
Improving Testability and Soft-Error Resilience through Retiming ∗

Smita Krishnaswamy †, Igor L. Markov], John P. Hayes]

† IBM T.J. Watson Research Center, Rt. 134, Yorktown Heights, NY 10598
] University of Michigan, EECS Department, Ann Arbor, MI 41809

{smita, imarkov, jhayes}@eecs.umich.edu

Abstract

State elements are increasingly vulnerable to soft errors
due to their decreasing size, and the fact that latched er-
rors cannot be completely eliminated by electrical or tim-
ing masking. Most prior methods of reducing the soft-error
rate (SER) involve combinational redesign, which tends to
add area and decrease testability, the latter a concern due
to the prevalence of manufacturing defects. Our work ex-
plores the fundamental relations between the SER of se-
quential circuits and their testability in scan mode, and ap-
pears to be the first to improve both through retiming. Our
retiming methodology relocates registers so that 1) regis-
ters become less observable with respect to primary outputs,
thereby decreasing overall SER, and 2) combinational nodes
become more observable with respect to registers (but not
with respect to primary outputs), thereby increasing scan-
testability. We present experimental results which show an
average decrease of 42% in the SER of latches, and an aver-
age improvement of 31% random-pattern testability.

Categories and Subject Descriptors B.6.2 [Logic Design]
Reliability and Testing— Redundant Design, Testability
General Terms Algorithms, Design, Reliability
Keywords Testability, Soft Errors, Retiming

1 Introduction
Single-event upsets (SEUs) caused by α-particles, high-
energy neutrons, and cosmic rays are of concern in CMOS
logic circuits. As the energy threshold for causing an er-
ror decreases, the number of particles with sufficient en-
ergy increases rapidly [18]. For instance, at lower energy
thresholds, even trace amounts of radioactive contaminants
in solder can affect CMOS circuits [8]. Additionally, tran-
sient errors in ICs may occur through a variety of hard-to-
model phenomena, including capacitive and inductive noise,
as well as thermal and power supply fluctuations.

At the same time, circuit test is becoming more im-
portant because fabrication process parameters are harder
to control in sub-wavelength lithography. Fluctuations in
dopant concentrations, transistor gate length, wire shapes,
and via alignments can lead to hard errors in chips [2].
Therefore, methods that increase testability without compro-
mising SER are necessary to identify incorrectly manufac-
tured chips.

Heidel et al. [8] observe that registers are a major con-
tributor to fail rates in high-performance ICs since latched
errors are often not subject to electrical or timing masking.
Several papers propose partial replication to improve the re-
liability of combinational logic [11, 15]. However, these

∗Permission to make digital copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. DAC 2009, July 26-31, San Francisco, California, USA Copyright 2009
ACM 978-1-60558-497-3 -6/08/0006

methods only account for the combinational portion of the
logic circuit and often incur significant area overhead. Fur-
ther, these methods have to be used sparingly in order to
maintain testability. Other techniques [21, 16] utilize elec-
trical and timing masking to prevent the latching of errors
originating in combinational logic. These techniques do not
affect previously latched errors.

Errors in combinational logic are only becoming prob-
lematic now, while errors in registers are already a problem
for critical applications [8]. In this paper, we specifically
aim to reduce the soft-error susceptibility of registers, while
simultaneously improving circuit testability. The main idea
is to design circuits such that, even if a register experiences
an SEU, its chances of propagating to a primary output are
small. We account for logic masking in both combinational
logic and registers during sequential operation and use this
information to improve both the overall SER and testabil-
ity of the design through retiming. Since we focus on logic
masking, our solution is applicable to the various sources of
errors mentioned above.

Retiming is the process of relocating registers to improve
an objective (usually area or clock period) such that the func-
tionality of the circuit remains unchanged.1 Our retiming
method utilizes the relationship between signal observabil-
ity, soft-error propagation, and random-pattern testability.
We derive linear programs (LPs) that relocate registers so
as to minimize their sequential observability. Our main con-
tributions are:

• An observability-based method for computing the
error-susceptibility, and random-pattern testability for
potential register locations in a sequential circuit.

• Linear programs for retiming that reduces circuit vul-
nerability to soft errors, and improves circuit testability
simultaneously.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews relevant previous work on register retiming
and functional simulation. Section 3 analyzes the effects of
register relocation on error propagation and testability. Sec-
tion 4 presents our retiming formulation and various exten-
sions. Empirical validation is given in Section 5, followed
by conclusions in Section 6.

