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Abstract
The increasing popularity of SAT and BDD techniques in ver-

ification and synthesis encourages the search for additional
speed-ups. Since typical SAT and BDD algorithms are exponen-
tial in the worst-case, the structure of real-world instances is a
natural source of improvements. While SAT and BDD techniques
are often presented as mutually exclusive alternatives, our work
points out that both can be improved via the use of the same
structural properties of instances. Our proposed methods are
based on efficient problem partitioning and can be easily applied
as pre-processing with arbitrary SAT solvers and BDD packages
without source code modifications. 

Finding a better variable-ordering is a well recognized prob-
lem for both SAT solvers and BDD packages. Currently, all lead-
ing edge variable-ordering algorithms are dynamic, in the sense
that they are invoked many times in the course of the “host”
algorithm that solves SAT or manipulates BDDs. Examples
include the DLCS ordering for SAT solvers and variable-sifting
during BDD manipulations. In this work we propose a universal
variable-ordering MINCE (MIN Cut Etc.) that pre-processes a
given Boolean formula in CNF. MINCE is completely indepen-
dent from target algorithms and outperforms both DLCS for SAT
and variable sifting for BDDs. We argue that MINCE tends to
capture structural properties of Boolean functions arising from
real-world applications. Our contribution is validated on the
ISCAS circuits and the DIMACS benchmarks. Empirically, our
technique often outperforms existing techniques by a factor of
two or more. Our results motivate search for stronger dynamic
ordering heuristics and combined static/dynamic techniques.

1   Introduction
Algorithms that efficiently manipulate Boolean functions aris-

ing in real-world applications are becoming increasingly popular
in several areas of computer-aided design and verification. In this
work we focus on two classes of these algorithms: complete Bool-
ean satisfiability (SAT) solvers [18, 23, 26, 30] and algorithms for
manipulating Binary Decision Diagrams (BDDs) [4, 7, 16]. A ge-
neric complete SAT solver must correctly determine whether a
given Boolean function represented in conjunctive normal form
(CNF) evaluates to false for all input combinations. Aside from its
pivotal role in complexity theory, the SAT problem has been
widely applied in electronic design automation. Such applications
include ATPG [15, 27], formal verification [2], timing verifica-
tion [24] and routing of field-programmable gate arrays [19],
among others. While no exact polynomial-time algorithms are

known for the general case, many exact algorithms [18, 23, 26,
30] manage to complete very quickly for problems of practical in-
terest. Such algorithms are available in the public domain and are
typically based on “elementary steps” that consider one variable
at a time (e.g. branch-and-bound algorithms select the next vari-
able for branching.) Previously published results [18, 23, 26, 30],
as well as our empirical data, clearly imply that the order of these
steps critically affects the runtime of leading edge SAT algo-
rithms. This order of steps depends on the order of variables used
to represent the input function, but can also be controlled dynam-
ically based on the results of previous steps.

BDDs [4, 7] are commonly used to implicitly represent large
solution spaces in combinatorial problems that arise in synthesis
and verification. A BDD is a directed acyclic graph constructed in
such a way that its directed paths represent combinatorial objects
of interest (such as subsets, clauses, minterms, etc.). An exponen-
tial compression rate is achieved by BDDs whose number of paths
is exponential in the number of vertices and edges (graph size).
BDDs can be transformed by algorithms that visit all vertices and
edges of the directed graph in some order and therefore take poly-
nomial time in the “current” size of the graph. However, when
new BDDs are created, some of these algorithms tend to signifi-
cantly increase the number of vertices, potentially leading to ex-
ponential memory and runtime requirements. Several BDD
ordering techniques have been proposed to overcome this prob-
lem. These include static [9, 17] and dynamic approaches [20, 22].
Just as for SAT solvers, the order of “elementary steps” is critical-
ly important. This order can either be chosen statically, i.e. by pre-
processing the input formula, or dynamically, based on the out-
come of previous steps during the search process.

