond NP- Poly-time
aries magnet field weights hard? algorithm

2 0 No ± No MWPM
2 0 Yes ± Yes –
2 ≤ 2 Yes + No Max-flow
2 1 No ± No MWPM
2 1 Yes ± Yes –
2 2 Yes/No ± Yes –

N > 2 ≤ N Yes/No ± Yes –

TABLE I
SPIN-LATTICE PROPERTIES THAT MAKEGSD NP-HARD.

presence of a magnetic field are the main factors in deter-
mining NP-hardness. More precisely, for lattices with more
than two dimensions or with two boundary conditions, the
graph is no longer planar and the reduction to MWPM breaks
down. Compared to these techniques, our algorithms work on
general instances of GSD, without limiting the structure ofthe
underlying graph.

III. GSD ALGORITHMS

In order to better control trade-offs between runtime and
solution quality obtained from heuristics, it is importantto
design algorithms that are guaranteed to find exact ground
states on smaller instances. The exact solutions obtained
from such instances can be used to debug and evaluate the
performance of more scalable heuristics.
Branch-and-bound (B&B) algorithms consider incomplete
or partial solutions, where only some variables are assigned
values. Partial solutions are systematically constructedvia
a branching process that develops partial solutions that are
deemed promising, i.e., those that may lead to the optimal
solution. Partial solutions whose cost is too high, are “bounded
away” or pruned.

Our branching process proceeds as follows. First, all spins
are labeled as unassigned–their value can be set in the future
to either 1 or −1. The algorithm then calculates the lower
boundElb of Equation 1. It then selects a spini and branches
on one of the possible values. In each branch, the incremental
change inElb caused by the assignment is recorded as follows.
For each spinj adjacent toi that has already been assigned,
increase (decrease)Elb by twice the amount of the positive
(negative) bond connectingi and j if they have opposing
(aligned) spin values,

Eδ
lb =















2
∑

(i,j)∈E

Ji,jSiSj if Si 6= Sj andJi,j > 0,

−2
∑

(i,j)∈E

Ji,jSiSj if Si = Sj andJi,j < 0
(2)

Similarly, the corresponding change due to the magnetization
of the spin is also recorded,

Eδ
lb =

{

2hi if Si = −1 andhi > 0,

−2hi if Si = +1 andhi < 0
(3)

Once the spin is assigned, the algorithm branches out to
another spin and performs the same procedure. When all
spins have been assigned,Elb represents the energy of the
spin configuration generated by the branching process. To
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Fig. 1. Performance of B&B techniques on2-D spin lattices.

continue searching the configuration space, the branching
process backtracks to the last assigned spin, flips its value
and updatesElb. If both spin values have already been tried,
then the algorithm continues backtracking while relabeling
the spins as unassigned. Since each spin can take one of
two values, this branching process generates a full binary
search tree where the leaves correspond to all possible spin
configurations in the Ising system.

Initially, we use a linear-time greedy approximation (Ẽ)
as our bounding value. During the branching process, if the
energy of the partial solution exceeds̃E, then we can safely
prune this branch and backtrack without making any further
assignments. The algorithm either tries the opposite spin value
or backtracks again if both spin values have already been
tried. If the search assigns all the spins in the graph and the
corresponding minimal energy state is lower thanẼ, then we
set Ẽ to this new energy value. After searching all promising
branches,Ẽ will assume the ground-state energy. This stan-
dard bounding technique alone improves the scalability of the
branching process by an order of magnitude over exhaustive
search (see Figure 1).

To further improve the scalability of our B&B algorithm,
we designed aprune-by-dominancetechnique that consists of
identifying partial solutions whose energy can be lowered by
modifying the current spin assignment. For every assigned
spin s, let Fs be the set of spins adjacent tos for which
all neighboring spins have also been assigned, as illustrated
in Figure 2. Note that| Fs |≤ degree(s). The energy of the
spins inFs is localized in the sense that it will not be affected
by further spin assignments. Therefore, unpromising partial
solutions can be identified by flipping the spins inFs. If any
flip lowers partial energy, the algorithm backtracks. Observe
that when two branches are statistically unlikely to have
equal partial cost (e.g., when couplings and magnetizations
are random), the probability that the first branch dominates
the second branch is approximately1/2. Let c2k, 0 < c < 1,
be the partial solutions that require branching, then we expect
to prunec2k/2 = c2k−1 of these. As Figure 1 shows, our
pruning technique improved the scalability of B&B by1-2
orders of magnitude, allowing it to solve100-spin lattices in a
day. However, since B&B takes exponential time in the worst
case, it does not scale beyond100 spins.

