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Abstract—With the prospect of atomic-scale computing, we
study cumulative energy profiles of spin-spin interactionsn non-
ferromagnetic lattices (Ising spin-glasses)—an establied topic
in solid-state physics that is now becoming relevant to atoio-
scale EDA. Recent proposals suggest non-traditional comping
devices based on nature’s ability to find min-energy statesSpinto
utilizes EDA-inspired high-performance algorithms to (i) simulate
natural energy minimization in spin systems and (i) study is po-
tential for solving hard computational problems. Unlike previous
work, our algorithms are not limited to planar Ising topologies. In
one CPU-day, our branch-and-bound algorithm finds min-enegy
(ground) states on100 spins, while our local search approximates
ground states on 1,000,000 spins. We use this computational
tool to study the significance ofhyper-couplings in the context of
recently implemented adiabatic quantum computers.

I. INTRODUCTION

can be aided by quantum tunneling, which effectively reduce
the number of local minima. Thus, GSD problems are of
particular interest to quantum-information researchexabse
they are suitable candidates for evaluating the performanc
of adiabatic quantum compute(&QCs). Recently publicized
AQCs employ an architecture based on Ising spin systems
[13]. First, the system is configured to represent a given
combinatorial problem, i.e., the spin interactions aresfidly
controlled rather than random as in statistical mecharibs.
ground state is approximated viguantum annealingithe
guantum analogue of thermal annealing), then read off as a
bit sequence and interpreted as an answer to the problem.
Bansal et al. [1] proposed an approximation algorithm fobGS
on Ising spin latticeswhich essentially simulates these AQC
architectures [8], and thus limits their potential for qutam

As leading CMOS foundaries are gearing for mass produspeed-upsTo approximate the least energy withaccuracy,
tion of 22nm and 32nm CMOS chips, long-term EDA researche algorithm from [1] requires runtime exponential fie,

has started to explore the use of atomic properties in comhich is impractical. In contrast, we propose a branch-and-
puting. This exploration relies on established computetio bound algorithm and a high-performance local search that
models of atomic-scale phenomena, but struggles to connguaickly finds near-optimal energy values for arbitrary ¢gin

different levels of abstraction—spin-level micro modetsda topologies. Such techniques can be used to critically asses

energy-based statistical macro models.

the performance of non-traditional computing devices Base

The spin-glass model was proposed by Edwards and Anden-

energy minimization in spin-glasses and also to determin

son [6] as a variation of the Ising model to study disorder inest implementation options. Our main contributions are:

crystallized solids. Such systems are composed of pas tiaet
can be in either of two possible energpin states. The model
is described in graph-theoretic terms by representing siiom
a crystal with vertices and bonds between atoms with edges.
Since physical systems found in nature are often disordered"
the edges are assigned random weight values correspoiading t
the energy of the bond. Some physical and chemical propertie
of a crystal depend on the total energy of the bonds, which®
depend on atomic states. Estimating total energy via a graph
based function facilitates the use of graph algorithms udyst
material properties relevant to computing. In particulaeg

are interested in finding thepin configuratiorthat produces
the least amount of energy. This configuration is known as

« A branch-and-bound algorithm for solving GSD exactly

on spin lattices with up td00 spins.

A pass-based local search heuristic. Empirical results
show that it scales better than other GSD algorithms and
produces near-optimal solutions.

A generalization of GSD to include many-spin couplings
(hyper-couplingy and relevant algorithms.

