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Abstract

This work focuses on congestion-driven placement of standard
cells into rows in thefixed-diecontext. We summarize the state-
of-the-art after two decades of research in recursive bisection
placement and implement a new placer, calledCapo, to em-
pirically study the achievable limits of the approach. From
among recently proposed improvements to recursive bisection,
Capo incorporates a leading-edge multilevel min-cut partitioner
[7], techniques for partitioning with small tolerance [8], optimal
min-cut partitioners and end-case min-wirelength placers [5],
previously unpublished partitioning tolerance computations, and
block splitting heuristics. On the other hand, our “good enough”
implementation doesnotuse “overlapping” [17], multi-way par-
titioners [17, 20], analytical placement, or congestion estima-
tion [24, 35]. In order to run on recent industrial placement in-
stances, Capo must take into account fixed macros, power stripes
and rows with different allowed cell orientations. Capo reads
industry-standard LEF/DEF, as well as formats of the GSRC
bookshelf for VLSI CAD algorithms [6], to enable comparisons
on available placement instances in the fixed-die regime.

Capo clearly demonstrates that despite a potential mismatch
of objectives, improved mincut bisection can still lead to im-
proved placement wirelength and congestion. Our experiments
on recent industrial benchmarks fail to give aclearanswer to the
question in the title of this paper. However, they validate a se-
ries of improvements to recursive bisection and point out a need
for transparentcongestion management techniques that do not
worsen the wirelength of already routable placements. Our ex-
perimental flow, which validates fixed-die placement results by
violation-free detailed auto-routability, provides a new norm for
comparison of VLSI placement implementations.

1 Introduction

Standard-cell placement is a critical step in modern VLSI design
automation flows and has captured the interest of both academic
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and industrial researchers for over two decades. Min-cut place-
ment methods [3, 13] take a divide-and-conquer approach, re-
cursively applying min-cut bisection to embed the netlist into
the layout region. Thedivide step is now commonly imple-
mented with the Fiduccia-Mattheyses heuristic [16, 4] or deriva-
tives. The mincut placement tool CPlace [32] was heavily used
in the design of IBM’s RS 6000 and PowerPC chips (e.g., 601,
603, 604, 620 and derivatives) [33]. A breakthrough in min-cut
partitioning came in 1997 when [19] and [2] validated the mul-
tilevel partitioning paradigm for hypergraphs with their highly
successful implementations. Moreover, multilevel implementa-
tions have significantly improved since then, e.g.,hMetis —
the implementation presented in [19] — has improved by as
much as 30% on some benchmarks in its more recent revisions.
Yet, it is not known whether improved partitioning techniques
still improve placement by recursive bisection, or whether they
increase routability problems due to underutilization of routing
resources along the cut lines.

Numerous other placement heuristics have been proposed as
well, including force-directedandquadratic placement[37, 10,
31, 21] (PROUD, GORDIAN),analytical placement with linear
wirelength[25] (GORDIAN-L), general non-linear optimization
[26, 22] (RITUAL, POPINS),flow methods[12, 34, 18],simu-
lated annealing[28] (TimberWolf) as well as rather recent ex-
otic methods [15]. Most approaches have been extended to han-
dle timing-driven placement in some way or another and, to
make comparisons more difficult, have been combined with each
other to form hybrids1. Among extensions to recursive bisec-
tion, applications of multi-way partitioning with geometric ob-
jectives [27, 17] and extensions for congestion-driven placement
[24, 30] stand out ([24] is primarily directed at the variable-die
context). Efforts to compare placements produced by different
algorithms have been only marginally successful, due partly to
the differences infixed-dieandvariable-dieformulations as well
as non-trivial routability issues. A rare emprical comparison is
described in [12].2

Successful attempts at “simpler but good enough” or “sim-
pler but better” placement algorithms have been made more re-
cently. In such works, one shows that certain techniques domi-

1E.g., [22] combines recursive min-cut bisection with non-linear timing mod-
els, [37, 31] combine partitioning and quadratic placement, and [34] uses network
flow methods with quadratic placement.

