
Taming the Complexity of Coordinated Place and Route
Jin Hu, Myung-Chul Kim and Igor L. Markov

{jinhu, mckima}@us.ibm.com, imarkov@eecs.umich.edu

ABSTRACT
IC performance, power dissipation, size, and signal integrity are
now dominated by interconnects. However, with ever-shrinking
standard cells, blind minimization of interconnect during place-
ment causes routing failures. Hence, we develop Coordinated Place-
and-Route (CoPR) with (i) a Lightweight Incremental Routing Es-
timation (LIRE) frequently invoked during placement, (ii) place-
ment techniques that address three types of routing congestion, and
(iii) an interface to congestion estimation that supports new types
of incrementality. LIRE comprehends routing obstacles and non-
uniform routing capacities, and relies on a cache-friendly, fully-
incremental routing algorithm. Our implementation extends and
improves our winning entry at the ICCAD 2012 Contest.

1. INTRODUCTION
The nature of global routing has changed since the 1980s as in-

terconnect stacks grew from three metal layers to 9-12 layers with
non-uniform pitches [19, 20]. Router runtimes have increased, and
so has the impact of routing on design quality. Modern global rout-
ing cannot be viewed as a standalone optimization because of sig-
nal integrity concerns and the impact of coupling capacitance on
interconnect delays. Placement is also no longer standalone, as it
interacts with numerous other optimization steps to control inter-
connect lengths and delays. In the last 15 years, global placement
has often been guided by routability estimation [16] in commercial
EDA tools and academic contests [18–20]. The development of
such integrative optimizations requires understanding the strengths
and weaknesses of dedicated optimizations, as well as invoking the
right primitive at the right time. Indeed, complexity — both the
number of steps executed at runtime and the number of lines of
code — is the main gating factor for what can be achieved by EDA
tools in the foreseeable future. Moreover, new optimization primi-
tives must be justified by their context and intended use.

In this work, we develop a streamlined system for Coordinated
Place-and-Route (CoPR) that (i) uses cache-friendly routing primi-
tives to quickly and accurately estimate routing congestion (LIRE),
(ii) leverages incrementality in routing and congestion updates in
new ways, and (iii) offers a new categorization of congestion and
new congestion-relief techniques during placement. CoPR achieves
unprecedented trade-offs between speed and placement quality on
large industry netlists, as we illustrate using ICCAD 2012 contest
benchmarks from IBM Research [20].

The remainder of this paper is structured as follows. Section 2
presents our fast and accurate routing estimation technique. Sec-
tion 3 introduces our placement techniques that proactively alle-
viate routing congestion. Section 4 describes the interactions be-
tween the placer and the routing estimator. Section 5 compares our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers,requires prior specific permission and/or a fee.
DAC’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

techniques to currently-known approaches. Section 6 empirically
validates the scalability of our techniques. Section 7 concludes our
discussion. Supplemental material is provided in the Appendices.

2. LIRE: ROUTING ESTIMATION
We develop a Lightweight Incremental Routing Estimator (LIRE)

that quickly produces congestion maps as accurate as those by a
global router (Figure 5). Empirically, we target 75K nets per second,1

but also facilitate a tradeoff between quality and runtime. In con-
trast, modern routers [4, 12] complete 6K nets per second.1

Notation. We consider an X × Y routing grid G(V,E) with (i)
a set V of GCells (nodes) where each GCell v ∈ V has inte-
ger coordinates (xv, yv), and (ii) and a set E of directed edges
e = (v1, v2), where the weight we of edge e encapsulates rout-
ing congestion and history costs (Lagrangian multipliers). Each
node v ∈ V is adjacent to its four cardinal neighbors: NORTH
(xv, yv + 1), SOUTH (xv, yv − 1), EAST (xv + 1, yv) and WEST
(xv − 1, yv). Consider a point-to-point connection π between two
distinct GCells S, T ∈ V . When xS ≤ xT and yS ≤ yT , a forward
edge for π is an edge (v1, v2) such that xv1 < xv2 or yv1 < yv2 ,
i.e., EAST or NORTH, and a backward edge for π is an edge (v1, v2)
such that xv1 > xv2 or yv1 > yv2 , i.e., WEST or SOUTH. Defini-
tions for the three other orientations of π are symmetrical.
Key definitions. A route segment is a directed path in the routing
grid. A flat route segment is a set of directed edges that are all
NORTH, SOUTH, EAST or WEST. A monotonic segment is a con-
nected set of flat segments such that each flat segment is either:
(i) NORTH or EAST, (ii) NORTH or WEST, (iii) SOUTH or EAST,
or (iv) SOUTH or WEST. Each monotonic segment is classified as
NORTH-EAST, NORTH-WEST, SOUTH-EAST, or SOUTH-WEST.
A route rπ is a collection of routing segments linking S and T .

2.1 Faster Routing
Global routing spends a large fraction of runtime finding weighted

shortest paths in highly-congested regions [20]. Such shortest-path
(maze) routing is necessary in congested regions for both global
routing and accurate congestion estimation because, unlike pat-
tern routing, it adequately captures detours. Detours are shaped
by edge weights, which include congestion and history costs [4].
These weights must be maintained with sufficient accuracy and can
be neither binned nor rounded without adverse impact on resulting
routes. Therefore, shortest-path routing in congested regions is per-
formed by A*-search. However, (i) the priority queue in A*-search
is responsible for an extra O(log V) term in the overall complexity
of the algorithm, (ii) priority queues, even when implemented us-
ing Fibonacci heaps, are too slow [10] and their pointer-based algo-
rithms can experience costly cache misses, (iii) typical A* admis-
sible functions based on straight-line distance become ineffective
when history-based costs become large, and (iv) A*-search cannot
leverage incrementality, i.e., given a candidate path, it cannot check
optimality or perform an incremental improvement.