2 Background
We now summarize the necessary background in retiming,
soft-error mitigation, and testability.

2.1 Previous Work on Retiming

Leiserson and Saxe [10] first developed algorithms for
minimum-period and -area retiming of edge-triggered cir-
cuits. For minimum-area retiming, a sequential circuit is
represented by a graph G(V,E), where each vertex v ∈ V
represents a combinational gate, and each edge (u,v) ∈ E

1In the past, the verification of retiming has been a problem, but solutions
available in the past 4-5 years facilitate the practical use of retiming [14].

Figure 1: An illustration of observability reduction through retiming.

represents a connection between a driver u and sink v. An
edge is labeled by a weight w(u,v), indicating the number
of registers (flip-flops) between u and v. The objective of
minimum-area retiming is to determine labels r(v) for each
vertex v such that the total sum of edge weights is mini-
mized. Here, r(v) denotes the number of registers that are
moved from the outputs to the inputs of v. The weight of an
edge after retiming is given by:

wr(u,v) = w(u,v)− r(u)+ r(v)

Therefore, the total number of registers in the retimed circuit
can be minimized by the following expression.

∑
(u,v)∈E

w(u,v)− r(u)+ r(v)

Additionally, the retiming labels have to meet legality con-
straints, w(u,v) ≥ r(u)− r(v), for each edge to enforce the
fact that edges cannot have negative weights. A linear pro-
gram for the minimum-area retiming problem is given in
Figure 2. Leiserson and Saxe [10] observe that this prob-
lem is the dual of a min-cost network flow problem and can
therefore be solved in polynomial time.

Minimize
∑(u,v)∈E w(u,v)− r(u)+ r(v)

subject to
∀(u,v) ∈ E,r(u)− r(v)≤ w(u,v)

Figure 2: An LP for minimum-area retiming.

It is also possible to constrain the period in minimum-
area retiming by ensuring that every path between two ver-
tices with greater delay than the target period P has weight
≥ 1. In minimum-period retiming a binary search is con-
ducted for the target clock period P and the feasibility of
each period according to the legality constraints is checked
using the Bellman-Ford algorithm [10].

Aspects of circuit testing have also been improved us-
ing retiming. Dey and Chakradhar [5] aim to reduce the
lengths of partial scan chains in order to decrease testing
time. Das and Bhattacharya [4] observe that combinational
redundancies can be converted into sequential redundancies
(unobservable changes in the state diagram) to improve the
scan-based testability of circuits. In [20], the authors use the
reverse process to convert sequential redundancies to combi-
national ones and then remove this redundancy using combi-
national optimization techniques. We note that these works
are significantly different in their focus from ours. We aim
to reduce the average observability – in effect the random-
pattern observability of registers during normal operation.
However, given that many registers are scanned, this retim-
ing improves their observability during testing.

2.2 Techniques for SER Mitigation

Several techniques have been developed for improving the
SER of logic circuits. These can be categorized by their

error-mitigation mechanism. Soft errors in combinational
logic are affected by three sources of masking [19]: 1) logic
masking, where errors stop propagation due to the lack of
a sensitized path to primary outputs or latches; 2) electri-
cal masking, where soft errors are attenuated before being
latched because of insufficient glitch duration or amplitude;
3) timing masking, when soft errors arrive at a register prior
to a latching clock edge. Of these, only logic masking af-
fects latched soft errors since latches can retain and drive
erroneous values. Soft errors in combinational logic, how-
ever, are merely glitches that are likely to disappear due to
the above mentioned sources of masking.

Techniques that increase logic masking include triple-
modular redundancy, partial logic replication [15], guided
rewiring [1], and signature-based partial redundancy addi-
tion [11]. These techniques mask errors on state elements,
but often adversely affect testability and generally involve
significant area overhead. Error-correction techniques such
as Reed-Solomon and Hamming codes can also directly be
used for state encoding, but these techniques incur so much
overhead that they are not considered practical.

Techniques such as BISER [21, 16] use repeated sam-
pling to determine the value of a signal before latching, re-
lying on the assumption that erroneous glitches have shorter
duration than the difference between sampling times. This
assumption does not hold for errors already present in
latches. Gate hardening [3] increases the energy threshold
for error propagation such that only high-energy particles
cause soft errors. While gate hardening can be used for state
elements, this technique becomes less effective and requires
proportionally more overhead as device technologies shrink.
In this paper, we specifically focus on mitigating errors in
registers through logic masking.