2During the “TimberWolf Hunt”, a combination of (analytical) GORDIAN-
L [25] and DOMINO I (based on network flows) produced better solutions than
TimberWolf (based on simulated annealing) using one-fifth the CPU time on the
same variable-die benchmarks — both bounding-box and routed wirelength were
measured in addition to runtime. On the largest design, with about 100,000 cells,
the wirelength improvement was 22%. According to [12], GORDIAN-L alone
produced better solutions than TimberWolf SC 5.4 and used only one-eighth the
CPU time.
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nate others, and/or builds a successful placer using only a small
number of techniques (thus showing that other techniques are
not necessary). For example, two papers presented back to
back at the 1997 Design Automation Conference claimed that
wirelength-driven VLSI placement can be successful (i) via re-
cursive bisection and without analytical placers [1] and also (ii)
via analytical placement and network flow methods without hy-
pergraph partitioning [34]. Such conclusions are not necessarily
contradictory. They help the practitioner to build simpler imple-
mentations and may point out obsolete approaches, just as recent
works on ML-FM partitioning eclipsed the body of spectral par-
titioning.

While placement implementations are typically compared
by their half-perimeter wirelength, we know of no published
works that empirically confirm the correlation between better
half-perimeter wirelengthand betterrouted wirelengthfor high-
quality placements. Of course, minimum wirelength with 100%
auto-routability –not half-perimeter wirelength – is the objec-
tive of placement. Thus, our experimental flow includes a com-
mercial placer and router from the same vendor and also allows
using the router on placements produced by our Capo placer. If
a placement can be routed without a single violation, we com-
pare routed wirelength; otherwise, we considerplacementa fail-
ure. We evaluate Capo on seven recent industrial circuits that
can be placed and routed by the commercial tools we use. Capo
succeeds on six of those and leads to better routed wirelength on
five. In three of the six successful cases, better routed wirelength
correlates with half-perimeter pre-routed wirelength. However,
the only unroutable placement also has a better half-perimeter
wirelength than the output of the commercial placer.

The main contributions of our work are the following:

� a strong recursive bisection implementation relying on a
small number of recent portable techniques, but without
any explicit congestion management;

� several new and easily implemented techniques for recur-
sive bisection, including hierarchical tolerance computa-
tions and block splitting heuristics;

� empirical routability evaluation on recent industrial test
cases with 0.1-30% whitespace, by running a leading com-
mercial router on Capo placements;

� demonstration that improved mincut bisection still typi-
cally improves placements produced by recursive bisec-
tion;

� demonstration thatk-way partitioning, “overlapping”, an-
alytical placement and explicit congestion evaluation are
not necessary to produce routable placement of many cir-
cuits with 10-50K cells;3 and

� demonstration of the need for “transparent” conges-
tion management techniques that do not adversely affect
routable placements.

2 Top-Down Placement
2.1 The framework

Top-down algorithms seek to decompose a given placement
instance into smaller instances by subdividing the placement

3We believe that the upper bound can be pushed significantly higher in the near
future. Our results for circuits with smaller than 10K cells are also good, but we
expect many techniques, including simulated annealing, to also be “good enough”
for these. Similar qualifications of the “field of use” have been made for previous
works (e.g., [26]).

region, assigning modules to subregions, reformulating con-
straints, and cutting the netlist — such that good solutions to
smaller instances (subproblems) combine into good solutions
of the original problem. In practice, such a decomposition
is accomplished by multilevel min-cut hypergraph partitioning
[2, 19, 20] that attempts to minimize the number of nets incident
to nodes in multiple partitions. Each hypergraph partitioning
instance is induced from a rectangular region, orblock, in the
layout. Conceptually, a block corresponds to (i) a placement re-
gion with allowed locations, (ii) a collection of modules to be
placed in this region, (iii) all nets incident to the contained mod-
ules, and (iv) locations of all modules beyond the given region
that are adjacent to some modules in the region (considered as
terminalswith fixed locations). Cells inside the block are rep-
resented as hypergraph nodes, and hyperedges are induced by
nets incident to cells in the blocks. Node weights represent cell
areas, and partitioning solutions must have approximately equal
total weight in all partitions. Otherwise, some blocks may have
more cells than can possibly be placed inside without overlaps.

The top-down placement process can be viewed as a se-
quence of passes where each pass examines all blocks – blocks
can be skipped, leaving them intact for the next level, or refines
the block into two smaller blocks. These smaller blocks will
collectively contain all the layout area and cells that the original
instance did. When recursive bisection is applied, careful choice
of vertical versus horizontal cut direction is important, as was
shown in [30]: this choice may influence wirelength and rout-
ing congestion in resulting placement solutions. In this work we
choose cut directions as in [5].

In attempting to improve basic recursive bisection, many re-
searchers note that it eventually produces multi-way partition-
ings which could be alternatively achieved by direct methods
using wirelength-like multi-way objectives [27, 17].4 However,
recent progress in efficient mincut partitioning has not been
matched by wirelength-like optimization, and leading-edge re-
cursive bisection typically produces very good solutions com-
pared to other multi-way partitioning methods [20, 36].