1Median single-thread router performance on placements by the
top three ICCAD 2012 contestants (Intel Xeon 3.4GHz CPU).

Algorithm 1 Bellman-Ford Algorithm with Non-negative Weights

Input: Point-to-point connection π, Search Space (V ′,E′)
Output: route rπ
1: for i from 1→ |V ′| do
2: cost[vi] =∞;
3: end for
4: cost[S] = 0;
5: for i from 1→ |V ′| do
6: for j = 1 from 1→ |E′| do
7: ej = (v1, v2);
8: if cost[v2] < cost[v1]+ COST(ej) then . relaxation
9: cost[v2] = cost[v1]+ COST(ej);

10: parent[v2] = v1;
11: end if
12: end for
13: end for
14: rπ = TRACE_PATH(π);

Linear-time cache-friendly routing. Given that A*-search is de-
rived from Dijkstra’s algorithm [1, Section 24.3], we hope to avoid
these priority-queue-based approaches. Of the classic weighted
shortest-path algorithms, the Bellman-Ford (BF) algorithm [1, Sec-
tion 24.1] is array-based and moreover preserves memory locality.
However, it may require V linear-time passes, takingO(EV) time.

Notably, the worst-case complexity of Bellman-Ford (BF) can
be avoided in global routing. Recall that each BF pass performs
E ×O(1) relaxation steps. When no relaxations in a pass result in
improvement, no further improvement is achieved in later passes.
Thus, BF can be terminated early without the loss of optimality.

During global routing, we consider one point-to-point connec-
tion (S → T) at a time. Routing is limited to a subgridG′(V ′, E′) ⊆
G enclosed in an isothetic (coaxial) bounding box that contains S
and T . To generate a route, we visit the nodes of G′ in a specified
ordering v0, v1, . . . , v|V ′|−1.2 While the Bellman-Ford algorithm
supports any node visitation ordering, we specify an ordering that
not only affords us the highest memory locality, but also caters to
the common case of monotonic paths. Starting from S, the nodes
are traversed in the row containing S, and at each node v, relaxation
is performed (lines 8-9 in Algorithm 1) along the four v-incident
edges pointing toward T . The nodes in the next row closer to T
are traversed, and so on until the row that contains T . When the
node traversal follows the in-memory array layout (by rows or by
columns), this method maintains the locality of memory access.

We propose to optimize BF passes with duplex-edge relaxation.
At each edge considered by this technique, relaxations are attempted
in both directions, but only forward-looking edges are considered
at each vertex. While the same number of edges is considered per
pass, cache utilization and memory locality are improved because
for each adjacent vertex (and edge cost) loaded from memory, two
relaxations can be attempted rather than just one. Furthermore, if
the first relaxation succeeds, the second one cannot occur — this
saves an extra comparison. For example, at node v with coordi-
nate (x, y), we relax either the outgoing NORTH edge (x, y) →
(x, y + 1) or the incoming SOUTH edge (x, y + 1) → (x, y).
A similar duplex relaxation is performed in the EAST and WEST
directions. By explicitly modeling via costs within these traver-
sals [4, Section 3.4], BF will prefer fewer-bend routes.
Monotonic routing with one linear-time BF pass. As a special
case, an optimal monotonic route can be found by (i) considering
only forward edges (e.g., NORTH and EAST), and (ii) fixing the

2Edges are traversed in the increasing order of adjacent vertices.

(f)(d) (e)

100

100

100

10

1

1

1

1

1

1

1

1

(c)(a) (b)

S

T

S

T

10

0 1

3

2

4

S

T

5

10

0 1

6

3

2

6

101

1 111

S

T

10

0 1

3

2

101

10211

S

T

10

0 1

3

2

4

5 111

S

T

10

0 1

3

2

4

5 66

Figure 1: Applying one BF pass with duplex-edge relaxation
and echo-relaxation to a point-to-point connection S → T
without via-cost modeling. Arrows point to the previous node in
the path. (a) The routing grid and edge costs (congestion). Let
S have coordinate (0, 0). (b) The partial costs of the first row
and the center-left node have been populated. (c) Relaxing the
NORTH (1, 1)→ (1, 2) and SOUTH (1, 2)→ (1, 1) edges at node
with coordinate (1, 1). (d) Relaxing the EAST (1, 1) → (2, 1)
and WEST (2, 1) → (1, 1) edges at node with coordinate (1, 1).
The cost at (1, 1) has been updated by the WEST edge and is
propagated to (1, 2). (e) The remaining nodes are considered,
and partial costs are populated through T . (f) An optimal path
with three monotonic segments is found in a single BF pass.

