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Abstract

Global placement of hypergraphs is critical in the top-down
placement of large timing-driven designs [10, 16]. Place-
ment quality is evaluated in terms of the half-perimeter
wirelength (HPWL) of hyperedges in the original circuit
hypergraph provided timing constraints are met. Analyt-
ical placers are instrumental in handling non-linear timing
models [9, 3], but have two important drawbacks: (a) corre-
sponding optimization algorithms are typically slower than
top-down methods driven by multi-level mincut partition-
ing [2], and (b) hyperedges must be represented with net
models [10, 17, 15, 8, 21, 20] which imply a mismatch of
objective functions, with the alternative of computationally
expensive linear programming (LP) [25, 16].

By comparing to optimal solutions produced by linear
programming, we show that net models lead to solution
quality loss. To address this problem, we present the �rst
analytical algorithm that does not require net models and
permits a direct inclusion of non-linear delay terms [3]; this
allows to avoid expensive linearization of delay terms in [16].
Our numerical engine utilizes well-known quadratically con-
vergent Newton-type methods [5, 11] for speed; it produces
solutions within 12% of the LP optimum. Empirical results
are for industrial placement instances.

1 Introduction

Analytical placers are increasingly important in physical
design as process technology advances and design com-
plexity increases. They locate modules (cells or macros)
so as to minimize a wirelength estimate representing a
cumulative measure of interconnect delay and utilization;
some algorithms also minimize speci�c timing-critical paths.
Placement solutions must satisfy various combinatorial con-
straints, e.g., use only prescribed module locations, avoid
module overlaps etc. These constraints are temporarily re-
laxed for analytical placement and are later taken care of by
specialized code which may itself make repeated calls to an-
alytical placement. For example, a placement with excessive
module overlaps or overutilization of routing resources can
be spread out using min-cut partitioning [20, 19, 9], trans-
portation [23] or force-directed techniques [4].

In top-down placement, the layout area is recursively
split into blocks; cells inside each block are dealt with un-
der the assumption that all other cells are �xed. Analytical
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placers do not handle well large macros with non-trivial ge-
ometries [24] and are di�cult to apply when insu�ciently
many terminals lead to numerical degeneracy. However, an-
alytical placers may be helpful before or instead of min-cut
partitioning steps at middle and lower levels of top-down
placement when terminal counts increase due to terminal
propagations from other placement blocks and if timing con-
straints are considered. Analytical placers are also useful for
quick delay budgeting before non-overlapping and routable
placements are available [16]. Therefore, min-cut partition-
ing and analytical placement are not direct competitors, but
rather complement each other when timing considerations
are important.

Analytical placers typically transform a circuit hyper-
graph into a graph prior to solving any optimization prob-
lems. Each hyperedge is modeled by a star [17, 15] or a
clique [8, 21, 20] of edges. Early algorithms [21, 20] used
squared wirelength objectives since global module place-
ments required the solution to a single system of equations.
However, the squared wirelength objective tends to overem-
phasize the minimization of long wires at the expense of
short wires; this increases the demand on routing resources,
thereby leading to a poorer layout [12]. Recent analytical
placers [17, 1] rely on a linear wirelength objective that is
optimized, e.g., by iterated approximations with quadratic
wirelength objectives [17].

Placement qualities are typically evaluated using the
half-perimeter wirelength (HPWL) of the circuit hyper-
edges, however this objective cannot be directly pursued af-
ter nets are converted into stars or cliques. In this paper,
we seek to eliminate the divergence from the minimization
of HPWL in analytical placers.

HPWL minimization is possible via linear programming
(LP) [7, 25], but is too computationally intensive due to the
sizes of the resulting linear programs. Moreover, inclusion of
non-linear terms is not straightforward. [16] addresses con-
vex delay terms and describes a general linearization proce-
dure that constructs piece-wise linear approximations, but
�nds it is too costly to solve directly as the complexity of lin-
earizations increases with required precision.1 An optimal
algorithm for HPWL minimization based on classic max-
ow computation was proposed by Hur and Lillis [6]. This
technique, however, makes the inclusion of non-linear timing
constraints [3] even harder. We thus seek a convex nonlinear
approximation to enable easy inclusion of delay terms into

1Their faster algorithm for a particular delay budgeting problem is
rather di�cult to implement as it relies on min-cost ows and graph-
based simplex methods.
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analytical placement formulations.
The contributions of our work are

� we show that the use of \second order" information pro-
vided by the Hessian is critical for e�cient analytical
algorithms, while it is not used by linearly convergent
algorithms like GORDIAN-L [17].