Fig. 2. Illustration ofs andFs on a small grid.

Local search. Due to its difficulty, GSD researchers have
developed heuristic methods typically based on slow Monte
Carlo simulations. However, because of the role that Ising
models play in simulating real-world phenomena, faster tech-
niques that work on non-grid topologies are desirable. Our
local search is an iterative improvement algorithm that modi-
fies the bipartition induced by an arbitrary spin configuration
(positive spins are placed in one partition and negative spins in
the other). The algorithm performs a sequence of incremental
changes to the bipartition, organized aspasses. These changes
consist ofspin movesthat remove a particular spin from its
current partition and places it in the opposite one. At the begin-
ning of each pass, the energy differential (gain) of performing
each possible move is calculated. A positive gain implies
that the move decreases the overall energy while a negative
gain increases it. During a pass, the move that produces the
largest gain is selected and executed. The corresponding spin
is then labeled aslocked, i.e., it cannot be selected again in
the current pass. The pass continues selecting and executing
the best moves until all spins have been locked. At the end
of the pass, we save the best-seen bipartition produced by the
sequence of moves. This bipartition is then used as the starting
solution of the next pass. The entire algorithm terminates when
a pass fails to obtain an improvement in energy as shown in
Figure 3. Note that, in the absence of positive-gain moves, a
negative-gain move can be selected. Thus, a pass may accept a
solution that is worse than the existing solution (hill-climbing).
This helps to reduce the probability of getting trapped in local

Input: Ising spin-glass graphGising

Output: Approx. ground-state energyE∗

−−−−−−−− −−−−−−−−−−−−−−−
Spin PartitionSP ∗ := RAND SP (Gising)
while solution quality improvesdo

Gains containerGC := COMPUTE GAINS()
Spin PartitionSP := SP ∗

while GC has unlocked spinsdo
Movem := SELECT BEST MOV E(GC)
APPLY MOV E(SP, m)
UPDATE GAINS(GC, m)
LOCK SPIN(GC, m)
if energy decreasedthen SP ∗ = SP

end while
end while
return ENERGY (Gising , SP ∗)

Fig. 3. Pass-based local search with hill-climbing
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Fig. 4. Progress of our local search in terms of total energy during individual
passes on a1024-spin glass. The lowest energy state observed during each
pass (E1 = −2456, E2 = −2463, E3 = −2465, respectively) during a
pass becomes the starting state of the next pass.

minima. Figure 4 illustrates the progress of our local search in
terms of total energy during individual passes on a1024-spin
glass. The initial random solution used is generated in linear
time. To increase the quality of solutions and the probability of
finding the exact ground state, we repeat the algorithm using
multiple random initial solutions and selecting the best result.
The relationship between the number of random starts and
solution quality is explored in Section IV.

These gain updates are performed efficiently using a custom
heap-based data structure. The data structure consists of two
arrays. The first array implements a traditional binary heap
while the second array allows quick access to the heap-array
element that contains the gain-update value of a particularspin.
To perform gain updates, we can access the specific value
in O(1) time, update the value, and perform the necessary
swaps to maintain heap order. Since onlylog n swaps are
required in the worst case (wheren is the number of spins),
our data structure updates gain values much faster than naive
implementations that require scanning the entire set ofn gain
values. Sincen moves are performed during a pass, and only
a constant number of passes are required, the runtime of our
local search isO(n log n).
Comparison with Fidducia-Matheyses.The concept behind
our local search was first proposed by Fiduccia and Matthey-
ses (FM) [5] in the context of VLSI netlist partitioning.
However, the two techniques pursue very different objectives
and observe different constraints. They also require different
algorithmic details and different data structures. For example,
in the context of GSD problems, it is not necessary to maintain
balance constraints–a common requirement for most FM-
based VLSI graph partitioning algorithms. This makes the
problem easier since balanced bipartitioning is NP-hard. On
the other hand, our spin-partitioning technique must handle
real-valued positive and negative edges, which makes the
problem hard again (only non-negative integer edge weights
are used in VLSI partitioning). In VLSI netlist partitioning,
the objective is to minimize the cut of the bipartition, which
only considers the weights of the edges. Our local search
minimizes the overall energy function (see Equation 1), which
takes into account both the edge weights (bond strength) and
vertex weights (spin magnetization).