A reliable and fast variable-ordering heuristic for a given ap-
plication can dramatically affect its competitiveness and is often
considered an important part of implementation. For example, the
leading-edge SAT solver GRASP [23] is typically used with the
dynamic variable-ordering heuristic DLCS (select the variable
that appears in the maximum number of unresolved clauses) or
DLIS (select the literal that appears in the maximum number of
unresolved clauses), and the renowned CUDD package [25] for
BDD manipulation incorporates the dynamic variable-sifting heu-
ristic which is applied many times in the course of BDD transfor-
mations. Variable sifting is affected by the initial order, but can
also be completely turned off to improve runtime. Sifting for
BDDs is relatively more expensive than most dynamic ordering
heuristics for SAT. However, the effect of ordering heuristics on
total runtime is highly instance-specific.



We noticed that, for some CNF formulae in Table II (such as
hole-9 and par16-2-c), turning off sifting for BDD manipulations
and turning off DLIS in SAT resulted in significantly smaller
runtimes. For BDDs, this also led to memory savings, especially
for circuit benchmarks from the ISCAS89 set. In other words, us-
ing a good order of variables when encoding problems into a CNF
formula was, by itself, superior to using the best known dynamic
heuristic with a poor static order of variables (note that static and
dynamic can be trivially combined). In practice, static variable-
orderings are easier to work with because they do not require
modifying the source code of the host algorithm. In particular, the
same variable-ordering implementation can be used for SAT
solvers and BDD manipulations if it, indeed, improves both class-
es of algorithms. However, an application-specific encoding pro-
cedure may overlook superior static variable-orderings.
Therefore, we propose a domain-independent algorithm to auto-
matically find good “static” variable-orderings that capture glo-
bal properties of a given CNF formula.

The remainder of the paper is structured as follows. Section 2
motivates our reliance on hypergraph partitioning. Section 2.1
discusses the use of linear placement. Section 2.2 presents an ex-
ample of hypergraph partitioning. Section 3 describes applica-
tions to SAT and BDDs and provides experimental evidence of
the effectiveness of partitioning-based variable-ordering. Section
4 concludes the paper and provides perspective on future work.

2   Problem Partitioning
We first observe that Boolean functions arising in many ap-

plications represent spacial, logical or causal dependencies/con-
nections among variables. Therefore, processing “connected”
variables together seems intuitively justified. For example, if a
large SAT instance is not satisfiable because of a small group of
inconsistent variables, the variables in this group must be “con-
nected” by some clauses. If we can partition all variables into,
say, two largely independent groups, then such a function is like-
ly to be represented by a BDD with a small cut, i.e. there will be
relatively few edges between these two groups. BDDs with many
small cuts tend to have fewer edges, and therefore fewer vertices

(since every vertex is a source of exactly two edges). This intu-
ition suggests that we interpret CNF formulae as hypergraphs by
representing variables by vertices and clauses by edges. Two ver-
tices share an edge if the two corresponding variables share a
clause in the formula. Applying balanced min-cut partitioning to
such hypergraphs separates the original CNF formula into rela-
tively independent subformulae. Ordering the variables in each
part together would be a step towards ordering “connected” vari-
ables next to each other, as advocated earlier. Once the first par-
titioning is performed, the parts can be partitioned recursively.
This process can provide a complete variable-ordering. We note
that cuts of CNF formulae have been studied in [21], and instanc-
es having small cuts were theoretically shown to be “easy” for
SAT. Our work seeks constructive and efficient ways to amplify
the “easiness” of CNF instances with small cuts by finding good
variable-orderings. Additionally, Berman [1] related the size of
BDDs to circuit width.

2.1  Recursive Bisection and Hypergraph Placement

Recursive min-cut bisection of hypergraphs has been inten-
sively studied in the context of VLSI placement for at least 30
years. In particular, the recursive bisection procedure described
earlier for CNF formulae corresponds to the linear placement
problem [12], where hypergraph vertices are placed in one, rather
than in two, dimensions. It is well-known that placement by re-
cursive bisection leads to small “half-perimeter wire-length” that
translates back to small average clause span in CNF formulae.
Here we define the span of a clause with respect to a variable-or-
dering as the difference between the greatest and the smallest
variables in this clause (so that the span exactly corresponds to
the half-perimeter wirelength of a hyperedge). We can also define
the i-th cut with respect to a given ordering as the number of
clauses including variables with numbers both less than and
greater than i+0.5.