� we propose a new [smooth] regularization of the [piece-
wise linear] half-perimeter wirelength function with
provable properties.

� we propose the �rst analytical algorithm for half-
perimeter wirelength minimization that bypasses tradi-
tional graph models of multi-pin nets and is naturally
amenable to non-linear timing terms [3]. Thus the ex-
pensive linearization of delay in [16] can be avoided.

� we empirically con�rm our approach by producing so-
lutions within 12% of optimum, outperforming graph-
based wirelength minimizations.

Our proposed nonlinear and convex approximation to
HPWL is based on the observation that HPWL of multi-pin
nets is a convex, but not everywhere di�erentiable function
with singularities arising from \max" functions. Based on
this observation, we extend the recently proposed function
smoothing techniques in [3] for various VLSI layout problems
to make them applicable to HPWL.

Section 2 demonstrates the di�culty of the direct min-
imization of HPWL due to its non-di�erentiability and re-
views previous work. Section 3 demonstrates the impor-
tance of Newton-type methods. Section 4 proposed regu-
larizations that approximate HPWL with arbitrarily small
relative error and enable graph-free HPWL minimization
via unconstrained smooth and convex optimization. Section
5 presents numerical results for industrial testcases in the
context of top-down placement. Conclusions are given in
Section 6.

2 Review of analytical placement

Circuits are represented by weighted hypergraphs
GH(VH ; EH) with vertices VH = fv1; v2; � � � ; vng corre-
sponding to modules, and hyperedges EH = fe1; e2; � � � ; emg
corresponding to signal nets. Vertex weights correspond
to module areas, while hyperedge weights correspond to
criticalities and/or multiplicities. Vertices are either �xed
or free. Hyperedge ek 2 E connects pk � 2 vertices and
each vertex vi 2 V is incident to di � 0 hyperedges. pk and
di are respectively called the vertex and hyperedge degrees,
and are typically very small.We say that vi has di pins, and
ek has pk pins, for a total of P =

Pm

k=1
dk =

Pn

i=1
pi pins

in the hypergraph. Module placements in x and y directions
are captured by the placement vectors x = (x1; : : : ; yn) and
y = (y1; : : : ; yn).

2.1 Hypergraph placement

Let Ck be the index set of hypergraph vertices incident to
net ek 2 EH . The x-direction HPWL estimate is given by

HPWLx(x) =
X

en2EH

max
i;j2Ck

jxi � xj j: (1)

HPWL is a convex function of x since jxi � xj j is convex
for all i; j. However, HPWL is not strictly convex and most
often has uncountably many minimizers. HPWL minimiza-
tion requires �xed vertices, with at least two di�erent lo-
cations (otherwise placing all vertices to the same location

will achieve an optimal solution with wirelength 0). Fixed
vertices in circuit hypergraph are provided by I/O pads and
external pins. The non-di�erentiability of the max func-
tion disables classic smooth minimization techniques such
as Newton method. It can be shown that any single itera-
tion of the steepest descent will end up in a solution where
gradient is not well-de�ned and the new steepest descent
direction is not easily available.2

In [25], the HPWL estimate is converted into an equiva-
lent linear program (LP) by adding, for each net ek, upper
and lower bound variables Uk and Lk. The cost of the net
is measured as the di�erence between the two, and in an
optimal solution each Uk and Lk will be equal to the right-
most and leftmost module locations of net ek. Each variable
comes with pi inequality constraints that restrict Uj(Lj) to
be larger (smaller) than the locations of every module in-
cident to the net. Thus, n nets and m modules are repre-
sented by m + 2n variables and 2P constraints. While LP
returns optimal placements, the large instance sizes e�ec-
tively preclude any application to fast placement of large
hypergraphs.

2.2 Reduction to graphs

Circuit hypergraphs are typically transformed into graphs in
which each hyperedge is represented by a group of equally
weighted edges. The unoriented star model adds a new
center vertex and represents the original net by edges con-
necting the center to previously existing vertices (modules)
[17, 15]. The clique model (e.g., [8, 10]) connects all pairs
of vertices (modules) incident to the original hyperedge by
edges of non-unit weight.3 Clique models of large hyper-
edges become prohibitively expensive due to the quadratic
edge count. Therefore, large hyperedges are typically mod-
eled by stars or dropped completely.

Wirelength estimates for individual edges of a graph are
weighted and added up to produce a total wirelength es-
timate. For an edge that connects modules with abscis-
sae x1 and x2, the most popular x-wirelength estimates are
(a) linear (Manhattan) jx1�x2j and (b) square (Euclidean)
(x1�x2)2; the y-wirelength is computed in the same way and
added to the x-wirelength. While both functions are con-
vex, only the square wirelength is strictly convex when all
graph vertices are are reachable from �xed vertices, which
guarantees a unique minimizer.