A study of how the omission of hyper-couplings impacts
the success of AQC number factoring in recent NMR-
based implementations.

the ground stateof the system. Barahona [2] proved that, for The rest of the paper is structured as follows. In Section I

general spin systems, tlggound-state determination problemwe

discuss the spin-glass model and the GSD problem. Section

(GSD) is NP-hard. Given that many physical systems havdlapresents our algorithms for finding ground states. Sercti

natural ability to find least-energy states quickly, reshars

IV reports empirical results. In Section V, we generalize th

are currently attempting to exploit this phenomenon togrenf spin-glass model to include hyper-couplings and studyr thei
useful computation. At the atomic scale, energy minimaati significance in number factoring.
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[I. BACKGROUND AND PREVIOUS WORK aries magnet field | weights || hard? | algorithm
. . 2 0 N T N MWPM
In the Edwards-Anderson [6] model, spins are binary - > - Vot — os -
values, and the strengths of the atomic couplings are i.i.d. 2 <2 Yes + No | Max-flow
random variables according to some probability distrituti . ! o = oMWY
The most common distributions used are the Gaussian, and[ 2 p) Yes/No S Yes =
the +1-bimodal distributions. LeG i, = (V, E) denote an N>2] =N Yes/No ES Yes -
Ising-model graph withn vertices (spins). Each vertex € TABLE |

V is denoted by spin valu§, € {+1} and is assigned a SPIN-LATTICE PROPERTIES THAT MAKEGSD NP HARD.

magnetization weight,,. Foru, v € V, we define(u, v) € £ resence of a magnetic field are the main factors in deter-
to be an edge representing a bond between two adjacent s&ns. 9

. . . ining NP-hardness. More precisely, for lattices with more
with assigned weight,,, chosen randomly from the standar han two dimensions or with two boundary conditions, the
Gaussian distributioni{ = 0,9 = 1). Thus, we expect that y ’

half the bonds in the graph will be negative. Usually, theesangraph Is no longer planar and th_e reduction to MWPM breaks
positive- to-negative bond ratio is maintained when e down. Compared to these techniques, our algorithms work on

bimodal distribution is used instead. The internal enerfghe gﬁgg:ﬁ\l_:‘nstarr;cis of GSD, without limiting the structurefief
system for a particular configuration of spin values- {S;} u ying graph.
is given by Ill. GSD ALGORITHMS

- In order to better control trade-offs between runtime and
B(o) == > JijSiS; =) hiS: @) solution quality obtained from heuristics, it is importatot
design algorithms that are guaranteed to find exact ground
where the first summation considers all pairs of adjacemisspistates on smaller instances. The exact solutions obtained
Putting together the energies of all spin configuration®givfrom such instances can be used to debug and evaluate the
the Hamiltonianof the system. Thus, the ground state is givegerformance of more scalable heuristics.
by Egs = min(E(o) | V o € m,), wherem, is the set of Branch-and-bound (B&B) algorithms consider incomplete
all possiblen-spin configurations. Whether we are interestegy partial solutions, where only some variables are assigned
in the lowest-energy value or the-spin configuration with yayes. Partial solutions are systematically construatied
such energy| m, |= 2" because each spin can take on ong pranching process that develops partial solutions that are
of two possible values. Since energy minimization is tyfyca geemed promising, i.e., those that may lead to the optimal
NP-hard, calculating the ground state exactly using exhaus so|ution. Partial solutions whose cost is too high, are tixted
search is feasible only for small spin glasses. To provideggay” or pruned.
scalable way of finding ground states or approximating their oyr branching process proceeds as follows. First, all spins
energies, we need to employ heuristics. are labeled as unassigned-their value can be set in thee futur

The spin-glass topologies commonly considered in the lita either 1 or —1. The algorithm then calculates the lower

ature are two- and three-dimensional lattices. To simutate houndE,, of Equation 1. It then selects a spiand branches
finite spin glasses, one requingsriodic boundary conditions on one of the possible values. In each branch, the increinenta
which connect the spins lying on a dimensional boundary ihange inE;, caused by the assignment is recorded as follows.
the spins on the opposing boundary. For each spinj adjacent toi that has already been assigned,
Complexity of GSD. Although most variations of GSD arejncrease (decreasd;, by twice the amount of the positive

known to be NP-hard [2], there are a few cases where t{yegative) bond connecting and j if they have opposing
topology of the graph can be exploited to solve the problefligned) spin values,

in polynomial time. Bieche et al. [4] proved that the GSD

(i.7)ek ¢

problem on planar graphs can be solved in polynomial time by 2 Z Ji,;SiS; it S; # S; andJ; ; >0,
showing a reduction to the minimum-weight perfect matchingEléb _ (i.J)EE )
(MWPM) problem. It follows from their work that GSD —2 Z Ji ;S8 it S;=5;andJ;; <0
instances with zero magnetizatioh; (= 0) and 0- or 1- (i,j)€E

