
On the Role of Timing Masking in Reliable Logic Circuit Design

Smita Krishnaswamy †, Igor L. Markov †], and John P. Hayes†
† The University of Michigan, EECS Department, Ann Arbor, MI 41809

] Synplicity Inc., 600 W. California Ave., Sunnyvale, CA 94086
{smita, imarkov, jhayes}@eecs.umich.edu

Abstract

Soft errors, once only of concern in memories, are begin-
ning to affect logic as well. Determining the soft error rate
(SER) of a combinational circuit involves three main mask-
ing mechanisms: logic, timing and electrical. Most previ-
ous papers focus on logic and electrical masking. In this
paper we develop static and statistical analysis techniques
for timing masking that estimate the error-latching window
of each gate. Our SER evaluation algorithms incorporating
timing masking are orders of magnitude faster than compa-
rable evaluators and can be used in synthesis and layout. We
show that 62% of gates identified as error-critical using tim-
ing masking would not be identifiable by considering only
logic masking. Furthermore, hardening the top 10% of error-
critical gates leads to a 43% reduction in the SER. We also
propose a more subtle solution, gate-relocation for technolo-
gies where wire delay dominates gate delay. We decrease the
error-latching window of each gate by relocating it in such a
way that path lengths to primary outputs are equalized. Our
results show a 14% improvement in SER with no area over-
head.

1 Introduction

Soft errors are becoming an important concern for circuit
reliability. Traditionally, researchers have resorted to tech-
niques which require high area overhead like triple modular
redundancy (TMR) in order to obtain fault-tolerant circuits.
However, recently the focus has shifted to less intrusive tech-
niques which increase circuit robustness without requiring
complete fault tolerance. For instance, [12] proposes gate
hardening to increase reliability with low overhead. In [1],
the authors use rewiring to decrease susceptibility to SER.
In [9], signatures are used to identify redundancy that can be
exploited to increase logic masking. Most of these papers
use logical masking to increase reliability. In this paper we
show how to make prior techniques timing-aware.

Soft errors are a usually a result of thermal neutrons or
external radiation. Examples include cosmic particle hits
and secondary effects that disturb the silicon substrate and
create a transient charge. Transient charges can be latched
as errors if the masking mechanisms fail to stop their prop-
agation. Researchers have identified three mechanisms by
which soft errors are mitigated in combinational circuits:
logical, electrical and timing masking [17]. Logic masking
happens when an error occurs in a non-sensitized portion
of the circuit, and depends on the circuit’s input vector and
state. Electrical masking occurs when a particle strike does
not carry enough energy to propagate. Timing masking oc-
curs when an error reaches a flip-flop at a non-latching por-
tion of the clock.

In this paper we propose a linear-time algorithm in the

spirit of static timing analysis (STA) for computing the er-
ror latching window (ELW) of each gate in a circuit. We
also show how to incorporate input-vector dependency into
our estimates using logic simulation. Similar to the work in
[9], our algorithms can be added to logic and physical de-
sign flows to increase design robustness. We illustrate our
techniques when selecting critical gates for hardening.

We further observe that physical synthesis techniques
like gate relocation, buffer insertion, and gate sizing can be
utilized to increase timing masking. These techniques are
normally used after placement to obtain timing closure [3].
However, with careful guidance, they can improve timing
and reliability simultaneously. We demonstrate here that, as
wire delay starts to dominates gate delay, post-placement lo-
cal gate relocation can result in smaller latching windows
with no increase in circuit area.

One advantage of our proposed methods is that they can
improve design margins with low overhead in a way that
increases performance. If a circuit experiences fewer er-
rors using our techniques, it may be possible to lower the
threshold voltage or increase the clock frequency while still
meeting reliability goals. In this way, reliability improve-
ments can directly translate into performance improvements.
Architectural solutions such as error-detection and rollback
schemes are often coarse-grained and incur huge perfor-
mance penalties by flushing pipelines or resetting states. If
these are avoided by guided-synthesis, then the average per-
formance can be improved. The main contributions of this
paper are:

• Two efficient algorithms for the static and statistical
modeling of timing masking within an SER framework
that is meant to guide design flows.

• The application of the SER algorithms to gate harden-
ing for increased reliability.

• SER improvement by means of a novel gate relocation
technique that increases timing masking.