Minimization of squared (quadratic) wirelength

min
x

fP
i>j

aij(xi � xj)
2 : Hx = bg (2)

(H represents various linear constraints) is the easiest be-
cause (see [21, 20]) the unique minimizer is obtained by
solving a single system of linear equations, either positive-
de�nite or symmetric-inde�nite depending on the approach.
While good public-domain implementations of linear sys-
tem solvers are available, the squared wirelength objective
tends to provide lower-quality placements; a comparison by

2An even bigger problem is demonstrated by a 3-clique of free
vertices that is connected to a �xed vertex by one edge. As soon
as all free vertices are located at the same point, no movement of a
single vertex can improve wirelength, while moving all three toward
the �xed vertex will lead to the optimal placement.

3A shortcut [17] computes the squared wirelength of a p-clique
with uniform edge weights 2

p as the squared wirelength of a star whose

center vertex is placed at the center of gravity of its p vertices. In
contrast to the general star model, the center of the star is not an
independently placed vertex.



Mahmoud et al. [12] concludes that the linear wirelength
objective is superior.

Linear wirelength minimization also relies on the above
reduction of circuit hypergraph to a graph

min
x

fP
i>j

aij jxi � xj j : Hx = bg (3)

Being neither di�erentiable nor strictly convex, it is not
amenable to Newton-type methods. GORDIAN-L [17] min-
imization heuristic uses iterated quadratic minimizations

min
x�

fP
i>j

aij

jx��1
i

�x��1
j

j
(x�i � x�j )

2 : Hx� = bg (4)

where x��1 and x� denote the vectors of vertex positions
at iterations � � 1 and �. A quadratic objective is used to
avoid the non-di�erentiability of the objective of (3), but the
coe�cients aij are updated at each iteration to approximate
the linear wirelength. As an alternative, the regularization
of (3)

min
x

fP
i>j

aij
p
(xi � xj)

2 + � : Hx = bg (5)

was proposed in [1] with two solution methodologies: a
linearly-convergent �xed point method and a novel primal-
dual Newton method with quadratic convergence. Testing
in [1] illustrated tradeo�s in values of � > 0 versus time and
di�culty. The interpretation of the GORDIAN-L heuristic
as a special case of � = 0 of a �xed point method was also
provided. The techniques of �-regularization have been
further extended in [3].

3 Importance of Newton-type methods

While the utility of analytical placers has been empiri-
cally established, inherent subtleties can impair implementa-
tions, particularly in new application contexts. One notable
problem is the potential to ignore \second-order" informa-
tion available during linear wirelength minimization with
twice di�erentiable approximations. Newton-type meth-
ods that use second derivatives converge quadratically[14],
while steepest-descent and �xed-point methods, including
GORDIAN-L, are converge linearly [1]. However, iterations
of linearly convergent methods are cheaper, and the com-
parison is not straightforward if the number of iterations
is not big [2]. Below we demonstrate that the di�erence in
convergence of steepest-descent and Newton-type wirelength
minimizations goes beyond the asymptotics.

Consider a clique of n � 3 free vertices, initially all lo-
cated at x = �0, with all edges of unit weight. Connect a
single vertex �xed at �1 6= �0 to one of the free vertices
(whose location is represented by x1) by an edge of unit
weight. The unique placement minimizing regularized (and
original too) linear wirelength has all free vertices located
at �1.

An equivalent unconstrained problem minimizes

p
(�1 � x1)2 + � +

nX
i=1

X
j>i

p
(xj � xi)2 + � (6)

whose gradient is given by

@f

@x
= � (�1 � x1)p

(�1 � x1)2 + �
b1 +

nX
i=1

X
j>i

(xj � xi)p
(xj � xi)2 + �

bji

where bji = [ 0 : : : 1 0 : : : � 1 0 : : : 0 ]T and

b1 = [ 1 0 : : : 0 ]T . \1" and \-1" occupy the j-th and
i-th entries in bji respectively.

Due to the terms (xj �xi) in the numerators of the gra-
dient components, all components except for the �rst will
zero out due to all free vertices in the clique having identi-
cal initial locations. Therefore the steepest descent method
will �rst move only one vertex by a very small step closer
to the �xed vertex. At the next iteration the remainder of
the clique will move by an even smaller step, and this 2-step
pattern will continue until the clique is close enough to the
�xed vertex. Clearly, this will take at least a linear (in terms
of j�0 � �1j) number of iterations.