2.2 Terminal propagation

Terminal propagation [13] is, perhaps, the most widely misun-
derstood concept in top-down placement, yet is essential to the
success of the approach. When a particular placement block is
split into multiple subregions, some of the cells inside may be
tightly connected to external cells (“terminals”) placed close to
the subregions. Ignoring such connections allows a bigger dis-
crepancy between good partitioning solutions and solutions that
result in better placements. On the other hand, external termi-
nals are irrelevant to the classic partitioning formulation as they
cannot be freely assigned to partitions, due to their fixed sta-
tus. A compromise is possible by using an extended formulation
of “partitioning with fixed terminals”, where the terminals are
considered to be fixed in (“propagated to”) one or more parti-
tions, and assigned zero areas (original areas are ignored). Ter-
minal propagation has been described in [27, 17, 5] and is typ-
ically driven by the geometric proximity of terminals to subre-
gions/partitions. In this work we use terminal propagation as
described in [5], which we have found difficult to improve.

2.3 Practical aspects and critiques

In a specific implementation of recursive bisection, the strength
of the partitioning heuristics must be matched with the empirical
difficulty of the partitioning instances — otherwise, either CPU

4Most multi-way objectives degenerate to net-cut when there are only two par-
titions.



time or solution quality may be neglected. In this work we use
flat FM instead of MLFM for instances with 200 or fewer cells.

Common critiques of top-down placement include underuti-
lization of routing resources along higher-level cutlines, which
can be seen as “bald areas” of top-down placements. It is pos-
sible, however, that (a) good placement solutions with “bald ar-
eas” exist, (b) bald areas are not harmful during routing, or (c)
“bald areas” can be filled by detailed placement. Another crit-
icism of recursive bisection suggests that it is not as relevant
to placement as multi-way partitioning with wirelength objec-
tives. However, in practice, recursive bisection often produces
good solutions both with respect to multi-way netcut [20, 36]
and wirelength objectives.

We also note that terminal propagation is only a crude ap-
proximation of the layout geometry — it is often impossible to
say whether a particular cell will end up close to one subregion
or another. In other words, top-down placement has to make a
number of uninformed decisions which are irreversible because
cells assigned to a block can never leave. As a possible work-
around, [17] and other works use “overlapping”, where neigh-
boring blocks can be merged together and repartitioned. How-
ever, our experiments indicate that overlapping becomesless
usefulwith stronger partitioners.

Yet another complication in top-down placement is the tight
tolerance with which balanced hypergraph partitioning prob-
lems must be solved — a detailed description is available in
[14], where a new technique is proposed to address the prob-
lem. However, their modifications to the Fiduccia-Mattheyses
heuristic are rather complex and significantly increase run time
in exchange for modest quality improvements. This work pro-
poses a new approach, which is computationally trivial (has
small constant-time overhead) and also uses easy-to-implement
“repartitioning” techniques from [8].

3 Our Implementations and New Heuristics

We now describe our implementation of recursive bisection in
Capo, which incorporates several recently proposed techniques
as well as several novel elements. Besides such improvements,
we greedily optimize cell orientationsafter recursive bisec-
tion. Such optimization reduces wirelength and considerably
improves routability on some benchmarks.

3.1 Improved FM and MLFM implementations

We perform min-cut hypergraph partitioning for more than
200 cells using our modular implementation [7] of multilevel
Fiduccia-Mattheyses heuristic [2, 19]. Its major component —
an implementation [4] of the “flat” FM heuristic [16] — is also
used independently for instances with 35-200 cells. Smaller in-
stances are solved optimally with branch-and-bound.

In order to address the problem of small partitioning tol-
erance (described in Section 2.3), we utilize “uncorking” and
“repartitioning” techniques recently proposed in [8]. The “cork-
ing” effect may degrade performance of an ordinary FM im-
plementation when a large cell at the head of a bucket cannot
be moved to the other partition without violating balance con-
straints. In this case, smaller cells further in the same bucket
will not be considered for moves as the bucket is temporarily
invalidated (see [4, 8] for details). “Uncorking” prevents large
cells from being in the buckets in the first place and significantly
improves expected solution quality without incurring runtime
penalties. “Repartitioning” refers to chained FM calls on the
same partitioning instance. The first call is performed with a
much larger tolerance that requested — to ensure mobility of all
cells. The tolerance gradually decreases to the original value in

subsequent calls. Uncorking and repartitioning together signifi-
cantly improve the flat Fiduccia-Mattheyses heuristic.