The remainder of paper is organized as follows. Sec-
tion 2 discusses previous work on reliability evaluation and
reliability-driven synthesis. Section 4 presents our latching-
window computation algorithms and their incorporation into
a larger SER evaluation framework. Section 5 describes two
strategies for utilizing latching-window masking in synthe-
sis. Section 6 presents empirical results, while Section 7
concludes the paper.

2 Previous Work

In the past two years several reliability evaluators such as
FASER [21], MARS-C [11], SERA [22], AnSER [9] and
the tools from [16], [5] have appeared in the CAD literature.
MARS-C and FASER use symbolic techniques to compute

logic and electrical masking with a high level of accuracy.
However, FASER and MARS-C scale the final error prob-
ability by a factor that depends on the length of the clock
cycle. This can be inaccurate because, as we show, the latch-
ing window is not a constant fraction of the cycle time and
strongly depends on the location of the gates and the logical
characteristics of the circuit. AnSER takes a more heuris-
tic approach and uses logic simulation to estimate the SER.
It only considers logic masking in order to direct synthesis
flow and ignores timing masking. SERA [22] does not com-
pute logic masking, and operates on a per-vector basis (as
specified by the user), however it accounts for electrical and
timing masking through HSPICE-based fault simulation.

Fault tolerance has been a subject of study since the
dawn of digital design. In the 1950’s von Neumann derived
some theoretical bounds for component error that circuits
can reliably sustain. His use of cascading TMR and NAND-
multiplexing was insightful in fault-tolerant (FT) design,
though impractical due to its large overhead. At the gate
level, Tyron [18] proposed quadded logic which involves re-
placing each gate with four gates such that any single error
can be tolerated.

Another class of FT architectures uses time redundancy
rather than space redundancy for fault tolerance. In the
1990’s Nicolaidis proposed a scheme where three latches
sample a signal with small delays between them. A voter
is used to decide the correct value of the signal. Since stray
glitches tend to have short duration, an erroneous value in-
duced by the glitch will be sampled by a single latch with
high likelihood. In the related Razor [7] approach, signals
are sampled twice. If an error is found, then a pipeline-based
recovery mechanism restores signal correctness.

More recently, some researchers have explored guiding
synthesis operations by reliability. Almukhaizim et al. [1]
use rewiring to increase reliability. The authors of [9] guide
a local transformation technique known as rewriting to re-
place 4-input cuts in a circuit with more reliable sub-circuits.
These authors also identify partially redundant signals, in-
sert a gate computing either the AND or OR of such signals
and reroute the fanout cones to go through the output of the
newly inserted gate to increase logic masking. Our work
builds on techniques in [9] and makes them timing-aware.

3 Logic Simulation and SER

In this section, we review logic simulation-based signatures
which were used to model logic masking in [9]. Later, we
extend this method to incorporate timing masking as well.

In general, logic masking occurs when a signal is not ob-
served at an output due to the presence of controlling values
on side paths. In [9] a test-vector counting method is used to
compute the effect of logic masking. The idea is that a soft
error is logically propagated when appropriate test vectors
are applied to the circuit’s inputs. Therefore, the fraction of
test vectors for an error at a gate output is an estimate of the
probability of error propagation. The test vector count is ap-
proximated here by means of a testability measure computed
via bit-parallel logic simulation. Testability is assessed as a
function of signal probability and observability.

Signal probability is computed in [9] by simulating ran-
dom input vectors through a circuit’s gates in topological
order. The collection of output responses at the gates with
respect to a set of input vectors is known as a signature.
More formally, for input vectors {v1,v2,v3, . . .vk}, the sig-
nature at a node f is the sequence resultant values at f writ-
ten sig(f) = f (v1) f (v2) f (v3) . . . f (vk).

Figure 1: Circuit with signatures and ODCs computed for
each signal.

Besides signatures, observability don’t-care (ODC)
masks are used to estimate signal observability. These cor-
respond to input vectors for which the value of a signal is
propagated to a primary output. Observability is computed
in reverse topological order by flipping bits in the signature
and checking if the resulting signal value is propagated lo-
cally. If so, we assess further propagation by examining pre-
computed ODC masks for signals at fanout points. Corre-
sponding to a k-bit signature sig(f), we define ODC(f) as
the k-bit sequence whose ith bit is 0 if input vector vi is in
the don’t-care set of f ; otherwise the ith bit is 1. Formally,
ODC(f) = v1 ∈ care(f),v2 ∈ care(f), . . . ,vk ∈ care(f).

