
Faster Symmetry Discovery using Sparsity of Symmetries

Paul T. Darga, Karem A. Sakallah, and Igor L. Markov
Electrical Engineering and Computer Science Department

The University of Michigan
{pdarga,karem,imarkov}@eecs.umich.edu

ABSTRACT
Many computational tools have recently begun to benefit
from the use of the symmetry inherent in the tasks they
solve, and use general-purpose graph symmetry tools to un-
cover this symmetry. However, existing tools suffer quadratic
runtime in the number of symmetries explicitly returned and
are of limited use on very large, sparse, symmetric graphs.
This paper introduces a new symmetry-discovery algorithm
which exploits the sparsity present not only in the input but
also the output, i.e., the symmetries themselves. By avoid-
ing quadratic runtime on large graphs, it improves state-of-
the-art runtimes from several days to less than a second.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph algorithms

General Terms
Algorithms, Verification.

Keywords
Symmetry, sparsity, graph automorphism, partition refine-
ment, constraint satisfaction problems, Boolean satisfiabil-
ity, model checking.

1. INTRODUCTION
Many application domains, within the electronic design

automation community and beyond, have recently begun
to exploit the symmetry inherent in their inputs. Boolean
satisfiability and general constraint solvers convert the sym-
metries present in their inputs into additional predicates or
constraints that assist solvers in avoiding symmetric, and
hence redundant, portions of their search space [2, 11, 14].
Model checkers use the symmetries of a system to reduce
the size of state space that must be explored [12]. The func-
tional symmetries of a Boolean function can be utilized at
numerous stages of logic synthesis and optimization, includ-
ing technology mapping [4] and postplacement rewiring [5].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

One popular means of discovering the symmetries of a sys-
tem is to first convert the system into a graph, and employ
a general-purpose graph symmetry tool to uncover the sym-
metries [3]. These symmetries can then be reflected back
into the original system domain. The oldest and most es-
tablished graph symmetry program is McKay’s nauty [10].
However, nauty does not scale well with the number of ver-
tices in a graph. Graphs from domains such as microproces-
sor verification CNF formulas tend to have many vertices,
but are also very sparse: the average number of neighbors of
a vertex tends to be a small constant. Darga et al. [7], with
their program saucy, showed that nauty ’s performance could
be improved considerably on such graphs by exploiting that
sparsity. Junttila and Kaski [9] made several additional im-
provements in sparse graph symmetry discovery with their
program bliss.

This paper introduces a new algorithm for symmetry dis-
covery which outperforms nauty, saucy, and bliss by many
orders of magnitude on large, sparse graphs. The core in-
sight that inspired our work is that symmetry discovery al-
gorithms can exploit sparsity not only in the input graph,
but also in the symmetries themselves. Many of the sym-
metries discovered in sparse graphs are themselves sparse,
only rearranging a small number of vertices. The runtime
of our algorithm scales in proportion to the total number of
rearranged vertices among all the symmetries it finds, rather
than roughly quadratic in the number of symmetries, as ob-
served with several existing tools.

The rest of the paper is organized as follows. In Section 2,
we describe our complete algorithm. In Section 3, we com-
pare our algorithm to those of nauty, saucy, and bliss. In
Section 4, we report experimental results on a representative
sample of very large and sparse graphs. Finally, we conclude
in Section 5.

2. THE ALGORITHM
First, a few preliminary definitions and concepts. A graph

G is an ordered pair (V, E) with vertex set V and edge set
E, where each edge is a set of two distinct elements of V .
A symmetry γ is a permutation of V such that Gγ = G,
or equivalently, that Eγ = E, since V γ = V by definition.
A permutation γ respects a partition π of V if, for each
v ∈ V , v and vγ are in the same cell of π. The set of all sym-
metries of a graph G which respect a partition π is called
the automorphism group of G under π and is denoted
Aut(G)π.

A graph with n vertices may have as few as one symmetry
(the identity, denoted ι), and as many as n! symmetries.