By contrast, the Newton method will converge in just one
iteration by using the \second-order" information available
in the Hessian which, for the above initial placement of the
clique, is given by

2
64

� + (n� 1)! �! �! � � � �!
�! (n� 1)! �! � � � �!
� � � � � � � � � � � � � � �
�! �! � � � �! (n� 1)!

3
75 (7)

(several terms disappear for the described initial placement)
where ! = 1=

p
� and � > 0. The Hessian is positive de�nite

and the right-hand side is not zero, implying a unique non-
zero solution. It is easy to show that all the components
of �x are equal to each other. All vertices in the clique will
move in unison to the optimal location in one iteration using
a reasonable line search method.

This phenomenon can be replicated with su�ciently
dense clusters instead of cliques, and multiple instances are
typically encountered in large circuit hypergraphs. While
the initial solution may be di�erent from what we consid-
ered, iterations of analytical placers bring cliques and tightly
connected clusters closer together. Therefore, even after sev-
eral large-stepped iterations, convergence of steepest descent
may deteriorate.

4 Multivariate regularization for HPWL

Motivated by the convexity of HPWL, we seek a technique
for its minimization via smooth convex Newton-type meth-
ods without graph approximations.

For two-pin hyperedges, the �-regularization [1, 3] can be
used to approximate edgelength by a smooth convex func-
tion; such an approximation overestimates the original func-
tion by at most

p
� and used in (5) to approximate graph

edgelengths. In order to apply it to hyperedges of degree
� 3 and the HPWL, one can nest maximum functions, e.g.,
for a 3-pin net, maxfjx1 � x2j; jx1 � x3j; jx2 � x3jg can be
rewritten as maxfjx1�x2j;maxfjx1�x3j;maxfjx2�x3jggg,
and recursively apply the following regularization:

Example [3]: The function maxfa; bg = a+b+ja�bj

2
can be

regularized with
a+b+

p
ja�bj2+�

2
, and minfa; bg = a+b�ja�bj

2

with
a+b�

p
ja�bj2+�

2
.

Unfortunately, the derivatives of the resulting regulariza-
tion are di�cult to compute. Moreover, the regularization
is not symmetric and will send line search in wrong search
directions.

A simple and computationally e�cient alternative is
available. First, note that we only consider maxfg of
non-negative numbers, second, k (a1; a2; : : : ; ak) k1
=maxfja1j; ja2j; : : : ; jakjg, third, the Lp-norms



k (a1; a2; : : : ; ak) kp=(
Pk

j=1
jaj jp)1=p converge to the

L1-norm k � k1 as p ! 1. This is illustrated in Figure
1, where unit-norm curves (\unit circles") for Lp-norms
on the plane are seen converging to the the \unit circle"
k(a1; a2)k1= max(a1; a2) = 1.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

a1

a2

p=2

p=4

p=16
p=inf

Figure 1: Unit-norm curves for Lp-norms.

Fact 1 For p > 1 and a = (a1; a2; : : : ; ak)

(a) k a k1�k a kp+1�k a kp� k1=p k a k1
(b) %(a) =k a kp is strictly convex and

in�nitely di�erentiable except at a=0

Proof We �rst establish the inequalities in (a).

maxfja1j; � � � ; jakjg = (maxfja1jp; � � � ; jakjpg)1=p �
(ja1jp + � � �+ jakjp)1=p implies k a k1�k a kp for any p � 1.

kakp�kakp+1 can be shown by induction from the case
k = 2. Assume positive ai, x and y. The induction step can
now be accomplished by introducing d1 = (ap2 + : : :+ apk)

1=p

and d2 = (ap+12 + : : :+ ap+1k )1=(p+1) for which d1 � d2 holds

by induction hypothesis. Then (ap1+a
p
2+: : :+a

p
k)

1=p � (ap1+

dp1)
1=p � (ap1+dp2)

1=p�(ap+11 +dp+12 )1=(p+1) � (ap+11 +ap+12 +

: : : + ap+1k )1=(p+1), the middle inequality being case k = 2:

(xp + yp)1=p � (xp+1 + yp+1)1=(p+1). Equivalently (xp +
yp)p+1 = (xp + yp)(xp+ yp)p � (xp+1 + yp+1)p, where both
sides can be interpreted as binomial with equal number of
terms. It now su�ces to prove that the inequality holds term
by term (xp + yp)(xp)i(yp)p�i � (xp+1)i(yp+1)p�i (equal
constants canceled out), which follows from (xp + yp) �
maxfxp; ypg � xiyp�i. This concludes the proof of (a).