Our multilevel FM implementation [7] matches or improves
upon the current versions ofhMetis [19] in its trade-off be-
tween solution quality and runtime. Additionally, a single start
of our implementation is extremely fast. While having several
new elements, our implementation relies on a smaller set of
heuristics thanhMetis [19] and may be easier to replicate (for
example, we always use exactly oneV-cycle and nov-cycles;
we use no “hyperedge removal”). Our experiments show that a
strong multilevel partitioner is essential for achieving competi-
tive placements of modern circuits; in particular, when we in-
creased the number of MLFM starts for the first few placement
levels in Capo, the average placement quality improved. In ex-
periments below we vary the number of starts per partitioning.
The default configuration of Capo uses the best of two parti-
tioning sets, where a set is two independent starts followed by
a V-cycle. An accelerated configuration uses only one such set
per partitioning.

3.2 Block splitting heuristics

When comparing recursive bisection to direct multi-way parti-
tioning, we note that it offers an easier control over the geome-
tries of subregions. Indeed, different choices of vertical or hor-
izontal cutlines and their precise location can result in a variety
of placement block configurations. Choosing a complex block
configuration for multi-way partitioning directly may be rather
difficult. To exploit this advantage, we note that the choice of
cutline location is significantly affected by its being across or
along the rows. A straight-line cut perpendicular to rows can
take a much larger set of locations, while straight-line cuts par-
allel to rows can effectively be only between rows. Therefore,
when splitting a block by a vertical cutline, we first partition the
hypergraph with a rather lax tolerance of 20% andthenchoose
the cutline to equalize cell density in the resulting left and right
subregions. Modifications to this “cutline adjustment” heuris-
tic are needed to account for power stripes, fixed macro blocks
and other obstacles in the layout (i.e., a prospective cutline that
would cut too small a piece off some row will be vetoed by a spe-
cialized checker). Adjusting the cutline after partitioning effec-
tively avoids partitioning with small tolerance, resulting in better
partitionings and placements. Unfortunately, cutline adjustment
is not possible when partitioning parallel to rows because the
discreteness of the rows leaves few options for adjustment, and
partitioning with small tolerances is inevitable in such cases. For
more details and discussions of our block splitting techniques,
see [5].

3.3 Hierarchical tolerance computations

We propose a new approach to address partitioning with small
tolerances (a problem noted earlier). We find the maximal “rea-
sonable” tolerance through careful accounting of the difference
betweenavailable site areaand total cell areain every place-
ment block (whitespace). Our technical report [9] observes that
the requirement that cells do not overlap can be relaxed by re-
quiring positive whitespace in every placement block. It studies
relative whitespace w, i.e., percentage of total cell sites that will
not be occupied by cells. Relaxed constraints in terms ofw be-
come tractable very early in top-down placement, helping to en-
sure that actual non-overlapping constraints are satisfied. For
example, the formulae below imply that when two placement
blocks of identical geometry are partitioned with horizontal cut-
lines, the one having more whitespace can have a bigger parti-
tioning tolerance.



Relative whitespacew in a block is proven to be a con-
vex linear combination of relative whitespace valuesw0 and
w1 in its sub-blocks [9]. Therefore, relative whitespace de-
teriorates in one of the sub-blocks and grows in the other.
When w is very close to zero, one of the sub-blocks often
ends up havingnegative whitespace() overlapping cells) due
to number-partitioning reasons, especially when cell sizes vary
greatly. Boundingwhitespace deteriorationby a fixed percent
per level, [9] computes maximal whitespace deterioration for a
given placement block using geometric summation. This leads
to two formulae for partitioning toleranceτ in a given block:

τ =
(1�α)w

1�w
; α =

n+1
p

1�w� (1�w)

w n+1
p

1�w
; n= dlog2 Re (1)

wherew is relative whitespacein the current block (e.g., 0:1 for
90% utilization) andR is the number of rows in the block. Ex-
periments in [9] suggest that such tolerance computation prac-
tically prevents cell overlaps in recursive bisection and can im-
prove results of top-down placement. Finally, we note that the
above considerations are not useful in the variable-die context as
whitespace can often be added by enlarging placement blocks.5

3.4 Optimal partitioners and end-case placers

Our recent work [5] demonstrated the exceptional utility of opti-
mal branch-and-bound partitioners on instances with up to 30-35
nodes. The Capo placer uses the same end-case placer for single-
row blocks with up to 7-8 cells and also a somewhat improved
optimal partitioner that splits blocks at several layers before end-
cases. The thresholds for optimal partitioners and end-case plac-
ers are tuned so that those algorithms do not significantly af-
fect the overall placement runtime (dominated by MLFM and
flat FM). In particular, we introduce a time-out for branch-and-
bound partitioners, upon which the best-seen but not necessarily
optimal solution is given to flat FM as initial solution. Time-
out is reached on partitioning instances that are pathological for
branch-and-bound (other instances are solved optimally), and
these appear typically very easy for FM.