2.3 Logic Masking and Testability

A soft error in a logic circuit is propagated to a primary out-
put only if there is a sensitized and observable path from
the error to the output. This occurs only when a suitable
test vector is applied at the primary input. Therefore, esti-
mating the fraction of test vectors or testability is equivalent
to estimating the probability that the error propagates to at
least one primary output. This testability measure can be
computed through functional simulation signatures in linear
time. Note that this is testability with respect to the primary
outputs. An alternative testability measure can be computed
for scan-mode, i.e., assuming that the latches are scanned.
We utilize these differing notions of testability—one appli-
cable in sequential operation, and one applicable in scan-
mode—to improve reliability and testability.

Two major parameters affecting testability are signal
probability (controllability) and observability. Here, we re-
view the use of functional simulation signatures for estimat-
ing the sequential observability of nodes in a circuit in linear
time. Signal probability is computed in [11] by simulating
random input vectors through logic in topological order. The
collection of output responses at logic gates with respect to
a collection of input vectors is known as a signature. More

2

formally, for input vectors {v1,v2,v3, . . .vk}, the signature
at a node f with respect to the input vectors is given by
Sig(f) = { f (v1), f (v2), f (v3), . . . f (vk)}.

To evaluate signal observability, observability don’t-care
masks (ODC masks) are computed from the signatures [17].
These correspond to input vectors for which the value of the
signal affects a primary output. Observability is computed
in reverse topological order by flipping bits in the signature
and checking if the change is propagated to a primary output.
For greater efficiency, this computation can be done in two
steps. The first step is to check whether the change locally
propagates through neighboring gates. The second step is to
check for further propagation through the circuit by exam-
ining pre-computed ODC masks of the outputs of the neigh-
boring gates. Corresponding to the K-bit signature sig(f),
we define ODC(f) as the K-bit sequence whose i-th bit is
0 if input vector Xi is in the don’t-care set of f ; otherwise
the ith bit is 1. Formally, ODC(g) =

(
X1 ∈ care(Fg),X2 ∈

care(Fg), . . . ,XK ∈ care(Fg)
)
. Figure 3 shows an example

of signature and ODC mask computation on a small cir-
cuit. Figure 4 summarizes the ODC computation algorithm
of [17] for reference.

Figure 3: Signature and ODC illustration.

compute odc approx(Circuit C, size K)
{

compute sigs(C,K)
sort reverse topological(C)
for(all nodes g ∈ C)

newsig(g) = sig(g)
for(each fan-out branch f ∈ fanout(g))

sig(f) = Op < f > (inputsigs(f))
localodc(g, f) = newsig(f)⊕ sig(f)
globalodc(g, f) = localodc(g, f)&odc(f)
odc(g)|= globalodc(g, f)

}

Figure 4: An approximate ODC computation algorithm.

Signatures and ODC masks are both stored as bit-vectors
and computed using bitwise operations for increased scala-
bility. Together, the signature and the ODC mask give infor-
mation about testability. For instance, all bit positions where
the signature and ODC mask are 1 correspond to test vectors
for the 0-1 fault or glitch at the node. Formally, for a node f
the testability of a transient 1-to-0, and 0-to-1 bit-flip errors
are:

test1(f) = num ones
(
sig(f)&ODC(f)

)
/K

test0(f) = num ones
(∼ sig(f)&ODC(f)

)
/K

This measure for testability was validated by comparison
to ATPG software in [11]. The SER, incorporating logic
masking, is simply the sum of testabilities at each node f ,

weighted by gate error rates gerr0(f) and gerr1(f) (given
in units of FITs) for 1-to-0 and 0-to-1 errors respectively.

SER(C) = ∑
f∈C

test1(f)gerr0(f)+ test1(f)gerr1(f)

The logical SER is generally proportional to the observabil-
ity, and only different by a multiplicative factor if the prob-
abilities of 0-to-1 and 1-to-0 errors are the same. This as-
sumption can be made due to lack of information during
technology-independent optimization.

obs(f) = num ones
(
ODC(f)

)
/K

SER(C) = ∑
f∈C

obs(f)gerr(f)

Note that logic design cannot change the actual proba-
bilities of error occurrence (gerr(0) and gerr(1)). However,
design decisions can decrease the testability of registers or
signals. Since we are performing technology-independent
logic optimization for reliability, and do not have informa-
tion about the relative probabilities of 0-to-1 vs 1-to-0 errors,
we use the observability to improve the estimated SER.