Observation: Given a variable-ordering, the total clause span
equals the sum of all cuts. The average clause span is proportional
to the average cut, and the coefficient is approximately equal to
the clause-to-variable ratio of the CNF formula.

Recursive bisection minimizes both average clause spans and
cuts, therefore we will use the leading-edge hypergraph placer
Capo [5] based on recursive min-cut bisection [6, 14]. Capo im-
plements several improvements to classical recursive bisection,
reducing the total clause span. Such techniques include bisection
with high balance tolerance and adaptive cut-line selection,
which allows greater freedom in partition sizes in order to im-
prove the cut. The underlying multi-level hypergraph partitioner
MLPart [6] outperforms the well-known hMetis [14], while both
rely on Multi-Level Fiduccia-Mattheyses (MLFM) partitioning
heuristics. Since the MLFM heuristic is randomized, it returns
different solutions on every call (we call it a start). On every call,
MLPart executes two independent starts and applies one V-cycle
to further improve the better solution.

We propose the following heuristic that orders variables in
CNF formulae (see Figure 1). An initial CNF formula (that may
originate from circuits or other applications) is converted into a
hypergraph (see Figure 2). An ordering of hypergraph vertices is
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then found via min-cut linear placement and translated back into
an ordering of CNF variables. The original CNF formula is reor-
dered and used (i) as input to an arbitrary SAT solver, or (ii) to
construct a BDD representation of the boolean function it repre-
sents. The results produced by SAT solvers and BDD manipula-
tions are then translated back into the original variable order.

    Note that this approach does not require modifications in
SAT solvers, BDD manipulation software or the min-cut placer.1

We call this heuristic MINCE (MIN-Cut, Etc.) and implemented
it by chaining publicly available software with PERL scripts.

To enable black-box reuse of publicly available software (Ca-
po), we ignore polarities of literals in CNF formulae. We note that
the oriented version of min-cut bisection has been extensively
studied in the context of timing-driven placement. In particular, a
small unoriented cut can be interpreted as an oriented cut which
is not greater. Vice versa, in most real-world examples, near-op-
timal oriented cuts can be found by unoriented partitioning.

Wood and Rutenbar have already used linear hypergraph
placement as a variable-ordering technique for BDD minimiza-
tion in 1998 [29]. However, they used spectral methods which en-
tail converting hyperedges to edges and then minimizing
quadratic edge length, rather than the half-perimeter (linear) edge
length. Spectral placement methods used in [29] do not appear to
have direct connection to cut minimization. As of 2001, spectral
methods for partitioning and placement are practically abandoned
due to their unacceptable runtime on large instances and poor so-
lution quality as measured by half-perimeter edge length. This
can be contrasted with min-cut placement that is among the fast-
est known approaches, provides good solutions and is obviously
related to cut minimization. 

        On the empirical side, our results with BDD minimization
presented below show that MINCE, by itself, outperforms vari-
able-sifting (used without static ordering) in both runtime and
memory. According to [11], as of 2000, variable sifting is the best
published dynamic variable reordering heuristic for BDDs with
near-linear performance.2 From this, we conclude that our pro-
posed technique outperforms all other published scalable ap-
proaches to BDD minimization. Of course, dynamic variable
reordering techniques can be applied on top of MINCE or can use
MINCE order as a tie-breaker. 

Applications that entail several BDD operations or solve sim-
ilar SAT problems can reuse the same static ordering for all runs.
On the other hand, since MINCE is randomized and returns dif-
ferent solutions every time it is called, it can also be used to per-
form random restarts of SAT solvers [10].

2.2  Illustration

Figure 2 illustrates the difference between a good and a bad
variable order for a CNF formula. We use the Capo placer to find
an ordering of vertices, i.e. variables, that produces a small total
(equivalent average) clause span. Figure 2(b) shows a sample or-
der returned by MINCE for the example described. The total span
of all clauses in this CNF formula is reduced from 8 to 4 by this
better variable order. In addition, the number of edges crossing
each variable (cut) is reduced. The original problem has a maxi-
mum variable cut (at variable ) of 3 which is reduced to 1 in the
MINCE order.