considered space to the bounding box b with dimensions w × h,
w = xT − xS + 1 and h = yT − yS + 1, that minimally contains
S and T . Let t be the w × h matrix where t[x][y] stores the partial
cost from S with coordinates (0, 0) to a node v = (x, y). By
construction, the cost at (x, y) depends solely on the costs at (x−
1, y) and (x, y − 1). Therefore, by visiting the nodes in row order
(or column order) from S toward T , we visit every node in b exactly
once. Since b has w × h nodes, the runtime complexity is O(wh).
Non-monotonic routing with one linear-time BF pass. Recall
that BF supports any node (and edge) ordering. Some optimal non-
monotonic routes can be found in linear time within the bounding
box b that minimally contains π by (i) employing duplex-edge re-
laxation and (ii) echo-relaxation if the relaxation succeeded in the
direction opposite to node ordering (from a greater-numbered node
to a smaller-numbered node). That is, in the forward-going node or-
dering, if a backward edge at node v(x, y) results in a smaller-cost
route, we forward-propagate the smaller cost through all recently-
relaxed edges incident to v. Figure 1 illustrates finding an optimal
route with three distinct monotonic segments in one BF pass. This
improvement is effective in detouring short nets, and a majority
of nets are short in practice. A more powerful variant of echo-
relaxation would propagate costs through all incident edges, and
allows one BF pass to find longer detours (not used in this work).
Non-monotonic routing with BF and Yen’s improvement. J. Y.
Yen [23] suggested that reversing the node ordering between BF
passes reduces the number of passes required to find an optimal
path. We refer to the Bellman-Ford algorithm with early termina-
tion and Yen’s improvement as BFY. Two and three BFY passes
can quickly find long detours, as illustrated in Figure 2. This is
especially applicable for large nets.

THEOREM 1. Let π be a point-to-point connection. Finding
a minimal-cost route rminπ with m (distinct) monotonic segments
requires at most m BFY passes.

1

100

100

10

1

1

1

1

1

1

100

1

(d)(a) (b)

S

T

S

T

(c)

0 1

3

2

7 8

5

6

4

0 1

3

2

12 13

10

11

11

S

T

S

T

0 1

3

2

12 13

5

11

4

Figure 2: Applying BFY to a point-to-point connection S → T
without via-cost modeling. (a) The routing grid and edge costs
(congestion). (b) The first forward pass finds the optimal mono-
tonic path of cost 13. (c) The backward pass finds a detour. (d)
The second forward pass finds the optimal path of cost 8.

Theorem 1 (proved in Appendix A) is significant in practice be-
cause many connections are routed with very few monotonic seg-
ments. In particular, most connections have very few bends [14],
and the number of monotonic segments is upper-bounded by the
number of bends. Furthermore, a route with many bends can still
be monotonic (Figure 6b). In this context, Theorem 1 suggests that
BFY typically finds shortest-path routes in O(1) passes, and ex-
plains why BFY finds optimal paths faster than A*-search for most
nets in our experiments. In a w × h bounding box, m BFY passes
take O(mwh) runtime. Limiting the number of passes further re-
duces BFY runtime. This may lead to a small loss of optimality
in standalone BFY, but our main focus is on incremental calls to
BFY during routing estimation (see the “LIRE in CoPR” columns
in Table 1).
Incremental routing with BFY can use any existing route, in-
cluding those previously found by A*-search. Instead of propagat-
ing the costs in an∞-initialized table, we record the partial costs
along an existing route (this is significantly faster than populating
the entire table). Subsequent BFY passes find an optimal route,
but require less runtime when a near-optimal initial route is avail-
able (Figure 6). Multiple such initial routes can be recorded in the
BFY table before the first pass.3 This type of incrementality speeds
up not only rip-up-and-reroute and negotiated-congestion methods,
but also repeated invocations of LIRE during placement (Section 4
also outlines other types of incrementality supported by LIRE).
Coarse-grid routing is based on the observation that large nets
often admit near-optimal routes with long flat segments. Therefore,
we reduce the search space by only considering every ith row and
jth column. This allows us to find a reasonable-cost route quickly,
and then incrementally relax it on a finer subgrid (multilevel BFY).

2.2 Fast and Accurate Estimation
Unlike true global routing, constructive congestion estimation

needs not optimize routes in congestion-free regions. Finding routes
that avoid congested GCells is sufficient. Therefore, existing meth-
ods first evaluate several pattern routes (L, C, Z) and invoke more
sophisticated algorithms only when needed. For similar reasons,
eligible GCells are initially limited to the bounding box of the con-
nection, which is gradually expanded until an acceptable route is
found. LIRE too estimates congestion by catering to the common
case first. For each point-to-point connection π = S → T , LIRE
initially limits the search space to the bounding box b with size
w × h that minimally contains π. It considers the two L routes,
with preference for congestion-free routes. If both routes are con-
gested, BFY finds a route with O(1) monotonic segments. If this
route is congested, LIRE expands b to to W × H , w < W ≤
X,h < H ≤ Y , which may be based on congestion [13].

3A speed-up common in A*-search (for large nets) limits search to
GCells in narrow corridors around known routes. This speed-up is
equally applicable to BFY, but not used in our implementation.

monotonic pass (v)monotonic passes (i) and (ii) monotonic passes (iii) and (iv)

Figure 3: Non-monotonic routing using the Bellman-Ford Al-
gorithm with an expanded bounding box. The red arrows rep-
resent monotonic passes.

Within this expanded rectangular bounding box (Figure 3), we
only consider a partial rectilinear bounding box for two reasons.
First, we reduce the overall runtime by limiting the bounding box.
Second, we observe that the space omitted only contributes to routes
that require multiple detours. Since congestion estimation needs
not generate heavily-detoured routes, we omit this search space
to reduce detours and runtime. Within the rectilinear bounding
box B, consider the upper-left (UL) and bottom-right (BR) cor-
ners. We perform five monotonic-routing passes: (i) S → UL, (ii)
S → BR, (iii) UL → T , (iv) BR → T , and (v) S → T . For
nets with extreme aspect ratios, we found that this is more effec-
tive than repeating many monotonic passes. Our implementation
expands bounding boxes up to twice the original size.

3. CONGESTION RELIEF
The main precept of routability-driven placement is to increase

the porosity of placement regions with high routing congestion. Re-
gardless of how congestion is estimated, porosity has traditionally
been increased in two ways: (i) after global placement, by shifting
cell locations [17, 24] and using congestion-driven detailed place-
ment [3, 5, 8], and (ii) during global placement, by inflating cells
based on early congestion estimates and pin density [3, 5, 8].