3 Circuit Analysis
In this section, we analyze the effect of register relocation
on the SER and testability of sequential circuits.

3.1 Retiming and Sequential SER

Retiming can improve circuit reliability by relocating regis-
ters such that soft errors are more likely to be masked. In or-
der to account for error propagation through multiple stages,
we modify the circuit using time-frame expansion. In an n-
frame expansion, n copies of the circuit are made and each
register is simply replaced by a wire. The outputs of the kth
stage are fed back into the inputs of the k + 1th stage (as
appropriate). Register inputs in the 0th frame are treated as
primary inputs and register outputs of the n frame are treated
as primary outputs.

The sequential observability is similar to the measure
introduced in the previous section. However, we consider
multiple cycles of operation through time-frame expansion.
Only the primary outputs of each frame are considered com-
pletely observable. This accounts for errors that propagate
past a single cycle before appearing at a primary output. It
is true that some errors in registers at the n-th frame may ap-
pear at primary outputs, but this is unlikely since the prob-
ability of errors in the n-th frame are small. Experiments
reported in several publications [6, 13] show that the major-
ity of errors are flushed out in 2-3 cycles.

Additionally, in order to compute observability from a
reasonable set of start states we obtain a sample of reach-
able states by simulating the sequential circuit for 20 cycles
starting from a reset state. Experiments have shown that
10-15 cycles of simulation suffice to reach steady state on
most ISCAS89 benchmarks [7, 13]. We denote this measure
seqobs(f ,n) where f is the name of the signal, n is the num-
ber of frames of expansion. The sequential observability is
given by the fraction of ones in the ODC mask of f in the
n-frame expanded circuit.

seqobs(f ,n) = ones
(
ODC(f ,n)

)
/K

The SER of a sequential circuit is therefore:

SER(C,n) = ∑
f∈C

gerr0(f)seqobs(f ,n)

3

If we separate the contributions of the registers from the
contributions of the combinational logic to the SER of the
sequential circuit, then we obtain:

SER Comb(C,n) = ∑
f∈Comb(C)

gerr0(f)seqobs(f ,n)

SER Reg(C,n) = ∑
r∈Reg(C)

gerr0(r)seqobs(r,n)

SER(C) = SER Reg(C,n)+SER Comb(C,n)

The SER Comb(C,n) portion of the error does not change
under register relocation, since functionally, registers sim-
ply transmit the input signal to the output unchanged (af-
ter some delay). Therefore, registers do not logically mask
errors when considering multi-cycle operation, and in turn,
do not affect the observability of other nodes in the circuit.
However, SER Reg(C,n), does change with the movement
of registers. For instance, if registers move from the output
of a node f to its inputs then, errors on the registers can be
additionally logically masked by f . The sequential observ-
ability of the a register r is generally (with some exceptions)
the same as that of its driving gate, therefore if a register is
moved, its sequential observability changes. This suggests
that registers should be placed in locations such that their
sequential observability is low.

3.2 Retiming and Random-Pattern Testability

Since the signature-based framework computes the testabil-
ity of a circuit based on random simulation vectors, test1(f)
computes the random-pattern testability of node f for 0-1
errors, and test0(f) computes the same for 1-0 errors. In the
absence of registers, the random-pattern testability of the en-
tire circuit can be computed by:

Rand Test(C,n) =
1

|Comb(C)| ∑
f∈Comb(C)

test1(f ,n)+test0(f ,n)

In modern logic circuits, most registers are directly
scanned out and read in test mode, i.e., registers can be
treated as primary outputs when considering testability.
Therefore, if registers were added to nodes f with low testa-
bility, then Rand Test(C) would increase. This again leads
to the conclusion that registers should be placed in regions
of low observability.

The random-pattern testability of a circuit can be im-
proved iteratively. At iteration 0, we assume that there are
no fixed registers in the design. Therefore, Rand Test(C,n)
is improved by placing registers in locations of low
observability—in our case, through retiming. In iteration 1,
the testability is analyzed with respect to the current register
locations. Additional test points are placed at locations that
have low observability with respect to the circuit of iteration
0, and so on. Therefore, iteration 0 of this process involves
the same goal as minimizing SER, i.e., decreasing the total
sequential observability of registers.