In general, structured problems such as the hole-n series of
benchmarks (e.g., hole-10, hole-11, etc.) are divided by MINCE
into several partitions. Figure 3 shows such an example. The ini-
tial variable order has average clause span and variable cut equal
to 74 and 20, respectively. In comparison, the new variable order,
has average clause span and variable cut equal to 17 and 4.7, re-
spectively. As shown in Figure 3(b), this reduction exposes the
problem’s structure. Our experiments show that such MINCE
variable-ordering generally speeds up SAT solvers and improves
runtime/memory of BDD manipulations.

Similar techniques and intuitions apply in related contexts.
For example, one can apply MINCE to DNF formulae rather than
CNF formulae. In this and related cases, one starts with a descrip-
tion of a Boolean function that is sparse, i.e., connects very few
groups of variables (by clauses, minterms, in terms of circuit con-
nectivity, etc.). Recursive partitioning orders the “connected”

1. Commercial EDA software can be used, e.g. Cadence QPlace.
2. Some generic or simulated annealing reordering algorithms can gene-

rate smaller BDDs but may incur longer runtimes.

Fig. 2: Example of (a) default vertex-ordering 
(b) improved vertex-ordering 
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variables close to each other. Since connections between vari-
ables often imply logical dependencies, min-cut orderings allow
SAT solvers and BDD engines to track fewer variables beyond
their neighborhoods.

3   Application of MinCut to SAT & BDDs
In this section, we present experimental evidence of the im-

provements obtained by MINCE. We used GRASP as our SAT
solver [23] and CUDD as our BDD engine [25]. Experiments
were conducted on a Pentium-II 333 MHz, running Linux with
512 MB RAM. We used the DIMACS [8] and the n-queens CNF
benchmarks, as well as flat versions of the ISCAS89 circuit
benchmarks [3] expressed in CNF. For all experiments, the CPU
time and memory limits were set to 10K seconds and 500 MB, re-
spectively.

SAT Experiment: Table I and Table II show runtime in sec-
onds for MINCE versus the dynamic MSTS, MSOS, DLCS and
DLIS orderings, as well as the static fixed variable-ordering [23].
“#I” denotes the number of instances solved by each decision
heuristic. The average variable cut is included for the original and
the MINCE variable orders. As the data clearly illustrate, decid-
ing on closely-connected variables leads to a reduction in search

time. Since “connected” variables are ordered next to each other,
this approach allows the solver to quickly identify and avoid un-
promising partial solutions. In other words, instead of deciding on
variables from separate partitions, one partition is considered at a
time. This approach is more effective on structured problems,
such as the hole-n or the n-queens problem, which consist of mul-
tiple partitions. On these problems, MINCE finds variable orders
compatible with the problem’s structure, and this speeds up SAT
solvers and BDD engines. For example, a speedup of 16, 16, 16,
14, and 9, was obtained for the hole-10 benchmark over the
MSTS, MSOS, DLCS, DLIS, and fixed decision heuristics, re-
spectively. MINCE also achieved significant speed-ups over oth-
er decision heuristics for large instances from the n-queens set.
Particularly, none of the dynamic or fixed decision heuristic were
able to solve the nqueens-35 instance in 10K seconds, but it was
solved in less than 320 seconds using MINCE. 

In general, GRASP run time is almost always reduced when
the recursive bisection ordering is used. However, for particularly
easy1 SAT instances recursive bisection itself requires more time
than GRASP2 with either fixed, MSTS, MSOS, DLCS, or DLIS
ordering. Observe that MINCE has a worst- and best-case perfor-
mance of . On the other hand, SAT problems have an
exponential worst-case and a best-case of , where N is the
number of variables. Hence, MINCE should be useful in solving
instances that otherwise require exponential runtime, but unhelp-
ful in solving easy instances. 

To explore the variability of orders returned by independent
random starts of MINCE, we applied GRASP to three different
orders of benchmark ii32d3.cnf, generated by MINCE. Two cas-
es time out in 10K seconds and the third was solved in 14.8 sec-
onds. This empirically confirms the heavy-tail distribution theory
for SAT instances [10] and suggests that a solution can be pro-
duced in 60 seconds if multiple starts of the SAT solver are
launched with a 20-sec time-out (MINCE took 55 seconds per or-
der on that instance, which is negligible compared to a 10K time-
out).