- 2 3\
pe”.Od'C bound_ary conqmons can be SOIV?d@mn )_t|me. dSimilarly, the corresponding change due to the magnetizati
While MWPM is poly-time solvable, practical runtime an S

of the spin is also recorded,

memory usage do not scale to very large instances. To over-
come these limitations, the work in [10] describes a heigrist s {2}“ if S;=—1andh; >0,

= Lo 3)
—2h; if S;=+1andh; <0

based on the MWPM reduction. Another special case is that Ep, =
of ferromagnetic .{; ; > 0) GSD instances, which Barahona

[3] reduced to §-t)-min-cut or max-flow. Table | shows theOnce the spin is assigned, the algorithm branches out to
spin-lattice properties that make GSD poly-time solvaliid a another spin and performs the same procedure. When all
identifies the algorithms commonly used. Note that the numb&pins have been assigneH;, represents the energy of the

of dimensions, the number of boundary conditions and tlspin configuration generated by the branching process. To
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1 Exhaustive search<—
107 1 ) . B&B -+ |
B&B with dominance pruning—=— . .
10-2 ‘ ‘ ‘ ' Local search Due to its difficulty, GSD researchers have
16 25 36 49 64 81 100 -~ ;
Number of spins developed heuristic methods typically based on slow Monte
Carlo simulations. However, because of the role that Ising
Fig. 1. Performance of B&B techniques @D spin lattices. models play in simulating real-world phenomena, fasteh-tec

nigues that work on non-grid topologies are desirable. Our

continue searching the configuration space, the branchifig® ;ea;)r_ch IS an |_te(;at|v<3 |kr)nproverrk1)(_ent algorithm t?at mod
process backtracks to the last assigned spin, flips its vafife® (he bipartition induced by an arbitrary spin configurati

and updatedv;;,. If both spin values have already been tried(POSitive spins are placed in one partition and negativesspi

then the algorithm continues backtracking while rela@linthe other). The algorithm performs a sequence of increrhenta

the spins as unassigned. Since each spin can take oné'E3nNdes to the bipartition, organizedmssesThese changes
two values, this branching process generates a full bindfgNSist ofspin moveshat remove a particular spin from its

search tree where the leaves correspond to all possible sgfiféntpartition and places itin the opposite one. At thgirbe
configurations in the Ising system. ning of each pass, the energy differentigdin) of performing

Initially, we use a linear-time greedy approximatiof)( each possible move is calculated. A positive gain implies

as our bounding value. During the branching process, if tH%at the move decreases the overall energy while a negative

energy of the partial solution exceeds then we can safely gain incregsgs it. During a pass, the move that produ_ces the
prune this branch and backtrack without making any furth@‘r,?heSt ?al')nl's dseLe)cLedd a_md e_;<ecutedt. ;’he clo rrtesdpondl_ng_sp
assignments. The algorithm either tries the opposite sginev IS then fabeled amcked 1.€., It cannot be selected again In

or backtracks again if both spin values have already beﬁ? current pass. The bass continues selecting and exgcutin
tried. If the search assigns all the spins in the graph and best moves until all spins have been locked. At the end

corresponding minimal energy state is lower thHanthen we of the pass, we save the best-seen bipartition producedeby th

set /' to this new energy value. After searching all promisin equence of moves. This b|part|t|_on IS the_n used as thérgart
branches,E will assume the ground-state energy. This sta olution of the next pass. The entire algorithm terminatesrw

dard bounding technique alone improves the scalabilityhef t
branching process by an order of magnitude over exhaust
search (see Figure 1).