Example 1 For the circuit in Figure 1, the testabilities of
nodes e, f and g are as follows.

test0(e,1) = 1/8, test1(e,0) = 1/8
test0(f ,1) = 1/8, test1(e,0) = 1/8
test0(g,1) = 7/8, test1(g,0) = 1/8

The random-pattern testability of this circuit is

Rand Test(C,n) = (2/8+2/8+1)(1/3) = (1/2)

In this circuit registers should be placed at nodes e and f
due to their low observability.

4 Capturing Retiming by Linear Programs
We now derive LPs for retiming, accounting for the sequen-
tial observability of each register location. First, we present
the basic retiming formulation assuming no register sharing,
i.e, if a latch driven by a node u has fanouts v,w, then we
model this as though there was a latch both at (u,v) and
(u,w). In other words w(u,v) = w(u,w) = 1. Then, we ac-
count for register sharing at fanout branches.

4.1 Minimum-Observability Retiming

The sequential observability of each edge (u,v) is the same
as the output of a buffer that is placed on edge (u,v). We de-
note the observability of edge (u,v), seqobs((u,v),n) which
is computed using signatures as described in Section 2. In
the case where u only has one fanout seqobs((u,v),n) =
seqobs(u,n), in other words, the observability is the same
as that of its driver. Since registers logically act as buffers, a
register output has the same observability as a register input,
and edges with registers still have the same observability af-
ter the registers are moved. The objective function account-
ing for total register observability is given by:

∑
(u,v)∈E

wr(u,v)seqobs((u,v),n)

Additionally, if u is a primary input then r(u) is necessarily 0
and similarly for v. This ensures that no peripheral retiming
is done, and that the overall period of the circuit does not in-
crease beyond the longest combinational path in the module
being optimized. The modified LP is shown in Figure 5.

Minimize
∑(u,v)∈E(w(u,v)− r(u)+ r(v))seqobs((u,v),n)

subject to
∀(u,v) ∈ E,r(u)− r(v)≤ w(u,v)

Figure 5: Minimum-observability retiming formulation.

Example 2 For the circuit shown in Figure 1 the edges
include (a,e),(b,e),(b, f),(c, f),(e,g),(f ,g),(g,o). Note
that input and output wires are also considered valid
edges. However, we only derive retiming labels for
the intermediate nodes e, f ,g. The objective function is:

wr(a,e)(2/8)+(wr(b,e)+wr(b, f))(3/8)+wr(c, f)(w/8)
+wr(e,g)(2/8)+wr(f ,g)(2/8)+wr(g,o)(8/8)

The retimed weight, for instance, of edge (e,g) is wr(e,g) =
w(e,g)− r(e)+ r(g).

Once the circuit is retimed, registers can be shared again
during post-processing. For instance, if edges (u,v) and
(u,w) both have registers after retiming then these are sim-
ply shared. In general, the number of registers required at the
output of u is max(wr(u, f1),wr(u, f2) . . .wr(u, fn))where
f1, f2, . . . fn are fanouts of u.

The formulation in Figure 5 can be modified to constrain
the area and period of the circuit. For area constraints, we
can perform a binary search for the smallest feasible area M
by including the constraint (∑(u,v)∈E w(u,v)−r(u)+r(v)) <
M. The period can be constrained to a target P by the method
of [10]. Here, the D matrix stores the delay of longest path
between the vertices (u,v) in D(u,v) and the W matrix stores
the weight of the said path. These additional constraints are
shown in Figure 6.

4

Minimize
∑(u,v)∈E(w(u,v)− r(u)+ r(v))seqobs((u,v),n)

subject to
∀(u,v) ∈ E,r(u)− r(v)≤ w(u,v)
(∑(u,v)∈E w(u,v)− r(u)+ r(v)) < M
∀u,v ∈ V s.t. D(u,v) > P,r(u)− r(v)≤W(u,v)−1

Figure 6: Area- and period- constrained retiming for mini-
mum observability.

4.2 Incorporating Register Sharing

In the previous section, we derived a minimum-observability
retiming formulation that does not account for register shar-
ing. Hence, the optimization takes place on a version of
the circuit with registers cloned at each fanout branch. The
difficulty in incorporating sharing is that observability is a
non-linear property of edges.