While studying the impact of these techniques on challenging IC
layouts, we observed their insufficiency. Modifications performed
after the global-placement phase must preserve the structure of re-
sulting placement or risk unbearable deterioration of interconnect
length. Cell inflation performed during global placement is more
flexible and powerful. However, when inflated cells move out-
side the congested region, new cells must be inflated, and this pro-
cess may consume all available whitespace without addressing the
root cause of congestion in a given region (this phenomenon was
confirmed to us by several industrial colleagues and academic col-
leagues). Further analysis revealed two previously unreported types
of routing congestion, which we include below as types 2 and 3.

1) cell-based congestion caused by cell-to-cell proximity,
2) local layout-based congestion caused by static design proper-

ties, such as blockages and reduced routing capacities,
3) remotely-induced layout-based congestion attributed to non-local

factors, e.g., long nets.

These congestion types are illustrated in Figure 4. The distinctions
among them can be blurred by inaccurate congestion maps and also
during congestion reduction after global placement [17, 24] when
cells do not drastically move across the layout. However, these dis-
tinctions become sharper when guiding global-placement iterations
by accurate congestion maps. Conceptually, type-2 congestion re-
quires whitespace injection into relevant regions in such a way that
whitespace remains in these regions even when cells relocate.
Cell-based congestion. As the placer spreads cells, it often implic-
itly keeps cells close together to decrease HPWL. However, this

Figure 4: Congestion map produced after one BFG-R [4] itera-
tion (left), placement map of cell locations (center), and block-
ages (right) for SUPERBLUE2 [19]. In the center, blue indicates
movable cells, and black indicates congested GCells over block-
ages. Congestion is present around blockages (layout-based)
and blockage-free regions (cell-based).

“clumping” creates difficult-to-route regions, as there may be too
few tracks to accommodate all incident nets. This type of conges-
tion is easily mitigated through cell inflation. However, inflating
too many cells or inflating some cells by too much can exhaust
whitespace too soon, inhibit convergence and undermine quality.
To ensure steady improvement, we inflate cells in the top 5% most
congested GCells. Details are given in Appendix B.
Layout-based congestion. During HPWL-driven placement, the
target density is often high, as this facilitates low-HPWL place-
ment solutions. However, if the placer is not congestion-aware, it
may pack cells in regions of high congestion. To this end, we seek
to locally increase whitespace to encourage cells to spread else-
where. However, analytic placement frameworks are not always
amenable to techniques that change (local) target density. Instead,
we enforce non-uniform target densities in localized regions. We
distinguish layout-based congestion as either local, which is caused
primarily by static constraints such as custom routing-edge capac-
ity reductions, or remotely-induced, where congested GCells con-
tain no standard cells but have few routing tracks traversed by long
nets. While the former can be addressed through locally injecting
whitespace, the latter cannot, as there are no cells to move out of
the congested region. In the remainder of this section, we discuss
our method of enforcing non-uniform target density by (i) creating
a packing peanut (fixed cell) at the center of every GCell, and (ii)
modifying its size based on congestion.
Implementation. To address local layout-based congestion, we
modify the size of packing peanuts during the initial HPWL opti-
mization stage based on pin density, and during the global place-
ment stage based on routing congestion. During initial placement,
we coarsely estimate routing congestion of the design based on
available routing capacity and cell pin density. We first divide the
layout into 8 × 8 GCell regions and compute the number of pins
in each region. We then (pessimistically) estimate that each pin in
the region will occupy two routing tracks, and increase the pack-
ing peanuts’ size based on the ratio of estimated usage and rout-
ing capacity. This approach of coarsely dividing the layout gives
the placer a high-level outlook and encourages cells spreading to
regions of lower pin density. We define two parameters: (i) the
maximum expandable area PA(g)max, which is based on the sur-
rounding non-overlapping GCell areas, and (ii) the minimum area
PA(g)min, which is based on GCell pin density. Let C(g)k be
the congestion of GCell g at routing iteration k. Then the packing
peanut area PA(g) at g is initially PA(g)min and

PA(g) + 0.15 ·
`
PA(g)max − PA(g)

´
(1)

if C(g)k > C(g)k−1 and C(g)k > 1. If the congestion is reduced
but not removed, i.e., C(g)k−1 > C(g)k > 1, then the packing
peanut size remains the same. Otherwise, if congestion is removed,
the size is max{PA(g)min, PA(g)× 40%}.
To address remotely-induced layout-based congestion, we increase
the packing peanuts in GCells closest to the congested region and
their neighboring GCells. Such modifications often occur around
placement blockages. Across placement iterations, the packing
peanuts increase placement porosity by reducing the demand in re-
gions without blockages as well as customizing the resource distri-
bution around blockages. Unlike rectangular macro expansion [5],
our approach affords the placer a high degree of flexibility to where
long nets can be shifted (Figure 7). It complements cell-inflation
techniques by preventing allocated whitespace from moving away.