Example 1 Figure 1 shows a circuit with 4-bit signatures
and ODCs. The signatures at the primary outputs are ran-
domly generated and propagated using bit-parallel opera-
tions. For instance Sig(f) = (1100 & 1101) = 1100. The
ODCs are computed in reverse topological order. The ODC
of a primary output is 1111 since it is always observable.
The ODC of f is computed as follows: first the ODC through
g is computed, and then the ODC through h is computed
and these are ORed together to form the ODC of f . The
OR operation accounts for the fact that f is observable if
it is observed through g or h. The local ODC of f -via-g
is computed by flipping each bit of f and seeing if the ef-
fect propagates to g. In the figure this local ODC is 0111.
This is then ANDed with the pre-computed ODC of g to yield
ODCg(f) = 0111 & 0011 = 0011. Similarly the ODC of
f through h is computed as ODCh(f) = 1010. Finally the
ODC of f is given by ODC(f) = ODCh(f) + ODCg(f) =
1010 + 0011 = 1011.

Signatures and ODC masks are both stored as bit vec-
tors and computed using bitwise operations. Together the
signature and ODC mask provide information about testa-
bility. For instance, all bit positions where the signature and
ODC mask are 1 correspond to test vectors for a 0-1 fault or
glitch at the node. Formally, for a node f the testability of a
transient 1-to-0 bit flip is:

test1(f) = ones
(

sig(f)&ODC(f)
)

/K

Similarly for a 0-to-1 error:

test0(f) = ones
(

∼ sig(f)&ODC(f)
)

/K

The SER rate, which incorporates logic masking is sim-
ply the sum of testabilities at each node weighted by the gate
error probabilities gerr0(f) and gerr1(f) for 1-to-0 and 0-
to-1 errors, respectively.

2

Figure 2: Illustration of error-latching window computation.

4 Error-Latching Windows

This section presents a method for computing error-latching
windows (ELWs) for a sequential circuit with edge-triggered
flip-flops separated by logic combinational blocks.

4.1 Static Analysis
The timing constraints associated with each edge-triggered
D flip-flop are as follows:

• The data (D) input has to receive all data before the
setup time Ts preceding the latching clock edge.

• The data input must be held steady for the duration of
the hold time, Th following the latching clock edge.

Soft errors are usually characterized by a transient glitch
of duration d that results from a particle strike. If such a
glitch is present at the data or clock inputs of a flip-flop dur-
ing the interval [Ts,Th], it can result in an incorrect value
being latched. If the glitch is present during the setup or
hold time, it can prevent a correct value from being latched.
Therefore the ELW of the D-flip flop is simply [Ts,Th].

The ELW for a gate is computed by (1) translating the
ELWs of each of its fanout gates backwards by appropriate
path delays, and (2) taking the union of the resulting ELWs.
In contrast, during static timing analysis we compute only
the minimum required time at each gate even though a sim-
ilar backwards traversal is used. Figure 3 shows the algo-
rithm that computes the union of such intervals. The union
of two intervals can result in two separate intervals if the
respective intervals are disjoint, or one if the intervals over-
lap. In general, the latching window for a gate g is defined
by a sequence of intervals ELW (g)[0],ELW (g)[1] . . . where
ELW (g)[i] refers to the ith interval in the latching window.
Each interval ELW (g)[i] is itself described by its start and
end times [Sgi,Egi].

ELW (g) = (
[

Sg1,Eg1
]

,
[

Sg2,Eg2
]

, . . .
[

Sgn,Egn
]

)

Example 2 Our proposed ELW computation is illustrated
by the circuit in Figure 2. Each wire is marked with a
delay and each gate i is assumed to have delay d(i). The
corresponding ELWs are:

ELW(F1) = ELW(F2) = [Ts,Th]
ELW(i) = [Ts −d2,Th −d2]
ELW(g) = [Ts −d2−d(i)−d4,Th −d2−d(i)−d4]
ELW(h) = [Ts −d1,Th −d1]
ELW(f) = [Ts −d2−d(i)−d4−d(g)−d5,Th −d1−d(h)−d3]