Although not presented in the tables of results, we tested the
given benchmarks using the SATO SAT solver [30]. SATO im-
plements an intelligent dynamic decision heuristic and was able

Benchmark #I
MSTS MSOS DLCS DLIS Fixed MINCE Avg Var Cut

#I Time #I Time #I Time #I Time #I Time #I Order + Solve = Total Fix New
aim 72 72 2.61 72 3.16 72 3.81 72 6.71 72 2.72 72 148 2.94 150 11676 6542
bf 4 4 2.63 4 4.97 4 2.56 4 2.3 3 10019 4 50.5 2.1 53 2853 440
dub 13 13 29.06 13 18.12 13 2.15 13 2.73 13 0.71 13 6.91 0.69 7.6 1717 106
hanoi 2 1 10005 1 12267 0 20000 0 20000 2 83.13 2 42.8 83.8 127 408 321
hole 5 3 26956 2 30193 4 11705 5 9466 5 6287 5 4.07 660 664 581 108
ii16 10 10 5407 10 6189 8 20259 9 10321 10 17685 10 543.2 1832 2375 76466 7935
ii32 17 16 11063 16 11187 17 9492.6 17 4.94 15 20598 16 399.8 10028 10428 49616 11531
ii8 14 14 2.98 14 2.75 14 8.79 14 7.99 14 1.04 14 207.9 0.74 209 25396 2749
jnh 50 50 5.08 20 6.58 50 6.48 50 8.51 50 27.62 50 395.3 31.9 427 25952 22701
par16 10 10 21652 10 20470 8 27708 9 21855 10 2536 10 65.8 1477 1543 4789 879
par8 10 10 0.19 10 0.21 10 0.22 10 0.22 10 0.21 10 11.8 0.22 12 1613 436
pret 8 8 0.72 8 0.68 8 0.7 8 0.66 8 0.59 8 3.94 0.52 4.5 865 138
ssa 8 8 97.33 8 12.63 8 3.73 8 2.44 6 20001 8 161 5.38 166 6104 768
Total 223 219 75224 218 80355 216 89193 219 61679 218 77242 222 2040 14124 16164 208036 54654

TABLE I: Summary  of  GRASP  runt imes fo r  the  DIMACS set  (winning and to tal  run t imes  are  in bold) .

Selected
Instances

MSTS
Time

MSOS
Time

DLCS
Time

DLIS
Time

Fixed 
Time

MINCE
Order +Solve =Total

aim100-2n2 0.04 0.02 0.01 0.01 0.01 0.72 0.01 0.73
bf0432-007 1.72 3.85 1.74 1.48 10K 7.34 1.6 8.94
hanoi4 4.54 2267 10K 10K 1.75 8.8 1.66 10.5
hole8 6879 10K 140 70.3 61 0.44 6.44 6.88
hole9 10K 10K 1556 752 623 0.53 52.8 53.3
hole10 10K 10K 10K 8637 5597 1.94 599 601
ii16b1 174 217 10K 10K 4840 90.7 0.47 91.2
ii16b2 133 153 71.3 238 5507 53.2 1.38 54.6
ii32c4 650 696 24.9 1.24 10K 84.3 6.11 90.4
par16-2-c 1321 1325 2469 3570 184 3.16 110 113
par16-5 7329 7348 315 10K 111 11.3 14.4 25.7
pret150_25 0.15 0.13 0.14 0.12 0.12 0.62 0.14 0.76
ssa0432-003 0.04 0.04 0.06 0.05 0.06 1.91 0.03 1.94
ssa2670-141 95.2 9.78 2.15 1.1 10K 6.9 1.41 8.3
Nqueens-20 482 1485 23 24.9 3160 40 0.31 40.3
Nqueens-25 10K 10K 178 183 94.9 93 0.79 93.4
Nqueens-30 10K 10K 5233 5402 10K 217 2.27 219
Nqueens-35 10K 10K 10K 10K 10K 317 1.06 318

TABLE II: GRASP runt i mes fo r  s elec ted  benchmar ks 
from the  DI MACS se t  and t he n-queens  probl em.