However, this potentially exponential set of symmetries can
be concisely represented by a subset with at most n − 1
symmetries. This small set generates the large set via every
possible composition of its elements. The goal of symmetry
discovery, then, is to find such a set for Aut(G)π.

2.1 Refinement
The first step in symmetry discovery is to distinguish, as

much as possible, vertices which are not symmetric. This
is achieved using vertex invariants: properties of vertices
which are invariant under symmetry. There are many such
properties, and they vary widely in their distinguishing abil-
ity and in their computational overhead.

A simple invariant is that of vertex degree: two vertices
cannot be symmetric if they have different numbers of neigh-
bors. Therefore, we can refine, or further subdivide, a par-
tition π by partitioning each cell S of π based on the de-
grees of the vertices contained in S. Consider the five-vertex
chain graph: 1 — 2 — 3 — 4 — 5, with an initial partition
π = {{1, 2, 3, 4, 5}}. Refining π using the degree invariant
yields a new partition {{1, 5}, {2, 3, 4}}. Note that we are
using partitions to keep track of which vertices are definitely
not symmetric.

The degree invariant has pruned the space of permutations
we must explore, but still more vertices can be distinguished.
The vertex in the middle of the chain, vertex 3, clearly is
not symmetric to any other vertex in the graph, despite
having the same degree as vertices 2 and 4. This intuition
is captured by a slightly more sophisticated invariant: the
connection function c. Given a vertex v and an invariant
set S of vertices, c(v, S) is the number of elements of S which
are neighbors of v.

The set S used in the connection function must be invari-
ant; that is, Sγ = S for every γ ∈ Aut(G)π. This condition
is trivially satisfied by the cells of π. We can therefore se-
lect some cell S of π and compute c(v, S) for every v, and
then further partition the cells of π based on those values.
This refinement of π into a finer partition π′ does not prune
away any symmetries; every symmetry which respects π also
respects π′. Therefore, Aut(G)π = Aut(G)π′ , and we can
use the cells of π′ to further refine itself. The process iter-
ates until no further refinement is possible; we call such a
partition equitable.

Consider again our chain graph example. The first ap-
plication of the connection invariant yields the partition
{{1, 5}, {2, 3, 4}}. Since a cell was split, we try to refine this
partition further using the newly split cells. Using {1, 5} to
refine {2, 3, 4}, we find that vertices 2 and 4 each have one
connection to the cell while vertex 3 has no such connec-
tions. We therefore distinguish vertex 3. No other refine-
ment is possible in this case; the final result of our vertex
refinement is then {{1, 5}, {2, 4}, {3}}.

The formal algorithm for partition refinement is based on
work by Hopcroft [1], and is discussed in detail in several
sources [7, 10, 13]. The computational core of the algorithm
is the use of one cell of the partition, called the inducing
cell, to attempt to split every other cell. The innovation
of saucy [7] is to use sparse data structures for the graph
and intermediate refinement state. The algorithm described
in [7] can be optimized further: rather than attempt to split
all cells of the partition, only try to split those which are ac-
tually connected to the inducing cell. The bookkeeping re-
quired for this optimization is minimal and the performance

gains are substantial on sparse graphs.
This work introduces a further refinement optimization,

again targeted at sparse graphs. Let S be the inducing cell.
Refinement in [7] works by first computing k(v, S), the num-
ber of connections every vertex v in the graph has to S.
Then, for each cell T of the partition with at least one ver-
tex connected to S, T is partitioned based on the values of
k. This partitioning of T is accomplished by count sorting.
The present innovation is to avoid doing O(|T |) work in the
case of almost all elements of T having no connections to
S, which is frequently the case in very sparse graphs. This
is done by pre-sorting: as our algorithm discovers that ele-
ments of T are connected to S, it moves them to one end
of the representation of T , so that when it count-sorts T ,
it only needs to sort those elements which have nonzero k.
This optimization alone accounts for over one-hundredfold
speedups on some benchmarks.