Note that f has a larger ELW than other gates because its
two output paths have different delays.

compute ELW(Circuit C)
{ reverse topological sort(C);
for(all latches l ∈ C)
ELW(l) = [Ts(l),Th(l)];

for(all gates g ∈ C)
for(all fanouts f)

ELW′(f) = translate(ELW(f),delay(l,f))
ELW(l) = union(ELW(l),ELW′(f));}

Figure 3: Algorthm to compute the error-latching windows
(ELW) of a circuit.

union(ELW(g), ELW(f))
{ for(all intervals ELW(g)[i])

insert interval(ELW(g)[i],ELW(f)[1])
return ELW(f); }

insert interval(ELW(g)[i],ELW(f)[j]))
{ if(Egi < Sfj)
return insert before(ELW(f)[j],ELW(g)[i])
if(Sgi > Efj)
if(j == size(ELW(f)))
return insert after(ELW(f)[j],ELW(g)[i]);
else
return insert interval(ELW(g)[i],ELW(f)[j+1]);

Sgi = max(Sgi ,Sfj);)
Egi = min(Egi ,Efj);)
delete ELW(f)[j];
return insert interval(ELW(g)[i],ELW(f)[j]); }

Figure 4: Algorithm to compute the union of two ELWs.

We define the timing masking factor as the ratio of the
ELW to the clock cycle time C. For a node f , the timing
masking factor is computed as follows:

Tmask(f) =
n
∑
i=1

(E f i −S f i)/C

Taking timing masking into account, the SER contribu-
tion of each gate is computed by scaling the testability and
error probability by Tmask.

SER(C)= ∑
g∈C

(

test1(g)gerr0(g)+test0(g)gerr1(g)
)

Tmask(g)

(1)

4.2 Statistical Interval Weighting
The latching windows computed in the previous section
were a result of static analysis. Therefore, some intervals
(or portions of intervals) correspond to paths that are not tra-
versed frequently. Our aim is to weigh each interval in the
ELW by the probability that an error occurring within the
interval gets latched. In order to compute such a probability,
we use bit-parallel logic simulation. Recall from Section 3
that the ones count of the signature of a signal is used as a
measure of signal probability and the ones count of the ODC
mask is used as a measure of signal observability. Together
these measures give an estimate of the testability of the as-
sociated stuck-at fault.

We extend this test-vector counting method to account
for path faults. For such a fault an entire path rather than a
single stuck-at signal is sensitized. For our purpose, we con-
sider sets of paths associated with each ELW interval, rather
than single paths. Therefore, we associate an interval ODC-
mask ODC(f , i) with each interval i in an ELW (f). The one
count of the interval ODC-mask is the interval weight. We

3

proceed in reverse topological order by initially considering
gates that feed primary outputs. For such gates all ODC-
masks for intervals are simply equal to their ODC-masks (all
1’s). For subsequent gates, ELWs are computed by translat-
ing and merging the ELWs of sink gates. Here each interval
ODC associated with a sink gate is masked by the ODC of
the gate in question to form the interval ODC for the current
gate. Intuitively, the interval ODC mask keeps track of the
observability of a signal through specific paths. Therefore
masking the ODC corresponding to a path by the ODC of
the additional gate simply adds that gate to the path.

When intervals from two fanout cones are merged, the
interval ODC masks are unioned together using the bitwise
OR operation. The OR operation results in some lack of
accuracy for the weighting algorithm because it averages the
weight for both intervals in the merged interval. However,
this operation is necessary for scalability since each gate can
be subject to exponentially many intervals and the loss of
accuracy is small.