1. We define easy instances as those that can be solved in near-linear time.
2. Same is expected with comparable and faster solvers, e.g. Chaff [18].

Θ Nlog
2
N( )

Θ N( )



to solve the given DIMACS benchmarks in approximately 45,000
seconds (4 instances timed-out after 10,000 seconds) as opposed
to 16,200 seconds using GRASP with recursive bisection order-
ing. However, for some instances, SATO was faster. MINCE
failed to generate effective variable-orderings for these instances,
since most of them were not structured. 

Our preliminary experiments with the recently published
Chaff SAT solver [18] indicate that MINCE is not helpful on
most standard benchmarks. This, in part, is due to the highly op-
timized implementation of Chaff, but is also explained by the rel-
ative simplicity of the instances. Indeed, if an instance of an NP-
complete problem is solved in near-linear time by a generic algo-
rithm, this instance must be easy. Note, however, that while the
worst-case complexity of both GRASP and Chaff is exponential,
MINCE always runs in near-linear time, perhaps with a greater
constant. Finally, even when MINCE’s runtime makes it prohib-
itively expensive for a particular SAT instance where it reduces a
solver’s runtime, capturing the instance structure may lead to a
better understanding and be useful for practical purposes.

BDD Experiment: Table III shows the BDD construction
runtimes for circuit consistency functions of the ISCAS89 circuit
benchmarks and selected Boolean functions from the DIMACS
set. Note that this is not representative of symbolic state traversal,
but is a standard experimental procedure for evaluating BDD
packages [13]. The table shows runtimes (sec) and numbers of
nodes (K) in BDDs constructed using the fixed, random, fixed
with sifting, random with sifting, and MINCE orderings, respec-
tively. Clearly, the MINCE ordering leads to faster and smaller
BDDs. In terms of circuits, this can be explained by MINCE or-
dering the gates to minimize the “total length of wires”. MINCE

enabled the BDD construction for all 16 ISCAS89 circuits as op-
posed to only 10 with sifting and 1 with a fixed variable-ordering.
MINCE’s ordering time is negligible in most cases. MINCE re-
duced the average variable cut for the ISCAS89 circuits from 200
to 26, and for selected DIMACS benchmarks from 178 to 34. The
technique is simple and easy to use in practice. Its static nature al-
lows for a variety of applications where dynamic approaches fail.

4   Conclusions & Future Work
Our work proposes a static variable-ordering heuristic

MINCE for CNF formulae with applications to SAT and BDDs.
The main advantage of this heuristic is its very good performance
on standard benchmarks in terms of implied runtime of SAT solv-
ers as well as memory/runtime of BDD primitives. We believe
that this is due to the fact that the proposed variable-ordering is
global and relies on high-performance hypergraph partitioning
and placement (MLPart [5] and CAPO [6]). Unlike problem-spe-
cific dynamic variable-ordering heuristics, such as DLCS, DLIS,
and variable-sifting, MINCE can be implemented once and used
for different applications without modifying the application code.
Given that MINCE shows strong improvements in seemingly un-
related applications (SAT and BDD) and for a wide variety of
standard benchmarks, we believe that it is able to capture struc-
tural properties of CNF instances. For example, when a CNF for-
mula is created from a circuit, it is not difficult to see that MINCE
essentially performs recursive partitioning and linear placement
of this circuit, and then orders variables so that respective circuit
elements are located near each other on average. In general, this
technique should have better impact on BDDs, since they are
more sensitive to variable-ordering than SAT. SAT solvers can