2.2 Problem Decomposition
Suppose we refine a vertex partition π, and the resulting

partition π′ is discrete—that is, every vertex is in its own
cell. Only one permutation respects such a π′, namely ι, the
identity permutation. The identity is trivially a symmetry
of the graph. In this case we are done: Aut(G)π = {ι}, and
no generators are returned.

If π′ is not discrete, then there is at least one cell in π′

with more than one element. Let T be such a cell; we denote
it the target cell. Suppose T = {v1, . . . , vj}. We know that
for any symmetry γ of G which respects π′, vγ

1 = v for some
v ∈ T . The contrapositive is perhaps more telling: for all
symmetries γ, vγ

1 6= v for all v /∈ T . Therefore, the image
of v1 is an equivalence relation on Aut(G)π′ , that induces
a partition of Aut(G)π′ into j subsets of symmetries. Note
that some of these subsets may be empty: despite the best
efforts of vertex partition refinement, some elements in the
same cell of π′ may not actually be symmetric under π′.

Consider first the subset of permutations γ such that vγ
1 =

v1; that is, the permutations which map v1 onto itself. We
can express this subset with vertex partitions: let bπ = π′,
except with T replaced with {v1} and T − {v1}. We say
that bπ is formed from π by distinguishing v1. We have
thus created a subproblem of our original problem: to find
generators for Aut(G)π, we first find generators for Aut(G)bπ.
The recursion terminates when the partition finally becomes
discrete. After computing Aut(G)bπ, we then search for ad-
ditional symmetries respecting π that map v1 onto each of
the other elements of T .

In fact, we only need to search for a single symmetry, for
each v ∈ T − {v1}, that maps v1 onto v. This restriction
of the search to only single representatives is necessary for
producing a polynomially-bounded number of generators;
further pruning discussed in Section 2.4 brings the bound
down to linear. The justification for this restriction requires
a modest foray into group theory. The set of symmetries
Aut(G)π is actually a group: a set closed under an associa-
tive binary operation (composition), that also contains an
identity element (ι) and the inverse of every element. The
group Aut(G)bπ found in the subproblem discussed above is
a subgroup of Aut(G)π. A subgroup B of a group A gives
rise to a natural partition of A into equally-sized cosets. An
elementary theorem of group theory states that the entirety
of each coset of B can be generated by composing a single
representative of each coset with the elements of B.

Consider again our chain graph example, with partition
π′ = {{1, 5}, {2, 4}, {3}}. Suppose we select T = {1, 5}
as the target cell, and select vertex 1 as our v1. Then we
form a new partition bπ = {{1}, {3}, {5}, {2, 4}} and find the
generators of the graph under bπ. Refining bπ yields a discrete
partition, because, for example, vertex 2 has one connection
to the cell {1}, while vertex 4 has none. Since bπ is discrete,
Aut(G)bπ is simply the identity. We are left with the search
for a symmetry γ which respects π′ such that 1γ = 5.

2.3 Search
Suppose we have a target cell T = {v1, v2, . . .}, and we are

seeking a representative of the coset containing symmetries
γ such that vγ

1 = v2. This coset may not exist; that is, there
may be no such γ, in which case we must prove that no
such γ exists. To this end, we employ a backtracking search
over partial permutations, much in the style of a SAT solver
searching over partial variable assignments.

A partial permutation ρ is an isomorphism between
two partitions of vertices. Let π1 and π2 be isomorphic
vertex partitions, such that πρ

1 = π2. We denote ρ as partial
because its induced mapping on vertices may not be well
defined. Let S1 ∈ π1 and S2 ∈ π2 such that Sρ

1 = S2. If
S1 = {v1} and S2 = {v2}, then the induced vertex mapping
is explicit: vρ

1 = v2. If S1 and S2 are nonsingletons, however,
the induced mapping is not necessarily defined; each v1 ∈
S1 could possibly map to any v2 ∈ S2, and thus further
decisions must be made in the search. A partial permutation
therefore implicitly represents a set of permutations.