Suppose that a gate f has fanouts g and h and that during
ELW computation, intervals ELW (g)[i] and ELW (h)[j] are
merged together to form ELW (f)[k]. In this case,

ODC(f ,k) = (ODC(g, i)+ODC(h, j))&ODC(f)

The SER computation from interval weights is sim-
ply the sum of testabilities corresponding to each interval,
weighted by the length of the interval in question. The testa-
bilities are in turn derived using the interval ODC and signal
probabilities. These computations are shown below.

test1(f , i) = ones
(

sig(f)&ODC(f , i)
)

/K

Tmask(f , i) = (E f i −S f i)/C

SER(C)= ∑
f∈C

∑
i∈ELW (f)

(

test1(f , i)gerr0(f)+test0(f , i)gerr1(f)
)

T mask(f , i)

(2)

4.3 SER Evaluation Framework
We incorporate our timing masking analysis into AnSER,
the reliability evaluation tool from [9] by combining logic
and timing masking as shown in Equations 1 and 2. We use
the bit-parallel logic simulations implemented in AnSER to
compute signatures and ODC masks for the static and statis-
tical algorithms. Along with timing masking, AnSER forms
a scalable, lightweight method for guiding logic and physi-
cal synthesis flows towards increased reliability. It can also
be used to simply check the impact of logic and physical
synthesis techniques on reliability, possibly rejecting logic
transformations or physical relocations whose impact on re-
liability is unacceptable. The scalability is in large part due
to the efficient linear time algorithms that are used to com-
pute the impact of logic and timing masking.

To capture electrical masking in AnSER, we can derat-
ing every gate error probability (gerr0,gerr1) by a factor
dependent upon characterizations of sink gates. Researchers
have shown that electrical masking eliminates weak glitches
in 3-4 levels of logic, and has little effect thereafter [16].
This implies that considering paths of length 4 starting from
the gate in question is sufficient. Further, the impact of elec-
trical masking is expected to diminish with voltage scaling.
AnSER is designed to guide CAD tools, where logic and
timing masking are the primary mechanisms by which reli-
ability can be increased.

Figure 5: SER evaluation framework including logic and
timing masking.

Figure 5 shows how to incorporate our method into a
typical design flow RTL-to-GDSII. After each change to the
netlist or placement, AnSER can be invoked incrementally.
Physical changes only require the ELWs and signatures of
fanin cones to be updated; logic changes can require both
input and output cone signatures and ODCs to be updated.
Since reliability is expressed as a summation in both cases,
incremental evaluation involves regenerating signatures and
ELWs for each gate in question. Unlike other reliability
evaluators which often require a lot of circuit information,
the amount of information processed and output by AnSER
can be adjusted according to the needs of the user. For in-
stance, if the user wishes to study the impact on reliability
of only the timing optimizations steps, then she can use only
timing computations in static mode. If a designer is only
looking at logic transformations, then the logic-only mode
may be used. Therefore the amount of coupling between the
masking mechanisms can also be adjusted. AnSER can be
connected to any external timing engine, and not necessarily
the one used in our work.

5 Reliable Circuit Design

We now demonstrate the use of our reliability evaluator to
guide two synthesis techniques. The first technique selects
susceptible gates for radiation hardening by gate sizing and
first was proposed by [23]. The second method uses gate
relocation to reduce ELWs and improve reliability.

5.1 Gate Hardening
Gates are usually hardened by optimizing their width-to-
length ratio in order to raise the energy threshold for par-
ticle strikes to result in errors. While gate hardening can
be applied anywhere in the circuit, since it incurs area over-
head, it is important to select specific critical gates to harden.
We guide this technique using reliability evaluation rather
than fault simulations (as in [23]) which can be computation-
ally expensive and inaccurate if too few faults are sampled.
Other papers that reported results on gate selection [11, 21]
do not consider timing masking.

We select gates by considering their contribution to the
overall circuit SER. This contribution can be estimated as
the term corresponding to the gate in Equation 1.

sus(f) =
(

test1(g)gerr0(g)+ test0(g)gerr1(g)
)

tmask(g)
(3)

4

This susceptibility metric takes into account several de-
pendencies implicitly. Logic masking can overestimate the
susceptibility of a gate because very observable gates can
have smaller latching windows depending on the delay char-
acteristics of a circuit. Equation 3 can be used as a pruning
heuristic for candidate selection. Results show that while
gate hardening can drastically improve reliability, different
ways of guiding gate hardening can have drastically different
results. For instance, guiding gate hardening by only logic
masking models leads to different gates being selected then
our combined logic-timing model.

Generally, gates are thought to have no susceptibility to
errors after hardening [12]. Further, the impact of gate hard-
ening on delay and area can be minimal if we take advantage
of the fact that a small portion of gates are responsible for the
majority of the SER. Since gate sizing can impact the delay
of a gate, the ELW of gates in the fan-in cone of a sized gate
could theoretically be altered. Therefore in order to perform
gate hardening we pick one critical gate at a time, size it
up, and then recompute the ELW in its fan-in cone. Since
ELW calculation is fast, this can be done efficiently in our
framework.