4. COORDINATED PLACE AND ROUTE
The integration of routing estimation within placement allows us

to leverage the existing infrastructure and avoids task redundancy.
Giving LIRE up-to-date access to cell locations simplifies the con-
struction of new congestion maps when placement changes.
Incremental placement updates. After its first invocation, LIRE
maintains the overall congestion map and keeps track of the GCells
traversed by each point-to-point connection π. At subsequent LIRE
invocations, if the endpoints of π remain in the same GCells (de-
spite changes in their continuous-valued locations), π’s route and
its contribution to the congestion map are left unchanged. While
this type of incrementality has limited use in early placement iter-
ations, its effect is more pronounced in later iterations and during
detailed placement, when the locations have stabilized.
Incremental route updates. When invoked for the first time, LIRE
generates routes from scratch. Subsequently, it tries to reuse exist-
ing routes where possible. Nets whose terminals relocated to differ-
ent GCells are rerouted using the original net ordering, as outlined
in Section 2. For remaining nets, we check if their routes are con-
gested. Congestion is mitigated by single incremental BFY passes.
This helps replicate the accuracy of a maze router and improves
runtime by reusing full and partial routes.
Placement-routing interface for coordinated place-and-route:
• LIRE::Initialize() reads in the benchmark information,

sets up the routing environment, and computes the static routing-
edge capacities (e.g., due to blockages or custom capacity reduc-
tions). Dynamic capacity adjustments such as pin blockages in
Section 6, are accounted for by LIRE::updatePlacement().
• LIRE::updatePlacement() restructures the nets based on

any placement changes, and maintains lists of nets that require
full modification, as well as those that can be reused. Dynamic
routing capacities are adjusted due to cell-location updates.
• LIRE::route() generates routes on an as-needed (lazy) ba-

sis. It decomposes each multi-pin net into two-pin subnets based
on its MST, and follows the protocol outlined in Section 2.
• LIRE::genCongMap() translates edge capacities and usages

to a GCell-centric congestion map as in [8], where a GCell is
congested if any surrounding edge is congested.

The handling of design hierarchy is entrusted to the placer and does
not add complexity to the place-and-route interface (Figure 8). In
summary, we advocate a coordinated integration style of physi-
cal optimizations, where each component uses algorithms that are
independently-meaningful and independently-efficient, but also are
capable of taking external suggestions. Unlike simultaneous place-
and-route advocated in [8], this type of integration limits software
complexity, allows for component replacement and unit testing. It
eases the integration of timing analysis and other components nec-
essary for effective timing closure of modern SoC designs [10].

5. COMPARISONS TO PRIOR ART
Comparing our techniques to prior art, we consider (i) point-to-

point routing algorithms, (ii) using global routes versus probabilis-
tic congestion maps, (iii) incremental routing techniques, and (iv)
handling congestion around blockages.
Fast routing. The closest publication to our material in Section 2
is [13]. It advocates replacing A*-search with fast linear-time rout-
ing algorithms that exploit a different notion of monotonic routes
(our work was completed before [13] was published or available to
us). It uses multiple passes to find non-monotonic routes and does
not claim optimality. It does not consider CPU cache effects and the
connection we establish to the Bellman-Ford algorithm with Yen’s
improvement. Empirically, the RCE estimator [13] is not used to
drive a competitive global placer, whereas we report successful re-
sults for coordinated place-and-route using LIRE. We believe that
congestion-driven bounding-box expansion pioneered in RCE can
be valuable, but have not had the time to implement and evaluate it.

The only modern description of an industry router that we could
find is in [10]. It concedes that Dijkstra’s algorithm [1, Section
24.3] (from which A*-search is derived) is “much too slow” for
large modern netlists, even with Fibonacci heaps. However, rather
than replace Dijkstra with linear-time algorithms as we do, the au-
thors speed it up with sophisticated data structures (interval-based
route-cost representations) and algorithms (sharper admissible func-
tions for A*-search based on landmarks). Direct comparisons would
be difficult to make, even if we had access to their source code,
because advanced data structures use more memory and require
significant up-front set-up, along with maintenance. However, a
single-threaded version of LIRE takes only <15% of runtime in
our entire place-and-route flow, despite frequent (>10) invocations
by the placer (Table 1). Speeding it up further would have limited
impact. Most importantly, we have advanced the goal of our re-
search — to tame the complexity of place-and-route — by entirely
avoiding sophisticated routing algorithms and data structures.
Congestion estimation must accurately identify hotspots and guide
the placer to relieve congestion. While probabilistic congestion
maps are easy to implement, they can be slower per net than con-
structive routing, as shown in [22]. They are also highly inaccurate,
as recently articulated by IBM researchers [11]. Nevertheless, most
routability-driven placers [3, 5] still use probabilistic methods. As
illustrated in Figure 5, congestion maps built usingLZ-routing [14]
significantly differ from router-based maps. Table 2 compares total
overflow (TOF) between L-routing, LZ-routing, LIRE, and maze
routing [4]. On average, LIRE overestimates TOF by 4% with no
significant outliers.
Incremental routing techniques. All modern routability-driven
placers [3, 5, 8] use built-in congestion estimation to construct new
estimates from scratch on every invocation. This process is un-
necessarily time-consuming, especially when the placement has
not changed significantly. While some prior techniques rip-up and
reroute some congested nets [25], they assume a static routing (and
placement) instance. In contrast, our incremental techniques ac-
count for dynamic placement (and routing) instances, take advan-
tage of previous (partial) routes, and update routes on an as-needed
basis. These techniques are especially applicable to congestion es-
timators based on constructive global routing, but also should be
helpful in full-fledged routers. Empirically, we matched the accu-
racy of a full global router with limited runtime overhead.
Placement and routing blockages, e.g., macro blocks, often lead
to congestion around their borders. Previous work [5] proactively
reserves resources by expanding macros. However, (rectangular)
macro inflation is rather crude in controlling whitespace — it ei-
ther allows all cells or prevents all cells in a given rectangular re-

gion. Our non-uniform target density, as implemented with pack-
ing peanuts, provides much more flexible control of whitespace, as
shown in Figure 7. By increasing the packing peanut sizes in areas
of congestion and in selected neighboring GCells, we allow cells to
move into congestion-free regions around macro borders, whatever
shape those regions may assume.