Again, suppose we have an equitable partition π, with
some target cell T = {v1, v2, . . .} selected, and we are seeking
a γ such that vγ

1 = v2. We construct a partial permutation
ρ by creating two new partitions: π1, with v1 distinguished
from the rest of T , and π2, with v2 distinguished from the
rest of T . Finally, we define ρ such that {v1} within π1 maps
to {v2} within π2, T − {v1} within π1 maps to T − {v2}
within π2, and all the other cells of π1 are mapped to their
equivalent cell within π2.

Just as a SAT solver propagates Boolean constraints im-
posed by assignments made to variables, a partial permuta-
tion becomes more completely specified through propagation
of the constraints imposed by mappings assigned to vertices,
such as the mapping of v1 to v2 above. In symmetry discov-
ery, this propagation is performed by partition refinement,
as discussed in Section 2.1. Both π1 and π2 above are can-
didates for refinement, since by splitting the target cell in
each they are no longer necessarily equitable. We refine
them simultaneously, so that every time cells within them
are divided, we update the isomorphism ρ. Cells S1 ∈ π1

and S2 ∈ π2 divide isomorphically if, given corresponding
inducing cells T1 and T2, S1 has the same number of vertices
with no connections to elements in T1 as S2 has vertices with
no connections to T2, and so on for each possible number of
connections.

Consider again our chain graph example, which we left
with π = {{1, 5}, {2, 4}, {3}} and the need to search for
some γ such that 1γ = 5. We form a pair of vertex partitions
derived from π and prepare an isomorphism between them.
We can represent this isomorphism as an ordering imposed
on the cells of π1 and π2.

π1 = ({1}, {5}, {2, 4}, {3})
π2 = ({5}, {1}, {2, 4}, {3})

These partitions are not equitable, and so we perform refine-
ment on them simultaneously. In the case of π1, we divide
{2, 4} based on its connections to {1}. Thus, in the case of
π2, we perform an isomorphic division of {2, 4} using {1}ρ,
or {5}.

π1 = ({1}, {5}, {4}, {2}, {3})
π2 = ({5}, {1}, {2}, {4}, {3})

Note that {2} and {4} are ordered differently in π1 and π2:
in the case of π1, vertex 4 has no connections to the inducing
cell {1}, while in π2, it is vertex 2 that has no connections
to the corresponding incuding cell {5}.

After refinement completes, we examine the isomorphism
ρ. There are a number of cases to consider. First, it may be
the case that, during refinement, some cell in π1 does not
divide isomorphically to its corresponding cell in π2. In this
case ρ is no longer well defined, and thus it cannot induce a
vertex symmetry and we must backtrack.

Suppose ρ is still well defined, and S1 = S2 for each non-
singleton S1 ∈ π1 and S2 ∈ π2 where Sρ

1 = S2. That is, π1

and π2 only differ in their singletons. In this case, ρ induces
a well defined permutation γ of vertices: vγ

1 = v2 whenever
{v1}ρ = {v2}, and vγ = v otherwise. We can then check if
Gγ = G; if so, we have found a symmetry and can thus ter-
minate the search. If not, again we must backtrack. In the
case of our example, both π1 and π2 are discrete, and thus ρ
induces the vertex permutation (1, 5)(2, 4), which turns out
to be a symmetry of the chain graph.

Otherwise, π1 and π2 differ in at least one pair of corre-
sponding nonsingletons, and thus we need to make another
mapping decision. We select some nonsingleton cell T1 ∈ π1,
and hence also select T ρ

1 = T2 in π2, which we again denote
as target cells. We also select a single vertex v1 ∈ T1. By
construction, any symmetry must map v1 to some element of
T2. Thus, the size of the target cells is the branching factor
at each point in the decision tree. We select some element
v2 ∈ T2, construct the candidate mapping {v1}ρ = {v2},
and propagate as before.

When we backtrack to a decision point, we simply find
some candidate mapping that we had not yet considered,
and continue. If we have exhausted all of the candidate
mappings, we backtrack again. If we backtrack from the
root of our search tree, then our search ends without finding
a symmetry.