However, we note that ELW recomputation can be
avoided in practice or batched to save runtime. Usually,
when a transistor is sized up the propagation delay of the
gate in question decreases. However, the gate itself presents
a larger capacitive load to its driver and thus increases the
propagation delay of the driving gate. However, the resized
width can be adjusted such that the net impact on critical
path delay is negligible because of the canceling effects.
Zhou et al. [12] incur only 3% increase in delay when they
size up 50% of gates.

5.2 Gate Relocation
As shown in Figure 2, gates with many different-length paths
to outputs have the largest latching windows due to uneven
path delay. Therefore, timing masking can be improved if
some fanout paths are eliminated, or if the paths were made
to have equal delay. However, unlike timing optimizations
which result in same-delay paths through the circuit, our aim
is to have equal delays to outputs from each gate in the cir-
cuit.

Embedding the reliability evaluator within a placement
tool or closely coupling a placement algorithm with reli-
ability goals is one way of tackling this problem. How-
ever, we take a lighter approach by making local changes to
pre-placed designs. Specifically, we locally relocate nodes
within the bounding box defined by their adjacent gates.
Global characteristics of the placement are maintained in
this way.

If a gate f has two fanouts g and h then the ELW of f
can be translated by adding or subtracting delay from the g-
to- f path and g-to-h path in such a way that the overlap is
maximized when ELW(g) and ELW(h) are merged to form
ELW(f). Since each ELW consists of a set of intervals, sep-
arated by various distances, computing a new (x,y) position
for the gate such that the respective delays of the g-to- f and
g-to- f yield a small latching window is a non-linear con-
strained optimization problem even for the local move of a
single gate. We conjecture that the best location is likely to
be near the center-of-gravity of the sources and sinks of the
gate, and try legal neighboring locations as well. We move
in reverse-topological order because the latching windows
of gates near primary outputs affect the latching windows of
earlier gates but not vice versa. Our results suggest that these

Circuit Gates Runtime (s)
AnSER SERD[16] FASER [21] [5]

c432 246 <0.01 10 22 —
c880 591 <0.01 10 — —
c1355 746 0.014 20 40 2.09
c1908 760 0.015 20 66 0.781
c3540 1951 <0.01 60 149 5m42s
c6280 4836 1.00 120 278 —

Table 2: Comparison of SER evaluators.

gate relocations can improve reliability while maintaining
delay. We expect this technique to have greater impact when
interconnect delay forms a large portion of circuit delay.

6 Empirical Analysis

We now report some empirical results for error latching win-
dow computation and reliability improvement. The experi-
ments were conducted on a 2.4 GHz AMD Athlon 4000+
workstation with 2GB of RAM. The algorithms were im-
plemented in C++. We evaluated our algorithms on circuits
from the IWLS 2005 benchmark suite [8], with design uti-
lization set to 70% to match recent practice in industry. Our
wire and gate characterizations are based on a 65nm tech-
nology library. We perform static timing analysis using the
D2M delay metric [2] on Rectilinear Steiner Minimal Trees
(RSMTs) produced by FLUTE [6]; Our designs placed us-
ing Capo version 10.2 [4, 20] and relocations are legalized
using the legalizer provided by GSRC Bookshelf [20].

Table 1 shows changes in SER when timing masking is
considered according to Equation 1. Base gate error proba-
bilities (gerr0, gerr1) were derived using SPICE gate char-
acterizations where a NAND gate has error rate 4e− 5 FIT
[16]. SER incorporating timing masking can be useful in
guiding physical synthesis operations while only consider-
ing logic masking is sufficient for technology-independent
logic synthesis steps in the design flow. Table 1 also shows
the potential for improvement in timing masking, i.e., the
improvement in reliability when the ELW of each gate is
made as small as possible (equal to the ELW of a latch).
This shows that SER can be significantly decreased by ma-
nipulating timing masking.