6. EMPIRICAL VALIDATION
Our algorithms are implemented in a tool called CoPR (pro-

nounced “copper”) in C++ using the OpenMP library [2] and com-
piled with g++ 4.7.0. Our global placer is derived from SimPL [9],
which was the case for three out of the top four teams at the IC-
CAD 2012 Contest [20]. Thus, the choice of the global placement
algorithm is not a significant factor in relative performance.
Empirical results are reported on the ICCAD 2012 benchmark
suite [20] derived by IBM researchers from industry designs. Some
of these benchmarks were released only after the results of the IC-
CAD 2012 Contest were announced. The overall figure of merit
combines quality metrics (interconnect length, routing congestion
evaluated by a router, and pin blockage) and runtime. Table 1 com-
pares CoPR to official contest results [20] for the top three contes-
tants. With quality metrics based on the NCTUgr router (without
runtime), CoPR outperforms NTUplace4h by 7% and SimPLR by
2%, while matching the overall quality of Ripple, which is 5.7×
slower. CoPR runtime intentionally matches SimPLR (the fastest
top-3 contestant, which trails CoPR in quality) so that officially-
reported runtime ratios between SimPLR and other contestants also
apply to CoPR. The last two columns in Table 1 show that LIRE
is called by CoPR 14-22 times per run, amounting to <15% of
CoPR’s runtime. With quality metrics based on the BFG-R router,
CoPR outperforms NTUplace4h by 3%, SimPLR by 6% and Rip-
ple by 2%, respectively (Table 3). With respect to scoring formulas
used at the ICCAD 2012 contest, CoPR outperforms the winner
SimPLR (from which CoPR was derived).

7. CONCLUSIONS
Our work deals with an alarming trend in the design or digi-

tal random-logic blocks, where interconnect’s dominance in area,
volume, delay, power and signal-integrity is increasing with every
new technology node [7]. If unchecked, this trend is threatening to
render Moore’s law irrelevant — packing more devices on a chip
is useless if they cannot be effectively connected. The most di-
rect and effective remedy known today is to reduce interconnect
demand, which can be done by optimizing standard-cell locations
and wire routes. As articulated recently by IBM researchers, design
flows with separate placement and routing steps have become inef-
fective for modern ICs [19], but combining the two brings tangible
and significant benefits in IC cost [17]. However most of physical-
design research continues focusing on standalone optimizations,
partly due to the complexities involved in place-and-route inte-
gration. These complexities include sophisticated data structures
and elaborate multistep optimizations used by state-of-the-art al-
gorithms [10], unmaintainable source-code bases that are unnec-
essarily entangled, large sets of tuning parameters that may need
to be adjusted to individual benchmarks, and of course significant
runtime. In this work, we develop an algorithmic framework for
coordinated place-and-route (CoPR) that combines independently-
meaningful components and systematically reduces the complexi-
ties of place-and-route. Our contributions fall into four categories:
(i) dramatic acceleration of constructive routing estimation through
linear-time cache-friendly algorithms that do not require sophis-
ticated data structures, (ii) significant reductions in the amount
of work through pervasive incrementality at the interface between

(a) (b) (c) (e)(d) (f)

180

160

140

120

100

80

60

40

20

0
7010 20 806030 40 50

LIRE

LZ

L

Figure 5: Comparison of different routing estimation techniques on the SUPERBLUE2 benchmark [19]. The congestion map in (a)
is produced by BFG-R [4], in (b) — by LZ-routing, and in (c) — by LIRE. Images in (d) and (e) show how well (b) and (c) match
(a) — ratios of congestion values are plotted. Orange areas indicate large differences and black areas — no difference. (f) plots the
error percentage of total overflow for L-routing, LZ-routing, and LIRE relative to (a) over the placement iterations of CoPR. While
all techniques overestimate congestion, LZ-routing and L-routing produce many false positives, whereas LIRE does not.

Quality metrics using NCTUgr [12] (e8) Runtime ratio LIRE in CoPR
Benchmark Nodes Nets SimPLR (1) Ripple (2) NTUplace4 (3) CoPR CoPR/SimPLR calls LIRE %
SUPERBLUE1 847K 822K 2.789 2.889 2.850 2.860 1.058 14 12.4%
SUPERBLUE3 920K 898K 3.439 3.604 4.477 3.457 0.962 15 14.8%
SUPERBLUE4 600K 567K 2.434 2.269 2.360 2.366 1.445 22 13.9%
SUPERBLUE5 772K 787K 3.603 3.486 4.217 3.510 1.089 14 11.8%
SUPERBLUE7 1.36M 1.34M 4.313 4.291 4.137 4.360 1.099 15 11.9%
SUPERBLUE10 1.20M 1.15M 6.909 6.111 7.190 6.505 1.054 22 16.4%
SUPERBLUE16 699K 697K 2.857 2.840 2.833 2.797 0.687 14 15.3%
SUPERBLUE18 1.27M 469K 1.823 1.791 1.709 1.676 0.816 17 19.0%
Ratios of averages (×) 1.02× 1.00× 1.07× 1.00× 1.01× 14.3%

Table 1: Quality metrics (based on NCTUgr [12]) without runtime for the top three contestants as reported at the ICCAD 2012
Routability-driven Placement Contest [20]. CoPR runtimes are compared to those of the fastest top-3 contestant SimPLR by running
both tools on the same server. The last two columns show the runtime of LIRE as a percent of total CoPR runtime, and the number
of LIRE invocations on each benchmark. Full results for SimPLR, RippleCUHK and NTUplace4h are available at [20]. Using
BFG-R [4] (rather than NCTUgr) to evaluate results results in greater advantage for CoPR as shown in Table 3.

placement and routing, (iii) identification of two new types of rout-
ing congestion, as well as mechanisms by which a global placer can
diagnose them and respond effectively, and (iv) strong empirical
results on the most recent benchmarks from IBM Research.