2.4 Pruning
There is an additional way of eliminating redundancy in

symmetry discovery: so-called orbit pruning. The following
results are stated for completeness and without proof, since
the mechanisms employed by our algorithm are essentially
unchanged from nauty ; see [10] for a thorough discussion.

The orbit partition θ(Γ) of a permutation group Γ is a
partition of the ground set of Γ such that, if x and y are
in the same cell of θ(Γ), then there exists some γ ∈ Γ such
that xγ = y. For instance, the orbit partition of the group
of symmetries of our example chain graph is

θ({ι, (1, 5)(2, 4)}) = {{1, 5}, {2, 4}, {3}}

Orbit pruning can be employed within the subproblem
decomposition as discussed in Section 2.2. Let π be a ver-
tex partition with some nonsingleton cell T = {v1, v2, . . .}
chosen as the target cell. Suppose we form bπ by distinguish-
ing v1, and that we have already computed Aut(G)bπ. We

1

2 3

4 5

6 7

(a) The graph analyzed for symmetry

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

(b) Problem decomposition. Parti-
tions are represented as colorings; el-
ements in the same cell of the par-
tition are given the same color, and
are grouped together. Target cells
are denoted by bold boxes surround-
ing a color. Partitions with a tar-
get cell are equitable. Shaded arrows
represent partitions formed by distin-
guishing some element in a target cell.
Open arrows represent refinements of
non-equitable partitions. The initial
partition is unit; the final partition is
discrete, and represents the identity
symmetry.

1 2 3 4 5 6 7
1 2 3 4 6 5 7

1 2 3 4 5 6 7

(c) First subproblem: consider sym-
metries γ such that 5γ = 6. Consid-
ering this partial permutation yields
the isomorphic partition pair above,
and corresponds to the complete per-
mutation (5, 6), which is a symmetry
of the graph.

1 2 3 4 5 6 7
1 2 3 5 4 6 7

1 2 3 4 5 6 7
1 2 3 5 4 7 6

1 2 3 4 5 6 7
1 2 3 5 4 7 6

1 2 3 4 5 6 7

(d) Second subproblem: finding rep-
resentatives of the cosets of the sym-
metry group found in part (c). These
cosets are found by considering map-
pings γ such that 4γ = x for x ∈
{5, 6, 7}. We first consider 4γ =
5, which yields the equitable parti-
tion pair above (with a boxed target
cell pair). Since there exists a non-
singleton cell pair with unequal sets
of elements, we must select a target
cell, distinguish elements, and proceed
with refinement. This yields the dis-
crete partition pair corresponding to
the complete permutation (4, 5)(6, 7),
which again is a symmetry. Orbit
pruning eliminates the need to look for
representatives of the other two cosets
(4γ = 6 and 4γ = 7).

1 2 3 4 5 6 7
1 3 2 4 5 6 7

1 2 3 4 5 6 7

(d) Third subproblem: find γ such
that 2γ = 3 given the constraints of
the top partition above. The par-
tial permutation yielded by the par-
tition pair is completely defined, be-
cause the partitions in the pair differ
only in their singleton cells. There-
fore, we need not continue to select
target cells and refine partitions. In-
stead, we simply verify that (2, 3) is
in fact a symmetry of the graph. This
is the most fundamental improvement
described in this work.

1 2 3 4 5 6 7
2 1 3 4 5 6 7

1 2 3 4 5 6 7
2 1 3 4 5 6 7

1 2 3 4 5 6 7
2 1 3 4 5 6 7

1 2 3 4 5 6 7

(e) Fourth subproblem, part 1: we
first consider finding a representative
of the coset where 1γ = 2 for some
γ. Refining the partition pair yields
an equitable partition with a nons-
ingleton cell pair with different ele-
ments. Therefore, we proceed with se-
lecting a target cell, distinguishing ele-
ments, and again refining. This yields
a partition pair where, again, the only
differences between the partitions are
among their singleton cells. We imme-
diately determine that (1, 2) is a sym-
metry. The 1γ = 3 coset is pruned by
orbit pruning.