IV. EMPIRICAL VALIDATION

We evaluated single-threaded implementations of our al-
gorithms on a conventional Linux server, although our local
search is trivial to parallelize to a multicore system or a
distributed cluster. For15 × 15 spin lattices our local search
finds exact ground states in95% of independent random starts
(exact solutions were obtained from [15]), otherwise solutions
are 5% sub-optimal on average. Figure 5(a) compares the
average solution quality of local search for2-D spin glasses
with Gaussian-distributed couplings andhi = 0 (instances
with hi 6= 0 are not allowed in [15]). For each instance we
considered four different levels of effort with an increasing
number of independent random starts. To obtain the average
solution quality we computed1000 output samples using1,
ln2 n and n random starts (wheren is the total number of
spins) per instance. Forn2 random starts, we used fewer
output samples and provide confidence intervals. As expected,
the solution quality improves as the number of random starts
increases. When at leastln2 n random starts are used, our
heuristic produces high-quality solutions (> 95%) for five of
the benchmarks while its runtime does not exceed17 seconds
for the largest benchmark (2500 spins). Note that the expected
solution quality slowly decreases for larger instances. Figure
5(b) shows similar results for benchmarks with±1-bimodal
coupling distributions, but solutions are closer to optimal. For
all but one of the benchmarks, our heuristic requires only a
single random start to find high-quality solutions.
Local optimality . We verified that the configurations returned
by our heuristic cannot be improved by modifying a small
number of spins. We used our B&B to find optimal con-
figurations of groups of25-49 adjacent spins within larger
configurations. In our experiments, the solutions producedby
our heuristic were never improved by this technique.
Runtime. Our heuristic scales to a million spins and empirical
runtimes closely fitn log(n). We compared the runtime of
our local search against that of the MWPM-based heuristic
proposed in [10]. The solution quality of this heuristic depends
on a particular choice of parameters and does not work on
Gaussian-distributed instances. In contrast, our heuristic does
not have such dependencies and works on all instances. Table
IV in [10] shows the runtime and solution quality of the
MWPM-based heuristic±1 grid graphs of size164×164. This
heuristic takes59s on average producing the optimal value
61% of the time. By comparison, a single run of our heuristic
on a comparable benchmark takes about8.5 seconds. Thus,
we can perform7 random starts in the same period of time.
However, we could not compare the solution quality as we did
not have access to the same benchmarks.

V. GSD FOR HYPERGRAPHS

As discussed in Section I, recent AQC architectures [13] are
based on spin glasses. Implementations described by D-Wave
Systems use non-planar topologies, and recent experiments
in [11] demonstrate direct coupling of more than two spins.
Hence, we extend the conventional spin glass model to use
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Fig. 5. Expected solution quality (100% corresponds to the exact
solution obtained from [15]) produced by using different numbers of
random starts on2-D spin lattices. However, our techniques are not
limited to lattices where optimal solutions are found.

hyper-couplingsthat connect a set of at least two spins. The
new energy function is given by

E(σ) = −
∑

e∈E

Je

∏

i∈e

Si −
∑

i∈V

hiSi (4)

With minor modifications, our algorithms can optimize this
function allowing us to study a greater variety of physical
systems and solve a wider range of combinatorial problems.
Number-factoring as optimization. Integer factorization is
equivalent to the optimization off(x, y) = (N − xy)2, where
N is the odd integer we wish to factor andx, y are odd positive
integers< N . The minimum off(x, y) is reached whenx
and y are factors ofN . To solve this optimization problem
using GSD, we construct an Ising system whose ground state
corresponds to the minimum off(x, y). Since spins are±1
binary variables, we reformulatef(x, y) in terms of binary
digits such thatx =

∑nx−1
i=1 2ixi andy =

∑ny−1
i=1 2iyi. Since

x0 = y0 = 1, the total number of spins is(nx−1)+(ny−1) =|
V |. SettingSi = 2xi − 1 andSnx+i = 2yi − 1,

f(x, y) =

[

N −

(

2nx−1 1 − Sn−1

2
+ ... + 2

1 − Sn−nx

2
+ 1

)