Example 3 Consider again the circuit C of Figure 1. Sup-
pose the retimed weights of edges (b,e) and (b, f) are
wr(b,e) = 2 and wr(b, f) = 1. According to the formu-
lation of Figure 5, the objective function for this portion
of the circuit equals (2/8)wr(b,e)+ (2/8)wr(e,g) = (1/3).
However, the two registers at (b, f) and (b,e), can be re-
placed by a single register with fanouts to both e and f .
This register does not have observability seqobs((b,e),n)+
seqobs((b,e),n) = 4/8. Instead, the observability is com-
puted by counting the fraction of 1′s in its ODC mask.
The ODC mask, in turn, is computed as the bitwise OR of
the ODC masks through each fanout, as shown in Figure
4. Thus, ODC(b) = globalODC(b,e) | globalODC(b, f) =
3/8.

For each register with driver u and fanouts S =
{s1,s2 . . .sm}, the correct sequential observability must be
computed using the method of Figure 4. This observability
is equivalent to the seqobs of a buffer with input u and out-
puts S, denoted seqobs((u,S),n). Here, S is a subset of all of
the fanout branches of u, Fu = { f1, f2, . . . fn}. For any node
u with fanout branches Fu = { f1, f2, . . . fn}, we can compute
the total number of registers that can be shared by any sub-
set of these branches, using the edge weights introduced in
the previous section as follows. The number of registers that
can be shared by all the fanout branches is given by:

wr(u,Fu) = min(wr(u, f1),wr(u, f2) . . .wr(u, fn))

The number of registers shared by a subset of
fanouts, S = { f1, f2, . . . fn−1} ⊂ Fu of size |F − u| − 1 is
min(wr(u, f1),wr(u, f2) . . .wr(u, fn−1))−wr(u,Fu). In gen-
eral, the number of registers shared by a subset S ⊂ Fu is
the minimum weight of any edge of the form (u,si),si ∈ S,
minus the registers that are shared by any larger subset S′ of
Fu. Hence, the total weight of a subset of fanout branches S,
using the principle of inclusion and exclusion, is given by:

wr(u,S) = ∑
S′ :S⊂S′⊆F

(−1)(|S
′ |−|S|)min(wr(u,s′1),wr(u,s′2), . . .),s

′
i ∈ S′

Then, these register counts, wr(u,S), are weighted by
their sequential observability seqobs((u,S),n). The sum of
such quantities over all possible subsets of Fu, gives us the
correct total observability of registers driven by u, assum-
ing maximal sharing. Maximal sharing is desired because a
shared register always has observability less than or equal to
that of its cloned registers combined.

totobs(u) = ∑
S:S⊆Fu

wr(u,S)∗ seqobs((u,S),n) (1)

The function totobs(u) has to be linearized in order to
be incorporated into the LP. This requires linearizing the
min function—the only non-linear element of the totobs
function. Generally, the function min(a1,a2, . . .an), for any
real values ai can be linearized by introducing a new vari-
able MIN, along with the constraints MIN ≤ a1,MIN ≤
a2, . . .MIN ≤ an. Then, the objective function has to maxi-
mize the value of MIN as LP converges to a solution so that
MIN = min(a1,a2 . . .an).

We introduce a variable MINu,S for each function
min(wr(u,s1),wr(u,s2),wr(u,s3) . . .) in totobs(u,Fu). The
associated constraints are of the form MINu,S ≤ wr(u,s1),
MINu,S ≤ wr(u,s2), etc. Finally, we append −c(MINu,S) to
the end of the objective function for each variable MINu,S
introduced. Here, c is any sufficiently large constant, i.e.,
∀S,c >> ∑seqobs((u,S),n). Since the retiming linear pro-
gram has a minimization objective, the additional terms en-
sure that the MINu,S variables are set to their highest (cor-
rect value) when the objective is optimized. The remaining
retiming variables will be optimized for low observability
as before. This altered LP, incorporating register sharing, is
given in Figure 7.

Minimize
∑(u)∈V totobs(u)− (c∑S⊂Fu MINu,S)

subject to
∀u ∈ V,S ∈ Fu,∀(si ∈ S)Minu,S ≤ wr(u,s1)
∀(u,v) ∈ E,r(u)− r(v)≤ w(u,v)

Figure 7: Minimum-observability retiming formulation with
register sharing.