Our place-and-route improvements should (a) lead to more com-
pact (less costly) IC layouts in a way illustrated in [17], and (b) re-
duce back-end turn-around-time so that IC designers can evaluate
a greater number of micro-architectural configurations.

8. REFERENCES
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to

Algorithms, Second Edition, MIT Press and McGraw-Hill, 2001.
[2] L. Dagum and R. Menon, “OpenMP: An Industry Standard API for

Shared-memory Programming,” Computational Science and Engineering
1998, pp. 46-55.

[3] X. He, T. Huang, L. Xiao, H. Tian, G. Cui and E. F. Young, “Ripple: An
Effective Routability-driven Placer by Iterative Cell Movement”, ICCAD
2011, pp. 74-79.

[4] J. Hu, J. A. Roy and I. L. Markov, “Completing High-quality Global Routes”,
ISPD 2010, pp. 35-41.

[5] M.-K. Hsu, S. Chou, T.-H. Lin and Y.-W. Chang, “Routability-driven Anal-
ytical Placement for Mixed-size Circuit Designs”, ICCAD 2011, pp. 80-84.

[6] L. Hsu, R. Iyer, S. Makineni, S. Reinhardt and D. Newell, “Exploring the
Cache Design Space for Large Scale CMPs,” Computer Architecture News
2005, pp. 24-33.

[7] International Technology Roadmap for Semiconductors (ITRS).
[8] M.-C. Kim, J.Hu, D.-J. Lee and I. L. Markov, “A SimPLR Method for

Routability-driven Placement”, ICCAD 2011, pp. 67-73.
[9] M.-C. Kim, D.-J. Lee and I. L. Markov, “SimPL: An Effective Placement

Algorithm”, TCAD 31(1) (2012), pp. 50-60.
[10] B. Korte, D. Rautenbach and J. Vygen, “BonnTools: Mathematical Innovation

for Layout and Timing Closure of Systems on a Chip”, Proc. IEEE 95(3)
(2007), pp. 555-572.

[11] Z. Li, C. J. Alpert, G.-J. Nam, C. Sze, N. Viswanathan and N. Y. Zhou,

“Guiding a Physical Design Closure System to Produce Easier-to-route
Designs with More Predictable Timing”, DAC 2012, pp. 465-470.

[12] W.-H. Liu, W.-C. Kao, Y.-L. Li, K.-Y. Chao, “Multi-threaded Collision-aware
Global Routing with Bounded-length Maze Routing”, DAC 2010, pp.200-205.

[13] W.-H. Liu, Y.-L. Li, C.-K. Kok,“A Fast Maze-free Routing Congestion Esti-
mator With Hybrid Unilateral Monotonic Routing”,ICCAD 2012, pp.713-719.

[14] M. Pan, Y. Xu, Y. Zhang and C. Chu, “FastRoute: An Efficient and
High-quality Global Router”, VLSI Design 2012, 18 pages.

[15] S. K. Raman, V. Pentkovski and J. Keshava, “Implementing Streaming SIMD
Extensions on the Pentium III Processor”, Micro 20(4)(2000), pp. 47-57.

[16] P. N. Parakh, R. B. Brown and K. A. Sakallah, “Congestion Driven Quadratic
Placement, DAC 1998, pp. 275-278.

[17] J. A. Roy, N. Viswanathan, G.-J. Nam, C. J. Alpert and I. L. Markov, “CRISP:
Congestion Reduction by Iterated Spreading during Placement”, ICCAD 2009,
pp. 357-362.

[18] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, G.-J. Nam and J. A. Roy, “The
ISPD-2011 Routability-driven Placement Contest and Benchmark Suite”,
ISPD 2011, pp. 141-146.

[19] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, Y. Wei, “The DAC 2012 Routabi-
lity-driven Placement Contest and Benchmark Suite”, DAC 2012, pp. 774-782.

[20] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li and Y. Wei, “ICCAD-2012 CAD
Contest in Design Hierarchy Aware Routability-driven Placement and
Benchmark Suite”, ICCAD 2012, pp. 345-348. cad_contest.cs.nctu.
edu.tw/CAD-contest-at-ICCAD2012/problems/p2/p2.html

[21] Y. Wei, C. Sze, N. Viswanathan, Z. Li, C. J. Alpert, L. N. Reddy, A. D. Huber,
G. E. Terez, D. Keller and S. S. Sapatnekar, “GLARE: Global and Local
Wiring Aware Routability Evaluation”, DAC 2012, pp. 768-773.

[22] J. Westra and P. Groeneveld, “Is Probabilistic Congestion Estimation
Worthwhile?” SLIP 2005, pp. 99-106.

[23] J. Y. Yen, “An Algorithm for Finding Shortest Routes From All Source Nodes
to a Given Destination in General Networks”, Proc. Quarterly of Applied
Mathematics 27 (1970), pp.526-530.

[24] Y. Zhang and C. Chu, “CROP: Fast and Effective Congestion Refinement of
Placement”, ICCAD 2009, pp. 344-350.

[25] Y. Zhang and C. Chu, “GDRouter: Interleaved Global Routing and Detailed
Routing for Ultimate Routability”, DAC 2012, pp. 597-602.