Table 2 shows runtime comparisons of the extended
AnSER tool (Figure 5) with other evaluators on the ISCAS
85 benchmarks. As seen in Table 2 and consistent with [9],
AnSER runs orders of magnitude faster than other evalua-
tors due to the linear-time algorithms for logic and timing
masking. The logic masking model in AnSER was vali-
dated with the ATALANTA ATPG tool with high accuracy
(< 3% error). Other algorithms that explicitly account for
logic masking tend to be much slower due to the difficulty
of capturing the dependence on input vectors. BDD-based
approaches like FASER [21] and MARS-C [11] tend to run
out of memory on larger circuits due to input space explo-
sion.

Table 3 shows improvements achieved by guiding gate
hardening. Hardening the top 10% of the most susceptible
gates leads to an average of 43% decrease in SER. Gates
were selected using the susceptibility from Equation 3. The
first column of this table shows the percentage of most sus-
ceptible gates that were not identified using logic masking
alone. This indicates that guiding hardening with a timing
masking model leads to different gates being hardened.

Table 4 shows the results of locally relocating gates

5

No. Clock period Logic SER Runtime(s) Timing SER Runtime Potential
Circuit gates (secs) (FIT) (secs) (FIT) (secs) % improvement
aes core 20265 5.68E-07 0.1654 6 9.33E-05 3 37.57
spi 2998 3.19E-07 0.05722 1 4.23E-05 1 15.28
s35932 5545 6.18E-07 0.1363 2 6.03E-05 1 26.73
s38417 6714 3.56E-07 0.1360 2 1.22E-04 1 37.83
tv80 6802 6.79E-07 0.05602 2 2.64E-05 1 37.50
mem ctrl 11062 6.44E-07 0.2185 2 8.45E-05 3 19.64
ethernet 36227 1.46E-06 0.7010 9 1.31E-04 9 91.68
usb funct 10357 5.06E-07 0.1852 3 8.79E-4 3 36.59

Table 1: SER evaluation logic and timing masking.

% New critical SER % Decrease
Circuit gates (FIT) SER
aes core 21.86 5.57E-05 40.29
spi 53.51 3.15E-05 25.43
s35932 57.03 3.80E-05 36.92
s38417 87.63 7.34E-05 40.30
tv80 33.67 1.39E-05 47.42
mem ctrl 64.54 5.80E-05 31.36
ethernet 83.51 8.28E-05 36.67
usb funct 88.96 8.70E-05 90.11
Average 61.34 43.56

Table 3: SER improvements through gate hardening.

65nm < 45nm
Circuit %SER % delay %SER % delay
aes core 11.83 3.00 21.15 -3.10
spi 18.87 4.8 41.62 -2.90
s35932 10.74 -0.13 44.02 3.40
s38417 10.10 1.38 14.35 -11.57
tv80 4.89 1.45 43.62 17.50
mem ctrl 7.75 1.14 78.43 -1.70
ethernet 19.07 0.43 75.17 6.04
usb funct 28.50 -5.26 14.29 -9.09
Average 13.97 0.55 41.59 2.10

Table 4: Improvements in SER through gate relocation.

within the bounding box of adjacent gates. We only accept
changes that affect delay and SER positively, however legal-
ization can later increase delay slightly. Our results indicate
a 14% improvement at the 65nm technology node where av-
erage intrinsic gate delay is approximately a factor of 100x
larger than (unit) interconnect RC delay. The second two
columns project to smaller technology nodes where wire de-
lay is expected to become comparable to gate delay. Such
trends are indicated in the ITRS 2005 report on intercon-
nects, which projects that at 32nm, wiring will contribute
90% of the circuit delay. The first set of results indicate a
14% decrease in SER while the second set shows a 41.59%
decrease. Therefore, as technology scales timing masking
can offer greater potential for improvement in SER.

7 Conclusions

We have proposed new algorithms for the static analysis
of timing masking in SER evaluation. We also incorpo-
rated timing masking computations into a comprehensive
signature-based SER estimation framework. We demon-
strated latching window computation for selecting critical
gates to harden. Our data shows a 43% decrease in SER
when 10% of the most critical gates are hardened. Further,
we presented a gate relocation technique for reducing latch-
ing window sizes for gates with multiple paths to outputs.
Results show a 14% improvement in SER for 65nm and a
projected improvement of 40% in technology where gate

delay and interconnect unit RC delay become comparable.
We conclude that timing masking can be utilized to achieve
greater reliability with low area and delay overhead.
Acknowledgement: This research was sponsored in part by
the Air Force Research Laboratory under Agreement No.
FA8750-05-1-0282 and by the National Science Foundation
under Grant CCF-0702276.