While the formulation in Figure 7 correctly captures
register sharing, it can become intractable for nodes with
many fanouts. By recollecting the coefficients next to the
MIN variables, we can write the totobs function as follows:

totobs(u) = ∑S⊆Fu
Cu,SMin(u,S),

Cu,S = ∑S′:S′⊂S⊆Fu
(−1)|S|−|S′|seqobs(u,S′,n)

From this formulation, it is clear that the number of ad-
ditional terms generated in the objective function for each
node u is on the order of 2|Fu|. However, many practical cir-
cuits have low maximum fanout, due to drive-strength limi-
tations of available standard cells.

5 Empirical Validation
We now describe experiments to validate our proposed re-
timing formulation. Our signature and observability compu-
tations are implemented in C++, while the linear programs
are solved using CPLEX v.10.1 [9]. Note that an integer
optimal solution is guaranteed without explicitly enforcing
integer constraints [10].

Figure 8 summarizes the propagation of errors through
sequential circuits, as estimated by bit-parallel functional
simulation [11] extended to sequential circuits. The figure
indicates that most errors are apparent at the outputs in im-
mediate cycles after their occurrence. The error probability
in later cycles diminishes rapidly. Therefore, we compute
sequential observability from a ten-frame expansion of the
circuit.

Table 1 shows results on ISCAS-89 benchmark circuits
with the minimum-observability retiming formulation where
each edge (u,v) is weighted by a 10-frame sequential ob-
servability measure. We use the formulation shown in Fig-

5

Figure 8: Error propagation in sequential circuits through
multiple cycles of operation.

Before After Change
No. Total No. Total % Area % Obs.

Circuit FFs Obs FFs Obs Inc. Dec.
s208 8 9.570 10 9.173 1.785 4.147
s298 14 15.579 34 5.059 15.037 67.527
s344 15 12.770 11 8.539 -2.29 33.126
s386 6 4.206 4 3.8256 -1.121 9.035
s444 21 14.752 34 4.146 6.435 71.895
s526 21 15.906 94 3.567 34.112 77.568
s832 5 25.311 30 2.669 8.561 89.3365
s1238 18 2.848 27 2.147 1.711 24.631
s1196 18 2.911 29 2.115 2.010 27.373
s1494 6 5.746 7 3.248 0.153 43.47
s1488 6 5.744 8 3.8256 0.303 42.787
s1423 73 25.273 115 20.115 5.753 20.110
Avg. 6.53 42.61

Table 1: Decrease in register observability through retiming.
No. Scan Testability

Circuit Gates Before After % Improved
s208 104 0.494 0.499 1.03
s298 119 0.523 0.699 33.72
s386 159 0.360 0.389 7.77
s444 181 0.474 0.689 45.42
s526 193 0.445 0.614 37.75
s832 287 0.222 0.368 65.28

s1238 508 0.300 0.317 5.78
s1196 529 0.302 0.321 6.45
s1494 647 0.269 0.413 53.69
s1488 653 0.267 0.410 53.57
s1423 657 0.424 0.552 30.08
Avg. 30.96

Table 2: Improvements in random-pattern scan-testability.

ure 5. The LP was solved in all cases in less than 0.1 sec-
onds by CPLEX . The observability, which is proportional
to the SER susceptibility is decreased by an average of 42%
with only a 7% overall area increase. Table 2 shows an av-
erage improvement of 31% in the random-pattern testability
of nodes in the combinational portion of the circuit. Our re-
sults indicate an interesting feature of error tolerance—that
it is possible to decrease the overall sequential SER while
increasing what is traditionally computed as the SER of a
combinational logic circuit, i.e., with registers treated as pri-
mary outputs [12, 11]. Therefore, it is insufficient to solely
consider combinational behavior for SER analysis. While
combinational circuit optimization for SER remains impor-
tant and generally decreases overall circuit SER, it is nec-
essary to account for error propagation behavior at the se-
quential level. For instance, combinational circuits can be
designed such that they reduce error propagation to registers
with high observability.

6 Conclusions
We have developed a novel retiming approach to improve
both the soft-error tolerance and testability of sequential
circuits. The proposed techniques exploit certain relation-
ships between observability, testability and SER, and incor-
porate them into linear programs for retiming optimization.
We also extended these programs to handle area constraints
and fanout sharing. Area-unconstrained minimization was
shown to reduce the average error susceptibility of registers
by 40%, and improve testability by 31% on average.