To further improve the scalability of our B&B algorithm,
we designed prune-by-dominanctechnique that consists of
identifying partial solutions whose energy can be lowergd b
modifying the current spin assignment. For every assigne
spin s, let F; be the set of spins adjacent tofor which
all neighboring spins have also been assigned, as illestrat
in Figure 2. Note that F; |< degree(s). The energy of the
spins inF is localized in the sense that it will not be affected
by further spin assignments. Therefore, unpromising glarti
solutions can be identified by flipping the spinshh. If any
flip lowers partial energy, the algorithm backtracks. Ofser
that when two branches are statistically unlikely to have
equal partial cost (e.g., when couplings and magnetization
are random), the probability that the first branch dominate
the second branch is approximatély2. Let c2¥, 0 < ¢ < 1,
be the partial solutions that require branching, then wesexp
to prunec2¥/2 = ¢2*~! of these. As Figure 1 shows, our
pruning technique improved the scalability of B&B hy2 .
orders of magnitude, allowing it to solM#0-spin lattices in a end while .
day. However, since B&B takes exponential time in the wors return ENERGY (Gising, SP”)
case, it does not scale beyoin@) spins. Fig. 3. Pass-based local search with hill-climbing

a pass fails to obtain an improvement in energy as shown in
ﬁ)’gure 3. Note that, in the absence of positive-gain moves, a
negative-gain move can be selected. Thus, a pass may accept a
solution that is worse than the existing solution (hillrctiing).

This helps to reduce the probability of getting trapped itelo

Input: Ising spin-glass grapl;sing
Output: Approx. ground-state energy*
Spin PartitionS P* := RAND_SP(Gising)
while solution quality improvedo
Gains containe&GC := COMPUTE_GAINS()
Spin PartitionS P := S P*
while GC has unlocked spirdo
Movem := SELECT_BEST_MOV E(GC)
APPLY_MOVE(SP,m)
UPDATE_GAINS(GC,m)
LOCK_SPIN(GC,m)
if energy decreasdblen SP* = SP
end while

U)
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IV. EMPIRICAL VALIDATION

2250 We evaluated single-threaded implementations of our al-

gorithms on a conventional Linux server, although our local
search is ftrivial to parallelize to a multicore system or a
distributed cluster. Fot5 x 15 spin lattices our local search
finds exact ground states #% of independent random starts
(exact solutions were obtained from [15]), otherwise sohg
are 5% sub-optimal on average. Figure 5(a) compares the
o 200 400 600 80 1000 average solution quality of local search 4D spin glasses
Moves performed in a given pass with Gaussian-distributed couplings amg = 0 (instances
Fig. 4. Progress of our local search in terms of total energind individual  With h; # 0 are not allowed in [15]). For each instance we
passes on d024-spin glass. The lowest energy state obs_erved during eagihynsidered four different levels of effort with an increapi
E::i bE(a-lcc):m(e_s2fh5§ ’ngtin:g géff‘i’f ﬁ?’e ie)fp‘ffs" respectively) during @ 1, mber of independent random starts. To obtain the average
solution quality we computed000 output samples using,

2 .
minima. Figure 4 illustrates the progress of our local seamc 1”7 andn random starts (where is the total number of
terms of total energy during individual passes oh0a4-spin SPINS) per instance. For” random starts, we used fewer
glass. The initial random solution used is generated imatinePUtPut samples and provide confidence intervals. As exgecte
time. To increase the quality of solutions and the probgtlf the solution quality improves as the number of random starts
’ ; 2

finding the exact ground state, we repeat the algorithm usittfreases. When at leaki”n random starts are used, our
multiple random initial solutions and selecting the besute heuristic produces high-quality solutions 05%) for five of
The relationship between the number of random starts aji¢ benchmarks while its runtime does not excéeseconds
solution quality is explored in Section IV. for the largest benchmarR{00 spins). Note that the expected