Notably, the use of optimal partitioners addresses the prob-
lem of iterative partitioning with small tolerance (studied in [14]
and in this work)by avoiding the use of iterative partitioners.
This is especially convenient because, as explained in [5], the
problem becomes more pronounced on small partitioning in-
stances.

4 Empirical Validation

We first describe the differences between the fixed-die and
variable-die placement methodologies and note that fixed-die
placement is much more common today. This motivates our
choice of the fixed-die placement context. We then describe our
experimental flow and empirical results.

4.1 Fixed-die placement versus variable-die placement

Standard-cell row-based placement and routing can be per-
formed in two major ways: variable-die or fixed-die. Variable-
die methodology dates back to 2-layer metal (2-LM) processes
and often minimizes chip area. Fixed-die methodology is the
modern standard, and is appropriate to N-layer metal (N-LM)
processes,N > 3. It is typically applied to design blocks rather
than whole chips, therefore the block geometry and area are

5Enlarged placement blocks can be used for minimizing congestion in the
variable-die context (e.g., see [24]), but are harder to handle in the fixed-die con-
text.

fixed — minimized are congestion and timing. Details of the
two regimes are as follows.

Variable-die Inter-row spacings, row lengths and sometimes
even the number of rows (e.g., in TimberWolf) may not
be fixeda priori, but rather are determined during place-
ment and routing. In particular, congestion is relieved by
spreading rows (increasing the number of tracks between
consecutive rows). Channel routers are typically used with
the variable-die approach. Issues such as “feedthrough in-
sertion” appear in relevant literature, because of the 2-LM
standard-cell heritage.

Fixed-die The number/geometry of cell sites in cell rows are
fixed before placement. In particular, all inter-row spac-
ings are fixed. The fixed-die approach has its heritage
from gate-array methodology. Area routers are typically
used. (Routability thus becomes paramount: (i) conges-
tion analysis and hot-spot removal, and (ii) floorplan (site
map) optimization, become key parts of the P&R strategy.)
The use of fixed-die approaches is driven by (hierarchical)
design methodology: the presence of macros, a fixed floor-
plan, and fixed power and clock distribution networks to-
gether make the variable-die approach less relevant today.
Fixed-die is also driven by the process: with N-LM pro-
cesses blocks have high site utilization (< 1% of whites-
pace is not uncommon); the use of “double-back” (shared
power/ground rail) cell row architecture also fixes the row
pitch.

LEF/DEF formats from Cadence Design Systems, Inc. are
based on the fixed-die data model. Hence, all P&R tools that
natively work with LEF/DEF follow the fixed-die data model.6

Comparisons of placement results for fixed-die placers versus
variable-die are not straightforward and should, at minimum,
take the area and the shape of the die into the account.

The only set of sizable publicly available placement in-
stances (“MCNC benchmarks” [23]) is variable-die, and certain
row/layout information is missing. Unfortunately, the placement
literature is full of conflicting interpretations of those bench-
marks, which inhibits conclusive comparisons. Fixed numbers
of rows used in [15] differ from those in [23], and there is no
indication of the row lengths in final placements. TimberWolf
[28] may adjust row spacing to improve routing, but other re-
searchers report wirelength for rows packed tightly. Since the
original testcases contain no pad locations, each pad is assigned
a side of the layout region. Pad placement methodology (be-
fore, during or after placing core cells) can significantly affect fi-
nal wirelength, but no recent works present their pad placement
methods when reporting wirelength results. The combination
of these effects can easily outweigh reported improvements due
to new placement techniques, making MCNC testcases a ques-
tionable benchmarking platform until standard comparisons are
established.