(

2ny−1 1 − Sn−nx−1

2
+ ... + 2

1 − S1

2
+ 1

)]2

(5)

The magnetization weights and coupling strengths are given
by the product expansion of the above equation.
Computational experiments. B&B factors up to21-bit num-
bers in about5 minutes. While leading-edge number-factoring
algorithms can do better, the results confirm that B&B is
general enough to work on hyper-Ising models. We tested
our GSD heuristic by factoring specific numbers. In some
runs, this technique produces the factors ofN ± 2 or other
incorrect numbers. Therefore, many independent random runs
may be required to factor a given numberN , which is also
typical behavior in AQC. Figure 6 shows the output probability
distribution of factoring the number612171, which has several
factors and is therefore easy to factor. The probability of
success drops sharply for semi-primes, e.g., the probability of
factoring580003 in one attempt is only.005. Our implementa-
tion factored the semi-prime10185081163 = 100511×101333
using about15, 000 random starts in13 seconds. While fur-
ther optimizations may significantly improve runtime, present

results provide a computational baseline for performance eval-
uation of novel computing devices that solve hard problems
via energy minimization. Viable AQC devices would need to
improve on our results by producing output distributions with
greater probability of factoring the correct number.
Significance of hyper-couplings. Recently, Peng et al. [13]
implemented an AQC number-factoring algorithm in NMR
technology with a Hamiltonian that ignores hyper-couplings.
By simulating the functionality of the algorithm from [13],
we replicated their experiment and explored factorizationof
larger numbers. As in [13], the number21 was successfully
factored even in the absence of hyper-couplings. However, our
experiments show that, in general, omitting hyper-couplings
alters the ground states so that correct factors cannot be found,
e.g., for35 and91. Instead, some other numbers are factored
such as33 and 95. Although hyper-couplings have smaller
individual weights than two-spin couplings, the number of
hyper-couplings scales asO(n4), and their total weight even-
tually dominatesf(x, y) for larger N . Control of three-spin
hyper-couplings has recently been demonstrated [11], but only
for adjacent particles, which would be insufficient for number-
factoring applications. Furthermore, Equation 5 still requires
four-spin hyper-couplings which, as current research suggests,
are difficult to realize experimentally.
Avoiding hyper-couplings via ancilla spins. The work in [14]
shows a method for expanding Equation 5 that avoids the use
of hyper-couplings at the cost of a quadratic increase in spins.
The new Hamiltonian is based on the factorization equations
that are generated by decomposing long-hand binary multi-
plication [14]. Equation 5 is modified by introducing ancilla
binary variables. LetN = m1m2...mn. Let x = x1x2...xk

andy = y1y2...yn−k. Then letpi,j denote the sum of pairwise
products between the binary variables in Equation 5 and let
ci,j denote carry variables

f(x, y) =
k

∑

i=1

n−k
∑

j=1

[2 (xi/2 + yj/2 + pi,j + ci,j

−pi+1,j−1 − 2ci−1,j − 1/4)2 − 1/8
]

The bits ofN are linked to the bits ofx and y by a series
of equalities such aspi,0 = mi and pk+1,j−1 = mk+j (see
[14] for details).f(x, y) now computes a penalty function for
violating the factorization equations. This penalty is minimized
subject to the fixed values ofm1...mn. The corresponding
spin system is constructed in the same manner as before
except that only two-spin couplings are generated. Unlike the
(unconstrained) formulation with direct hyper-couplings, this
formulation includes spins with fixed logic values and thus
requires additional technology support (e.g., through optical
pumping of trapped ions). We used our algorithms as simula-
tors to compare the direct use of arbitrary hyper-couplings
(assuming technological feasability) to the expansion from
[14]. Figure 6 compares output probability distributions gen-
erated when factoring51. The technique from [14] produces
a flatter distribution with a wider range. This is because the
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solution space is more complex and includes configurations
where the ancillary spins are inconsistent (e.g., carry spin
ci,j = 0, but the partial product spinpl,k = ci,j ∗ 1 = 1).
Thus, this technique sometimes returns trivial decompositions
of prime numbers (e.g., 31), whereas direct use of hyper-
couplings always results in proper factorizations. In summary,
our experiments suggest that the expansion from [14] is
not computationally competitive with direct use of hyper-
couplings.