Appendix A. Proof of Theorem 1
Let t be the w× h matrix, where t[x][y] stores the cost of the opti-
mal path from its cardinal neighbors. Consider the first pass where
partial costs are not yet propagated. By construction, t[x][y] only
depends on t[x−1][y] and t[x][y−1], and requires one BF(Y) pass.
Therefore, an optimal route rπ with m = 1 monotonic segments is
found after m = 1 passes. Consider the general case where rπ has
k distinct monotonic segments. By assumption, rπ is formed using
k BFY passes. By the early termination criterion, if BFY changes
no costs in t, then rπ = rminπ . If relaxation is successful during
the backward pass, then rπ is allowed to detour through some in-
termediate node v′ such that the route cost from S to v is reduced
by going through v′. If such v′ exists, then there exists a new path
from S to v through v′ such that the new path has an additional
monotonic segment. During the forward pass, the full path of S to
T through v. If going through v reduces the cost, then there is an
additional monotonic segment v → T . Therefore, for two addi-
tional BFY passes for an rπ with k distinct monotonic segments,
we will generate a new path with k + 2 monotonic segments. Be-
cause we consider all intermediate nodes v as detours, the best-cost
path will be stored. Therefore, if rminπ has m = k + 2 monotonic
segments, it will require k + 2 BFY passes.

Appendix B. Cell Inflation
We inflate each cell in the top 5% most congested GCells by com-
puting its new width as follows.

max{width(cell) + 1, 1 + θ(G) · Λ(cell) · deg(cell)} (2)

Here, cell is a movable cell in a congested GCell, width(cell) and
deg(cell) are the width and connectivity of cell, respectively. θ(G)
is an adaptive function (described below) of the routing grid G,
and Λ(cell) is the number of times cell has been in a congested
GCell. We define θ similarly to [8, Equation 12], except that we
upperbound θ to limit how much a cell can be inflated.

θ = min{0.5,max{0, α · η(G) · ξ(G) + β}} (3)

Here, η(G) and ξ(G) represent the respective difficulty and routabil-
ity of the design, where η(G) is the sum of every GCell congestion
inG, and ξ(G) is the ratio of the total GCell congestion inG. α and
β are constants based on linear regression. Unlike previous cell-
inflation approaches [8], our formula does not include the GCell’s
congestion. By excluding the numeric congestion value, we only
rely on the routing estimator’s accuracy for congestion locations,
and less on the reported congestion value. This prevents excessive
inflation, and facilitates a smooth placement transition.

10

1

10

3

(c)(a) (b)

10

5

5

5

1

1

5

1

S

T

S

T

0

12 18

1

S
S
S

T

0

16 11

1 6

21

11 12

136

Figure 6: Applying BFY to an initial route for a point-to-point
connection S → T . (a) The routing grid and edge costs (conges-
tion). (b) The initial route with cost 21. (c) Through relaxation,
BFY can preserve part of the route, and find a better partial
segment, resulting in a new route with cost 18.

Figure 7: Congestion-driven rectangular macro expansion [5]
(left) versus our technique (right).

Iter. Total overflow (e5) Comparison vs. maze
maze L LZ LIRE L LZ LIRE

12 31.04 42.59 36.78 31.80 1.372 1.185 1.024
16 20.41 31.00 26.30 20.91 1.519 1.289 1.024
20 16.00 25.49 21.22 16.45 1.594 1.327 1.039
24 15.13 24.13 19.31 15.13 1.595 1.276 1.020
28 11.68 20.44 16.58 11.96 1.749 1.420 1.024
32 7.880 15.17 12.16 8.149 1.925 1.544 1.034
36 6.424 13.29 10.59 6.684 2.069 1.649 1.041
40 5.452 11.99 9.745 5.755 2.199 1.787 1.056
44 5.051 11.44 9.108 5.359 2.266 1.803 1.061
48 4.636 10.98 8.895 4.898 2.369 1.919 1.057
52 4.375 10.75 8.382 4.575 2.458 1.916 1.046
60 3.825 9.876 7.721 4.043 2.582 2.019 1.057
64 3.718 9.736 7.572 3.931 2.618 2.036 1.057
68 3.697 9.796 7.410 3.964 2.650 2.004 1.072
76 3.503 9.337 7.254 3.684 2.665 2.071 1.052

Avg 2.06× 1.65× 1.04×

Table 2: Total overflow estimation comparisons of L-routing,
LZ-routing, the initial (maze) routing of BFG-R [4], and LIRE
inside CoPR for the SUPERBLUE2 benchmark [19] (Figure 5f).

Quality metrics using BFG-R [4] (e8)
Benchmark SimPLR Ripple NTUplace4 CoPR
SUPERBLUE1 3.023 3.341 2.962 3.084
SUPERBLUE3 3.803 3.906 4.609 3.757
SUPERBLUE4 2.865 2.659 2.773 2.530
SUPERBLUE5 3.980 3.654 3.919 3.646
SUPERBLUE7 4.479 4.502 4.283 4.439
SUPERBLUE10 8.114 7.080 7.810 7.378
SUPERBLUE16 3.117 2.929 3.032 2.989
SUPERBLUE18 2.461 2.207 1.838 2.163
Ratios (×) 1.06× 1.02× 1.03× 1.00×

Table 3: Quality metrics (based on BFG-R [4]) without runtime
for the top three contestants as reported at the ICCAD 2012
Routability-driven Placement Contest [20] and CoPR.

Figure 8: CoPR placements of the SUPERBLUE7 (left), SU-
PERBLUE10 (center), and SUPERBLUE18 (right) testcases [20].