1 2 3 4 5 6 7
4 1 2 3 5 6 7

1 2 3 4 5 6 7
4 5 6 7 1 2 3

1 2 3 4 5 6 7

(e) Fourth subproblem, part 2: next,
we consider the potential 1γ = 4 coset.
Here, refinement fails: the partitions
in the pair diverge. This indicates
that our candidate mapping was in-
correct, and we backtrack, in this case
back to the root, and thus no sym-
metries exist which map 1 to 4. We
avoid attempting to map 1 to 5, 6, or
7, again by orbit pruning.

Figure 1: A complete example of symmetry discovery.

now consider searching for a representative γ of the coset
of Aut(G)bπ where vγ

1 = v for all v ∈ T − {v1}. As we find
symmetries among these cosets, we update our orbit parti-
tion θ accordingly. When we consider a particular mapping
vγ
1 = vk, if v1 and vk are already in the same cell of θ, then

it is not necessary to find such a γ, since we can already
generate the entire coset.

The backtracking search for a symmetry can also use orbit
pruning. However, it cannot use the running computation
of θ, since there may be symmetries discovered earlier which
do not respect the vertex partitions at a particular deci-
sion point. Therefore, a cache of found generators is kept,
and when considering a candidate mapping, the orbit parti-
tion of those generators which respect the vertex partitions
is constructed, and consulted as above. This work is only
performed during backtracking, so that the common case of
finding a symmetry without resorting to backtracking is not
adversely affected.

3. COMPARISON TO PREVIOUS WORK
A key innovation in our work is the realization that sym-

metry discovery algorithms can be adapted to exploit spar-
sity not only in their input, graphs, but also in their output,
the symmetries themselves. That is, if we presume that most
symmetries leave the vast majority of the vertices fixed, we
can squeeze more performance out of symmetry discovery.

The improvements proposed in our work are best seen in
comparison to previously published algorithms for symmetry
discovery. The search tree used by saucy was first described
by McKay [10]; see the bliss paper [9] for an excellent expo-
sition on the details.

A common attribute of nauty, saucy, and bliss is that
symmetries are only discovered at leaf nodes of the search
tree, where every path to a leaf node is as long as the orig-
inal problem decomposition. In practice, this means that,
after decomposition, the tools emit symmetries in rapid suc-
cession, but then appear to slow down, until the last few
symmetries come out at a trickle for very large graphs. We
modified saucy to explicitly check for the condition that all
the differences between partitions existed only in the sin-
gletons, and short-circuited paths to leaf nodes when the
condition held. Since the condition often becomes true very
quickly on graphs with sparse symmetries, the number of
nodes in the search tree essentially dropped from quadratic
to linear with this change. This improvement alone reduced
the time for symmetry discovery on some 100k-vertex CNF-
derived graphs from a few days down to under a second.

The next step was to explicitly keep track of the vertices
in the support of the permutations built by saucy. This
made the short-circuit condition trivial to check, and also
made the Gγ = G predicate much faster to check for sparse
permutations.

Another property of the search trees built by nauty, saucy,
and bliss is that the target cell chosen at each node must be
the same across each level of the tree. This constraint caused
some graphs to take much longer than expected, because the
cells with unresolved vertices would remain untouched while
the target cells for many consecutive levels would be refined,
uselessly, since they were equivalent anyway. This led to the
elimination of the so-called distinguished leftmost decom-
position, fundamental to those algorithms, and yielded the
algorithm presented in Sections 2.2 and 2.3.

4. EXPERIMENTAL RESULTS
In order to evaluate our symmetry discovery approach, we

compare it to saucy, nauty, and bliss on a variety of large,
sparse graphs. Table 1 contains the results of our experi-
ments. The pipe and bug graphs are constructed from CNF
formulas representing pipelined microprocessor verification
problems. The adaptec and bigblue graphs are derived from
circuits used in the ISPD 2005 placement competition. The
other graphs are simply very large graphs arising in other
domains: internet represents the interconnections of major
routers on the internet [6, 8], and DE, ME, LA, IL, and CA
represent each state’s road network [15].