4.2 Our experimental flow

To evaluate routability, our experimental flow combines a fixed-
die placer (which we run in congestion-driven mode) and a
matching router from the same vendor. The flow allows swap-
ping in our Capo placer for the commercial placer. While Capo
always places cells in legal sites without overlaps with other
cells, power stripes or other obstacles, more subtle violations

6One variable-die placer is distributed by InternetCad (formerly TimberWolf).
While academic literature has used TimberWolf for comparison, to our knowledge
all startup efforts as well as P&R offerings from major vendors (Avant!, Cadence,
Mentor, Synopsys) are using the fixed-die model for standard-cell blocks.



(notably pin access collisions with M2 and higher geometries)
can occasionally occur, i.e., Capo’s legalization capability is in-
complete. As a safety net, we run the industrial placer in its
ECO mode to fix any violations in the Capo result. Such fixes
are performed almost instantaneously, never improve wirelength
and sometimes increase it by several percent. Currently, we do
not have alternatives to this in our flow, but contend that such
ECO “legalization” cannot possibly make Capo look better and
does not affect the positive results of our experiments.

If a placement can be routed without a single violation, we
look at the routed wirelength; otherwise, we considerplacement
a failure. We evaluate Capo on seven recent industrial circuits
that can be placed and routed by the commercial tools we use.
To empirically evaluate the routing difficulty of these designs,
we also present the results of running our placer in “fast mode”.
Here Capo performs 1=2 as many partitioning starts on each
block, generally resulting in lower solution quality but faster
runtime.

4.3 Experimental results

Statistics for seven industrial benchmarks in Cadence LEF/DEF
format are given in Table 1 together with performance results
of our placer in regular (“UCLA Capo”) and fast (“Capo-Fast”)
modes. The performance of the industrial placer is given in the
same table for comparison. Capo produces fully routable place-
ments on six of these testcases, leads to better routed wirelength
on four and ties on one (i.e., routed WLs within 1%). In three
of the six successful cases, better routed wirelength correlates
with half-perimeter pre-routed wirelength, however, the only un-
routable placement has a better half-perimeter wirelength than
that produced by the commercial placer. We observe that better
routed wirelength often accompanies faster router runtimes and
that more accurate partitioning is important to solution quality
(the accelerated configuration does not achieve as good results
as the regular one).

5 Conclusions and Open Questions

We evaluate the routability of placements produced by recur-
sive bisection. Our implementation does not use explicit conges-
tion management techniques, yet produces fully routable place-
ments on six out of seven recent industrial benchmarks. In
three of those six cases, better half-perimeter wirelength corre-
sponds to better routed wirelength. The single unroutable place-
ment solution does not fall into this trend as it has smaller half-
perimeter wirelength than the routable placement produced by
the commercial tool. This of course suggests that explicit con-
gestion techniques may be useful on this testcase. However,
such techniques should be implemented “transparently” so as to
not adversely affect performance on other instances. Our experi-
ments demonstrate that improvements in mincut partitioning are
still conducive to better wirelength and congestion in top-down
placement; however, this does not lessen the need for techniques
that address congestion more directly.

Capo does not use analytical placement, and we make no
judgments regarding the utility of analytic techniques for timing-
or routability- driven placement. However, we believe that if a
basic placement engine performs poorly on non-timing driven
instances, congestion estimation and timing-related analytical
techniques may be difficult to fine-tune as they have to mini-
mize total wirelength. Besides, an improvement due to expen-
sive congestion-driven backtracking or “overlapping” may be
less valuable if it can also be achieved by carefulε-changes to

“one-shot” recursive bisection.7

Our experiments on recent industrial benchmarks fail to give
a clear answer to the question in the title of this paper. On the
positive side, they validate a series of improvements to recur-
sive bisection and point out a demand for transparent congestion
management techniques that do not make routable placements
worse. We also hope that our experimental flow, which vali-
dates placement results in the fixed-die regime by violation-free
auto-routing, will provide a new norm for comparison of VLSI
placement implementations.

Open questions for future research include

� Can a better wirelength- and congestion-driven placement
approach be expected to lead to a better timing-driven ap-
proach (assuming congestion is still important)? In other
words, is a timing-driven placer that performs poorly on
timing-free instances likely to be eventually outperformed
on timing-driven instances by placers that do well on
timing-free?

� Are there techniques which can be seamlessly added to the
recursive bisection approach so as toprevent(as opposed
to correct) congested situations that cause unroutability?

Finally, another interesting and as yet unexplained effect seen
in our results is the mismatch between weighted wirelength and
routed wirelength objectives. While weighted wirelength pre-
dicts the value of routed wirelength reasonably well, Capo-Fast
often produces smaller weighted wirelength, but larger routed
wirelength. Therefore, the use of weighted wirelength as an op-
timization objective may be questionable.
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