Instance
Fixed Random Fixed-Sifting Random-Sifting MINCE

Avg Cut
Build Max Build Max Build Max Build Max Time

Order + Build = Total
Max

Time Node Time Node Time Node Time Node Node Fix New
s208.1 timeout timeout 14.8 6.4 21.57 13.6 0.88 0.66 1.54 3.4 104 16
s27 0.06 0.2 0.07 0.2 0.08 0.2 0.08 0.2 0.18 0.07 0.25 0.07 11 5
s298 timeout timeout 47.83 28.0 56.55 26.8 0.97 3.03 4 14.5 157 28
s344 timeout timeout 525.1 130.5 703.45 192.1 1.28 7.48 8.76 14.2 137 17
s349 timeout timeout 267.78 83.3 707.24 248.3 1.36 10.77 12.13 19.3 149 18
s382 timeout timeout 159.08 88.2 113.25 32.6 1.23 5.48 6.71 13.6 176 26
s386 timeout timeout 258.12 96.7 168.84 48.0 1.8 91.74 93.54 310.4 172 55
s400 timeout timeout 564.91 193.9 292.7 114.9 1.12 5.8 6.92 20.0 182 26
s420 timeout timeout 361.84 93.9 590.79 122.5 1.47 4.69 6.16 17.7 183 19
s444 timeout timeout 252.83 85.0 605.12 241.9 1.71 5.02 6.73 7.7 192 25
s526 timeout timeout timeout timeout 2.92 17.74 20.66 37.7 271 42
s526n timeout timeout timeout timeout 1.99 10.35 12.34 18.45 262 40
s641 timeout timeout timeout timeout 2.35 42.12 44.47 158.9 190 23
s713 timeout timeout timeout timeout 2.86 62.86 65.72 174.3 216 25
s838.1 timeout timeout timeout timeout 3.74 105.46 109.2 147.8 419 29
s838 timeout timeout timeout timeout 3.82 322.13 325.95 885.6 366 29
aim-100-1_6-no-1 0.55 33.0 0.45 18.9 0.33 3.1 0.45 3.5 0.72 0.08 0.8 0.2 84 32
dubois50 timeout timeout 12.36 3.2 14.66 4.3 0.69 0.25 0.94 0.4 201 11
hole10 26 131.1 116.43 3390.7 12.75 19.0 12.37 19.0 1.46 0.38 1.84 19.5 201 30
hole8 2.08 20.2 4.43 145.4 3.01 5.1 3.03 4.1 0.44 0.14 0.58 3.8 108 21
hole9 7.74 52.2 23.3 810.5 5.37 8.5 5.5 10.2 0.62 0.2 0.82 8.7 149 25
ii8a1 25.71 372.0 timeout 4.43 7.2 7.22 6.8 0.89 1.18 2.07 17.6 75 20
par16-1-c 535.65 893.8 timeout 1826 500.5 2140 434.2 3.84 115.71 119.55 171.5 271 101
par8-1 133.14 90.7 113.37 160.0 88.38 34.5 97.35 28.6 2.43 32.07 34.5 36.2 253 39
pret150_25 timeout timeout 649 271.6 302.82 156.1 0.7 1.01 1.71 3.4 152 18
ssa0432-003 timeout timeout timeout timeout 2.83 29.87 32.7 168.7 287 46

TABLE II I : S tat i s t ic s  fo r  cons truct ing t he BDDs o f  the ISCAS89 Circui ts  and Selected DIMACS Benchmarks



reduce the damage incurred by a bad variable-ordering using the
addition of conflict-induced clauses (a conflict clause connects
literals of related variables even if they are very far from each oth-
er in the ordering).

We note that our use of a finely-tuned standard-cell placer
Capo results in better average cuts and clause spans than one ex-
pects from a “vanilla” recursive bisection (e.g., as commonly im-
plemented with hMetis). This black-box software reuse is
enabled by the pure preprocessing nature of the proposed tech-
niques (we use GRASP as a black-box too). We hope that this
will also enable its easy evaluation and adoption in the industry.

Our on-going work addresses additional types of benchmarks,
better justifications of the MINCE heuristic and also analyses of
the cases when it fails to produce near-best variable-orderings.
An important research question is to account for polarities of lit-
erals. We are aware of work conducted in [28] which is similar to
ours. Our colleagues use hMetis, modify the source-code of
GRASP and attempt to account for polarities of literals by post-
processing. Comparisons of preliminary results show that
MINCE is surprisingly successful without using polarities of lit-
erals. We are also looking into further improving the runtimes by
detecting symmetries in the problem’s structure. A public-do-
main implementation of MINCE is available at http://andan-
te.eecs.umich.edu/mince.
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