These gain updates are performed efficiently using a custd bUt'Or? quality ,TIOWIV dlecr]?asss forr] Iargker mi:ftiar;)(':eglérﬁ
heap-based data structure. The data structure consisteof P(°) Is OV;_S S!g“ ar restl)J ts cl)r benc marl S il - 'T,‘O a
arrays. The first array implements a traditional binary he%ﬁulf 'ng |str]: l:]tIOES, Et SO Et'ons arr]e closer to op 1rﬁa)r|
while the second array allows quick access to the heap-ar IUt on((ej of the encf:_ rg?‘r_ Sh ourl_ eunfuc_: requires only a
element that contains the gain-update value of a partispiar  S"9'€ random start to find high-quality solutions.
To perform gain updates, we can access the specific vahfeal optimality . We verified that the configurations returned
in O(1) time, update the value, and perform the necessdly ©Ur heuristic cannot be improved by modifying a small
swaps to maintain heap order. Since ombgn swaps are Number of spins. We used our B&B to find optimal con-
required in the worst case (whereis the number of spins), igurations of groups o25-49 adjacent spins within larger
our data structure updates gain values much faster thae ngg@nfigurations. In our experiments, the solutions prodused
implementations that require scanning the entire set gain Ul heuristic were never improved by this technique.
values. Sincex moves are performed during a pass, and On@untme. Our heuristic scales to a million spins and empirical
a constant number of passes are required, the runtime of 8ifitimes closely fitnlog(n). We compared the runtime of
local search i€)(nlogn). our local search against that of the MWPM-based heuristic

Comparison with Fidducia-Matheyses.The concept behind proposed in [10]. The solution quality of this heuristic daps

our local search was first proposed by Fiduccia and Mattheg] a partlggl?rbcrgo(;c_e ?[f paramleters tandt doeshn_ot _work on
ses (FM) [5] in the context of VLSI netlist partitioning. aussian-distributed Instances. fn confrast, our hetl s
However, the two techniques pursue very different objestivnOt_have such dependences and works on all mstgnces. Table
and observe different constraints. They also require rdiffe IV in [10] shows the runtime and solution quality of the

algorithmic details and different data structures. Fomepie, hMWP'\{!'b?S;dS?;u”S“EH grid grapk(ljs O.f 5'2&64X 1t6'4' -Il—h'sl
in the context of GSD problems, it is not necessary to maintali EUNSTiC takesyIs on average producing the optimal value
1% of the time. By comparison, a single run of our heuristic

balance constraints—a common requirement for most FI@I
based VLSI graph partitioning algorithms. This makes th! @ comparable benchmark takes abgut secon_ds. Thl.JS’
problem easier since balanced bipartitioning is NP-hanal. ¢ye can performi’ random starts in the same per!od of t|me..
the other hand, our spin-partitioning technique must rendiowever, we could not compare the solution quality as we did
real-valued positive and negative edges, which makes AR have access to the same benchmarks.

problem hard again (only non-negative integer edge weights
are used in VLSI partitioning). In VLSI netlist partitiorgn

the objective is to minimize the cut of the bipartition, wiic  As discussed in Section I, recent AQC architectures [13] are
only considers the weights of the edges. Our local searbhsed on spin glasses. Implementations described by D-Wave
minimizes the overall energy function (see Equation 1),clvhi Systems use non-planar topologies, and recent experiments
takes into account both the edge weights (bond strength) and11] demonstrate direct coupling of more than two spins.
vertex weights (spin magnetization). Hence, we extend the conventional spin glass model to use
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V. GSDFOR HYPERGRAPHS