VI. CONCLUSIONS

The problem of finding the least-energy state of a spin
system (GSD) has played a central role in statistical physics
for decades [7, Chapter 3]. In modern EDA research, high-
performance GSD algorithms can(i) link spin-level descrip-
tions of non-traditional compute substrates to energy-based
statistical macro models, and(ii) help evaluate architectural
alternatives in adiabatic computing. Recent work in [12]
concludes that quantum annealing loses to classical simu-
lated annealing in a head-to-head comparison, but can be
improved by making different architectural choices. Although
our algorithms do not simulate quantum optimization directly,
they allow one to study problem reductions and identify
potential obstacles to successful optimization. The proposed
B&B algorithm can find ground states for general2-D spin
lattices with up to100 spins in24 hours. For GSD instances
with 1, 000, 000 spins, our local search heuristic obtains ap-
proximate solutions in< 4 hours. It provides a scalability
advantage over conventional Monte Carlo methods and is not
limited to special classes of GSD instances. When our heuristic
does not find a ground state, it usually approximates the least
energy within5%.

The algorithms in Spinto allow one to study the significance
of specific aspects of recent proposals for non-traditional
computing. In particular, we replicated a recently published
empirical result in AQC-based number factoring [13], where
the omission of spin-spin hyper-couplings did not undermine
overall results. However, we have shown that, in general,
omitting hyper-couplings will produce incorrect results.
Furthermore, we demonstrated that techniques avoiding
the use of hyper-couplings [14] blur the output probability
distribution, hamper finding correct factors, and will require
many more repeated attempts to achieve success.

Acknowledgement.This material is based on research spon-
sored by the Air Force Research Laboratory under agreement
number FA8750-10-2-0016. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the Air Force Research Laboratory or the U.S.
Government.

REFERENCES

[1] N. Bansal et al., “Classical approximation schemes for the
ground–state energy of quantum and classical Ising spin Hamil-
tonians on planar graphs,”Quant. Inf. Comp., 2009(7).

[2] F. Barahona, “On the computational complexity of the Ising spin
glass models,”J. Phys. A, 1982, pp. 3241–3253.

[3] F. Barahona, “Ground–state magnetization of Ising spinglasses,”
Phys. Rev. B, 1994, 49(18), pp. 12864–12867.

[4] L. Bieche, et al. “On the ground states of the frustrationmodel
of a spin glass by a matching method of graph theory,”J. Phys.
A: Math. Gen., 13 (1980) pp. 2576.

[5] C. M. Fiduccia and R. M. Mattheyses, “Linear time heuristic
for improving network partitions”,DAC, 1982, pp. 175-181.

[6] S. F. Edwards, P. W. Anderson,J. Phys. F, 1975, pp. 965.
[7] A. K. Hartmann, H. Rieger, “New optimization algorithmsin

physics”,Wiley-vch, 2004.
[8] W. M. Kaminsky et al., “Scalable superconducting architec-

ture for adiabatic quantum computation,” 2004, arXiv:quant-
ph/0403090v2.

[9] R. Oliveira, B. M. Terhal,“The complexity of quantum spin
systems on a two-dimensional square lattice,”Quant. Inf. Comp.,
8(10), pp. 900–924(2008).

[10] G. Pardella, F. Liers, “Exact ground states of large two-
dimensional planar Ising spin glasses,”Phys. Rev. E 78, 056705
(2008).

[11] K. Kim et al.,“Entanglement and tunable spin-spin couplings
between trapped ions using multiple transverse modes,” 2009,
arXiv:quant-ph/0905.0225v1.

[12] D. A. Battaglia, G. E. Santoro, E. Tosatti, “Optimization by
quantum annealing: lessons from hard satisfiability problems”,
Phys Rev E 71066707 (2005).

[13] X. Peng et al., “A quantum adiabatic algorithm for factorization
and its experimental implementation,” Phys. Rev. Lett. 101,
220405 (2008).

[14] G. Schaller, R. Schutzhold, “The role of symmetries in adiabatic
quantum algorithms,” 2009, arXiv:quant-ph/0708.1882v2.

[15] http://www.informatik.uni-koeln.de/lsjuenger/research/sgs/