For each graph, we report the number of its vertices and
edges, and the size of its automorphism group. We also
report the number of generators, and the average number of
vertices in the support of (not fixed by) each generator. This
number of generators is the number found by our algorithm;
the other tools may have different numbers, since any given
group of symmetries may have many different generating
sets. However, the numbers are often the same, or otherwise
only very slightly different, and so we omit similar values for
the other tools.

Next, we report the number of partition refinements exe-
cuted by our algorithm. We count each step in the problem
decomposition as one refinement, and each decision point in
each search for a symmetry as two refinements, since two
partitions are refined side-by-side. We also report the time
our algorithm takes to produce a complete set of generators.

Finally, we compare our algorithm to saucy, nauty, and
bliss. We report the number of refinements performed by
saucy only, again because the number is very similar among
the three tools. We used saucy-0.5.2, nauty-2.4b7, and bliss-
0.35 for the experiments. Note that nauty-2.4 includes a
sparse graph representation option, which we used in our
experiments.

All experiments were performed on a 2 GHz Core 2 Duo
processor, with 1.5 GB memory and 4 MB cache, running a
stock Fedora 7 desktop session. The tools were all compiled
with gcc-4.1.2 with the -O3 optimization flag.

All of the tools scale roughly linearly with the number of
refinements performed during an execution. In the case of
our algorithm, for most of the benchmarks this number is
approximately equal to the total support of all generators
found. Our algorithm thus scales well with sparse symme-
tries as well as sparse graphs. For the other tools, however,
the number of refinements is quadratic in the number of
generators. As mentioned in Section 3, this is due to the
fact that symmetries are only discovered at the leaf nodes of
the trees traversed by these tools. Our algorithm can find
symmetries without such lengthy and costly traversals.

The bug benchmarks cause the symmetry discovery tools
to perform a small number of refinements, but each refine-
ment is potentially very expensive due to the number of ver-
tices in these graphs. Here, our algorithm benefits from the
refinement sparsity improvements discussed in Section 2.1,
resulting in a considerable runtime improvement over the
other tools.

We share the lament of the authors of [11]: we regret being
unable to compare our algorithm with Puget’s autom [14],
the latter being undocumented and not publicly available.
However, extrapolating on the numbers reported in [14], we
believe our algorithm outperforms autom.

Benchmark Our Algorithm saucy [7] nauty [10] bliss [9]
Name Vertices Edges |Aut(G)| Gens Supp/Gen Refs Time Refs Time Time Time

2pipe 3575 14625 1045 38 97.00 149 0.00 2415 0.01 0.02 0.02
3pipe 10048 58556 10136 84 131.31 333 0.01 13041 0.06 0.27 0.07
4pipe 21547 167942 10289 152 161.04 605 0.03 43071 0.28 1.59 0.23
5pipe 38746 403799 10507 239 189.36 953 0.08 108345 0.83 6.74 0.63
6pipe 65839 812525 10796 346 223.34 1381 0.15 229503 2.22 23.87 1.38
7pipe 100668 1498971 101158 473 252.01 1889 0.29 431985 4.80 67.67 2.84
DE 51016 62087 10578 1776 2.33 3789 0.02 1633827 3.51 515.04 27.63
ME 225114 246760 103217 9964 2.20 21011 0.12 51722042 194.92 time time
LA 436535 524556 104302 12852 2.25 27211 0.21 85419592 528.39 time time
IL 819138 1030719 104843 14999 2.24 31347 0.43 114958085 958.80 time time
CA 1679418 2073394 1014376 44439 2.28 93133 0.84 n/a time time time
internet 284805 428624 1083687 108743 2.28 374555 0.41 n/a time time time
adaptec1 393964 919247 107350 15683 2.28 42879 0.35 123724315 966.48 time time
adaptec2 471054 1052742 1010155 21788 2.22 59459 0.47 n/a time time time
adaptec3 800506 1846242 1015450 36289 2.16 95653 0.93 n/a time time time
adaptec4 878800 1880109 1024443 53857 2.26 138797 0.99 n/a time time time
bigblue1 508357 1127120 1011156 22110 2.36 61095 0.49 n/a time time time
bigblue2 1000790 2104613 1018385 37031 2.27 104495 1.09 n/a time time time
bigblue3 1876918 3812614 1052859 98567 2.13 283351 2.34 n/a time time time
bigblue4 3822980 8731076 10119182 215132 2.22 620879 5.36 n/a time time time
bug1 5706455 31011605 4 2 3704.00 5 4.87 6 501.53 1200.84 mem
bug2 5706326 31011322 4 2 3704.00 5 4.78 6 528.21 1197.79 mem