Solution quality

100 g results provide a computational baseline for performaneé e

uation of novel computing devices that solve hard problems
via energy minimization. Viable AQC devices would need to
improve on our results by producing output distributionghwi
greater probability of factoring the correct number.
Significance of hyper-couplings Recently, Peng et al. [13]
T — — gl Tf . implemented an AQC number-factoring algorithm in NMR
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50 . . . R .
Lattice size N (for an NxN lattice) Lattice size N (for an NxN lattice) teChnOIOgy W|th a Ham||t0n|an that |gn0res hypel’-COUpﬂmg
(a) Gaussian-distributed couplings (b) Bimodal-distributed couplings By 5|mL_1Iat|ng the_ functm_nahty of the algorithm fro_m [_13]'
Fo 5. Expected solut ity100% ds o th . we replicated their experiment and explored factorizatibn
1g. o. Xpected solution quality] © corresponds to the exac .
solution obtained from [15]) produced by using differenihers of Iarger number.s. As in [13]' the numbet Wé’fS SucceSSfu"y
random starts or2-D spin lattices. However, our techniques are not factored even in the absence of hyper-couplings. Howewer, o
limited to lattices where optimal solutions are found. experiments show that, in generaL 0m|tt|ng hyper-comin
. . alters the ground states so that correct factors cannoturelfo
hyper-couplingghat connect a set of at least two spins. The
new energy function is given by e.g., for35 and91. Instead, some other numbers are factored
such as33 and 95. Although hyper-couplings have smaller
E(o) = — Z J. H S; — Z hiS; (4) individual weights than two-spin couplings, the number of
ecE  ice ey hyper-couplings scales @(n*), and their total weight even-

With minor modifications, our algorithms can optimize thitually dominatesf(z, ) for larger N. Control of three-spin

function allowing us to study a greater variety of physic:’:%yper'COUpIingS has recently been demonstrated [11], iyt o

systems and solve a wider range of combinatorial problem or ad!acent pgrthles, which would be '”S“ff'c'e”t fqr NLETD
. N .__..— . Tactoring applications. Furthermore, Equation 5 still uiegs
Number-factoring as optimization. Integer factorization is

equivalent to the optimization of(z,y) = (INV — xy)?, where four-s.p?n hyper—cogplings W.hiCh’ as current research egisg

N is the odd integer we wish to factor amdy are odd positive are _d|_ff|cult o reahze_ expe_rlmenFaIIy. : .

integers< N. The minimum of f(z, y) is reached when: Avoiding hyper-couplings V|a.anC|IIa spins The work in [14]
and y are factors ofN'. To solve this optimization problem shows a method for expanding Equation 5 that avoids the use

using GSD, we construct an Ising system whose ground st J]yper-couplings at the cost of a quadratic increase insspi
corresponds to the minimum of(z, y). Since spins are-1 e new Hamiltonian is based on the factorization equations

binary variables, we reformulaté(z,y) in terms of binary th_at are generated _by degomposl_ng Iong-hand pmary ”.“"“'
- a1 o T eyl g . plication [14]. Equation 5 is modified by introducing anaill
digits such thate = ) *; " 2'z; andy = > _,*, ~ 2'y;. Since bi ables. LotV — etz —
o = yo = 1, the total number of spins (mz—l)—i—(ny—l) = Inary variables. LetN = mimsg...m,,. Let x = T1T2... Tk
V |. SettingS; — 22 — 1 and S, s — 2y — 1 andy = y1y2...yn—k. Then letp; ; denote the sum of pairwise
! ! et o products between the binary variables in Equation 5 and let

© © © © © ©
20O o0 N ® ©

© ©
N ®

1_ n— 1_ n—mn i 7 i
Flany) = {N— (2%1 ;9 Ly 6; . 1> c;; denote carry variables
k n—k
2
(2%—171_53‘”"1 +...+21_251 +1)} (5) Flay) =D > [2(i/24y;/2+ pij + cij
i=1 j=1
The magnetization weights and coupling strengths are given —Pit1j-1 — 2Ci—1, — 1/4)2 —1/8

by the product expansion of the above equation.