Acknowledgment. This work was sponsored in part by
the Air Force Research Laboratory under Agreement No.
FA8750-05-1-0282.

References

[1] S. Almukhaizim, Y. Makris, et al., “Seamless Integration
of SER in Rewiring-based Design Space Exploration,” ITC,
2006, pp. 1-9.

[2] S. Borkar, et al., “Parameter Variations and Impact on Circuits
and Microarchitecture,”DAC, 2003, pp. 328-342.

[3] T. Calin, M. Nicolaidis, R. Velaco, “Upset Hardened Mem-
ory Design for Submicron CMOS Technology,” IEEE Trans.
Nucl. Sci., Dec. 1996, vol. 43, pp. 2874-2878.

[4] D. K. Das, B.B. Bhattacharya, ”Does Retiming Affect Redun-
dancy in Sequential Circuits?,” VLSID, 1996, pp. 260-263.

[5] S. Dey, S.T. Chakradhar,”Retiming Sequential Circuits to En-
hance Testability,” VTS, 1994, 25-28.

[6] J. P. Hayes, I. Polian, B. Becker, “An Analysis Framework for
Transient-Error Tolerance,” VTS, 2007, pp. 249-255.

[7] G.D. Hachtel, E. Macii, A. Pardo, F. Somenzi, “Markovian
Analysis of Large Finite State Machines,” TCAD, Dec. 1996,
vol. 15, no. 12, pp. 1479-1493.

[8] D. F. Heidel et al., “Alpha-particle Induced Upsets in Ad-
vanced CMOS Circuits and Technology,” IBM Journal of Re-
search and Dev., May 2008, vol. 52, no. 3, pp. 225-232.

[9] ILOG CPLEX: http://www.ilog.com/products/cplex
[10] C.E. Leiserson, J.B. Saxe,“Retiming Synchronous Circuitry,”

Algorithmica, 1991, vol. 6,pp. 5-35.
[11] S. Krishnaswamy, S. M. Plaza, I. L. Markov, J.P. Hayes, “En-

hancing Design Robustness with Reliability-aware Resynthe-
sis and Logic Simulation,” ICCAD, 2007, pp. 149-154.

[12] N. Miskov-Zivanov, D. Marculescu, “MARS-C: Modeling
and Reduction of Soft Errors in Combinational Circuits,”
DAC, 2006, pp.767-772.

[13] N. Miskov-Zivanov, D. Marculescu, ”Modeling and Opti-
mization for Soft-Error Reliability of Sequential Circuits,”
IEEE TCAD, 2008, vol 27. no.5 pp. 803-816.

[14] M. N. Mneimneh, K. A. Sakallah, “Principles of Sequential-
Equivalence Verification,” IEEE DT, 2005, vol. 22, no. 3, pp.
248-257.

[15] K. Mohanram, N. A. Touba, “Partial Error Masking to Reduce
Soft Error Failure Rate in Logic Circuits,” DFT, 2003, pp.
433-440.

[16] M. Nicolaidis,“Time Redundancy Based Soft-Error Tolerance
to Rescue Nanometer Technologies,” VTS, 1999, pp. 86-94.

[17] S. Plaza, K-H. Chang, I. Markov, V. Bertacco,“Node Mergers
in the Presence of Don’t Cares” ASPDAC, 2007, pp. 414-419.

[18] K. Rodbell, D. F. Heidel, et al., ”Low-Energy Proton-Induced
Single-Event-Upsets in 65 nm Node, Silicon-on-Insulator,
Latches and Memory Cells,” IEEE trans. on Nuclear Science,
vol. 54, no. 6, Dec. 2007, pp. 2474-2479.

[19] P. Shivakumar, M. Kistler, et al., “Modeling the Effect of
Technology Trends on Soft Error Rate of Combinational
Logic” DSN 2002, pp. 389-398.

[20] H. Yotsuyanagi, S. Kajihara, K. Kinoshita, ”Synthesis for
Testability by Sequential Redundancy Removal using Retim-
ing,” Fault-Tolerant Computing, 1995, pp. 33-40.

[21] M. Zhang, S. Mitra, et al.,”Sequential Element Design with
Built-in Soft Error-Resilience” TVLSI, Dec. 2006, vol. 14,
no.12, pp. 1368-1378.

6