Table 1: Experimental results. All times are in seconds, with a time limit of 30 minutes and a memory limit of 1 GB.
Gens: number of generators found by our algorithm. Supp/Gen: average support of each generator. Refs: number of partition
refinements performed.

5. CONCLUSION
We have presented a new algorithm for symmetry discov-

ery in sparse graphs, utilizing the sparsity of the symmetries
themselves as they are discovered. This algorithm outper-
forms existing tools by many orders of magnitude, in some
cases improving runtime from several days to a fraction of a
second.

Future work will study the effects of different heuristics for
target cell selection and within the search decision engine,
and the feasibility of adapting our algorithm to the canonical
labeling of graphs.

6. REFERENCES
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The

Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] F. A. Aloul, I. L. Markov, and K. A. Sakallah.
Shatter: Efficient symmetry breaking for boolean
satisfiability. In Design Automation Conference, pages
836–839, 2003.

[3] F. A. Aloul, A. Ramani, I. L. Markov, and K. A.
Sakallah. Solving difficult instances of boolean
satisfiability in the presence of symmetry. Transactions
on Computer Aided Design, 22(9):1117–1137, 2003.

[4] D. Chai and A. Kuehlmann. Building a better boolean
matcher and symmetry detector. In Design and Test
in Europe, 2006.

[5] K.-H. Chang, I. L. Markov, and V. Bertacco.
Postplacement rewiring by exhaustive search for
functional symmetries. ACM Transactions on Design
Automation of Electronic Systems, 12(3):Article 32,
August 2007.

[6] B. Cheswick, H. Burch, and S. Branigan. Mapping
and visualizing the internet. In USENIX Annual

Technical Conference, page 1, 2000.

[7] P. Darga, M. Liffiton, K. Sakallah, and I. Markov.
Exploiting structure in symmetry detection for CNF.
In Design Automation Conference, 2004.

[8] R. Govindan and H. Tangmunarunkit. Heuristics for
internet map discovery. In INFOCOM (3), pages
1371–1380, 2000.

[9] T. Junttila and P. Kaski. Engineering an efficient
canonical labeling tool for large and sparse graphs. In
SIAM Workshop on Algorithm Engineering and
Experiments, 2007.

[10] B. D. McKay. Practical graph isomorphism.
Congressus Numerantium, 30:45–87, 1981.

[11] C. Mears, M. Garcia de la Banda, and M. Wallace. On
implementating symmetry detection. In Sixth
International Workshop on Symmetry in Constraint
Satisfaction Problems, 2006.

[12] A. Miller, A. Donaldson, and M. Calder. Symmetry in
temporal logic model checking. ACM Computing
Surveys, 38(3):Article 8, 2006.

[13] T. Miyazaki. The complexity of McKay’s canonical
labeling algorithm. Groups and Computation II, pages
239–256, 1995.

[14] J.-F. Puget. Automatic detection of variable and value
symmetries. volume 3709 of LNCS, pages 475–489,
2005.

[15] U.S. Census Bureau. UA Census 2000 TIGER/Line
file download page, 2000. http://www.census.gov/
geo/www/tiger/tigerua/ua_tgr2k.html.