Computational experiments B&B factors up to21-bit num- The bits of N are linked to the bits oft andy by a series
bers in about minutes. While leading-edge number-factoringf equalities such ap; o = m; andpy41,j—1 = mr+; (See
algorithms can do better, the results confirm that B&B igl4] for details). f(x, y) now computes a penalty function for
general enough to work on hyper-Ising models. We testeblating the factorization equations. This penalty is imized

our GSD heuristic by factoring specific numbers. In som&ubject to the fixed values af;...m,,. The corresponding
runs, this technique produces the factorsNoft 2 or other spin system is constructed in the same manner as before
incorrect numbers. Therefore, many independent randos r@xcept that only two-spin couplings are generated. Unlike t
may be required to factor a given numh®&r, which is also (unconstrained) formulation with direct hyper-couplintfss
typical behavior in AQC. Figure 6 shows the output probapili formulation includes spins with fixed logic values and thus
distribution of factoring the numbé&rn 2171, which has several requires additional technology support (e.g., throughicapt
factors and is therefore easy to factor. The probability @umping of trapped ions). We used our algorithms as simula-
success drops sharply for semi-primes, e.g., the probabfli tors to compare the direct use of arbitrary hyper-couplings
factoring580003 in one attempt is only005. Our implementa- (assuming technological feasability) to the expansiormfro
tion factored the semi-primB)185081163 = 100511x 101333  [14]. Figure 6 compares output probability distributioreng
using aboutl5,000 random starts in3 seconds. While fur- erated when factoringl. The technique from [14] produces
ther optimizations may significantly improve runtime, et a flatter distribution with a wider range. This is because the
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Fig. 6. Output prob. distributions for factorinl and 612171 using the
techniques from [13] and [14] as simulated by our algorithms

solution space is more complex and includes configurations
where the ancillary spins are inconsistent (e.g., carrm spil]
c¢;i,; = 0, but the partial product spip;, = ¢;;j * 1 = 1).
Thus, this technique sometimes returns trivial decomjorsit 2]
of prime numbers (e.g., 31), whereas direct use of hyper-
couplings always results in proper factorizations. In sanym [3]
our experiments suggest that the expansion from [14] i[s
not computationally competitive with direct use of hyper-
couplings.

VI. CONCLUSIONS [5]

The problem of finding the least-energy state of a spitf]
system (GSD) has played a central role in statistical plsysicg]
for decades [7, Chapter 3]. In modern EDA research, higITg]
performance GSD algorithms cdi) link spin-level descrip-
tions of non-traditional compute substrates to energedas
statistical macro models, and:) help evaluate architectural [9]
alternatives in adiabatic computing. Recent work in [12]
concludes that quantum annealing loses to classical sinf 3]
lated annealing in a head-to-head comparison, but can be
improved by making different architectural choices. Altlgh
our algorithms do not simulate quantum optimization diggct [11]
they allow one to study problem reductions and identify
potential obstacles to successful optimization. The psedo [12]
B&B algorithm can find ground states for genetaD spin
lattices with up to100 spins in24 hours. For GSD instances
with 1,000,000 spins, our local search heuristic obtains ad13]
proximate solutions in< 4 hours. It provides a scalability
advantage over conventional Monte Carlo methods and is Tﬂ]
limited to special classes of GSD instances. When our h@uris
does not find a ground state, it usually approximates the lefis)
energy within5%.

The algorithms in Spinto allow one to study the significance
of specific aspects of recent proposals for non-traditional
computing. In particular, we replicated a recently puldigh
empirical result in AQC-based number factoring [13], where
the omission of spin-spin hyper-couplings did not undesmin
overall results. However, we have shown that, in general,
omitting hyper-couplings will produce incorrect results.
Furthermore, we demonstrated that techniques avoiding
the use of hyper-couplings [14] blur the output probability
distribution, hamper finding correct factors, and will requ
many more repeated attempts to achieve success.

Government.
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