References

[1] S. Almukhaizim et al., “Seamless Integration of SER in Rewiring-
Based Design Space Exploration,” ITC 2006, pp. 1-9.

[2] C. J. Alpert, A. Devgan, C. Kashyap, “A Two Moment RC Delay Met-
ric for Performance Optimization,” ISPD 2000, pp. 69-74.

[3] C. J. Alpert, et al., “Techniques for Fast Physical Synthesis,” IEEE,
March 2007, vol. 95, no. 3, pp. 573-599.

[4] A. Caldwell, A. Kahng, and I. Markov, “Can Recursive Bisection
Alone Produce Routable Placements?”, DAC 2000, pp. 693-698.

[5] M. Choudhury, K. Mohanram, “Accurate and Scalable Reliability
Analysis of Logic Circuits,” DATE 2007, pp. 1454-1459.

[6] C. Chu, Y. -C. Wong, “Fast and Accurate Rectilinear Steiner Minimal
Tree Algorithm for VLSI Design,” ISPD 2005, pp. 28-35.

[7] D. Ernst et al., “Razor:: Circuit-Level Correction of Timing Errors for
Low Power Operation,” IEEE Micro, vol. 24, no. 6, Nov.-Dec 2003,
pp. 10-20.

[8] IWLS 05 Benchmarks
http://iwls.org/iwls2005/benchmarks.html

[9] S. Krishnaswamy, S. M. Plaza, I. L. Markov, J.P. Hayes, “Enhanc-
ing Design Robustness with Reliability-aware Resynthesis and Logic
Simulation,” ICCAD 2007 pp. 149-154.

[10] H. K. Lee, D. S. Ha, “On the Generation of Test Patterns for Com-
binational Circuits,” TR No. 12-93, EE Dept., Virginia Polytechnic
Institute.

[11] N. Miskov-Zivanov, D. Marculescu, “MARS-C: Modeling and Reduc-
tion of Soft Errors in Combinational Circuits,” DAC 2006, pp.767-772.

[12] K. Mohanram, N. A. Touba, “Partial Error Masking to Reduce Soft
Error Failure Rate in Logic Circuits” DFT 2003, pp. 433-440.

[13] M. Nicolaidis, “Time Redundancy Based Soft-Error Tolerant Circuits
to Rescue Very Deep Submicron’,” VTS 1999, pp. 86-94.

[14] S. Plaza, K-H. Chang, I. Markov, V. Bertacco, “Node Mergers in the
Presence of Don’t Cares” ASP-DAC 2007, pp. 414-419.

[15] R. Rao, D. Blaauw, D. Sylvester, “Soft Error Reduction in Combi-
national Logic Using Gate Resizing and Flipflop Selection,” ICCAD
2006, pp. 502-509.

[16] R. Rao, et al., “An Efficient Static Algorithm for Computing the Soft
Error Rates of Combinational Circuits,” DATE 2006, pp. 164-169.

[17] P. Shivakumar, et al., “Modeling the Effect of Technology Trends on
Soft Error Rate of Combinational Logic” DSN 2002, pp. 389-398.

[18] J. G. Tryon, “Quadded Logic,” Redundancy Techniques for Computing
Systems, 1962, pp. 205-228.

[19] J. von Neumann,“Probabilistic Logics & Synthesis of Reliable Organ-
isms from Unreliable Components,” Automata Studies, 1956.

[20] UMICH Physical Design Tools
http://vlsicad.eecs.umich.edu/BK/PDtools/

[21] B. Zhang, W. S. Wang, M. Orshansky, “FASER: Fast Analysis of Soft
Error Susceptibility for Cell-Based Designs,” ISQED 2006, pp. 755-
760.

[22] M. Zhang, N. R. Shanbhag, “A Soft Error Rate Analysis (SERA)
Methodology,” ICCAD 2004, pp. 111-118.

[23] Q. Zhou, K. Mohanram, “Gate Sizing to Radiation Harden Combina-
tional Logic,” TCAD, vol. 25, no. 1, January 2006, pp. 155-166.

6