The di�erentiability in (b) can be proven by taking par-

tials, e.g., @f
@ai

= pap�1i (
Pk

j=1
jaj jp)

1
p
�1
. All n-th partials

will be polynomials of ai; i = 1::k and (
Pk

j=1
jaj jp)

1
p
�l; l =

1::n. The latter have a pole at a = 0 and are di�erentiable
elsewhere since 1

p
� l < 0. Strict convexity in (b) can be

proven by comparing the Jacobian to zero. 2
To approximate the HPWL of an m-pin net, we enumer-

ate all m(m�1)
2

pairwise distances of the form xi � xj and
rewrite the HPWL as their L1-norm (see Equation 1), then
approximate with Lp-norms.4

The multiplicative upper bound of (m(m�1)
2

)1=p on the
overestimation for HPWL of onem-pin net, as given by Fact

1(a), appears very loose since all m(m�1)
2

distances cannot
be equal unless being 0. Tighter bounds can be derived
given that the L1-norm is applied only to vectors, whose
coordinates are all pairwise distances between m points on

4Nets that entail prohibitively many (
m(m�1)

2 ) terms can be han-
dled via the Lp-norm taken over edges of a star model with the center
located at the center of gravity of the net's pins.

the real line. Such tighter bounds for our regularization of
the HPWL of small nets are given in Table 1.5

Net size Upper bounds Maximal overestimation
m loose tight p=8 p=16 p=32 p=64

3 31=p 21=p 9% 4% 2% 1%

4 61=p 41=p 19% 9% 4% 2%

5 101=p 61=p 25% 12% 6% 3%

6 151=p 91=p 32% 15% 7% 3%

Table 1: Single net HPWL overestimation by p-regularization.

As follows from Fact 1, overestimating
maxfja1j; ja2j; � � � ; jakjg by its p-regularization

(ja1jp + ja2jp + � � � + jakjp)1=p removes all nondi�eren-
tiabilities except for a = 0. Additional overestimation by
�-regularization (ja1jp+ ja2jp+ � � �+ jakjp+�)1=p smoothens
the function at a = 0.

The resulting approximation of HPWL

HPWL(x) � HPWLreg(x) =
X

en2EH

(

jCnjX
i;j

jxi�xj jp + �)1=p

(8)
is a smooth and strictly convex6 upper bound on exact
HPWL with arbitrary small relative error of approximation
as p! 1 and � ! 0. Figure 2 illustrates the combined p-
and �-regularization for HPWL. We note that restricting p
to powers of 2 allows for particularly e�ective computations.

Our regularization subsumes the one in [3] with an im-
portant addition of p ! 1 (p was de�ned di�erently in [3]
and set to 2 for all applications). We set � = (�0M)p (cf.
[3]) where M is the maximal distance between �xed termi-
nals and �0 is instance-independent.

5 Experimental validation

To compare to optimal solutions found via linear program-
ming, our tests do not include vertex spreading, such as
equality constraints in GORDIAN/GORDIAN-L or top-
down framework in PROUD. We expect that improvements
in the fundamental analytical engines translate to complete
algorithms.

For our proposed HPWL minimization, both the objec-
tive and the gradient can be computed analytically, but the
Hessian computations are hard and time-consuming. Given
the crucial nature of second order information, we have
implemented the limited memory quasi-Newton method in
[11, 13] which uses limited memory BFGS updates to ap-
proximate the Hessian.7 Our implementation maintains
storage for seven past iterations. Iterations continue until (i)

5E.g., for a 3-pin net, the Lp-norm is (jx1 � x2j
p + jx1 � x3j

p +

jx2 � x3j
p)1=p. Clearly, the three terms cannot be equal (unless 0).

Assume an arbitrary ordering x1 � x2 � x3 and maximize the Lp-

norm for �xed x1 and x3: the maximal overestimation 2
1=p is reached

when x2 is placed on top of either x1 or x3. A similar argument for

4-pin nets yields a tight bound of 41=p even though there are 6 terms
involved in the Lp-norm for a 4-pin net.

6Strict convexity requires that all free vertices be reachable from
�xed vertices. Otherwise there will be multiple optimal solutions,
contradicting strict convexity.

7Notably, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) updates
are closely related to the DFS (Davidon-Fletcher-Powell) updates [5],
except for a slightly di�erent inverse Hessian approximation. BFGS
updates typically perform better and are preferred for practical ap-
plications.



0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2
0

0.5

1

1.5

2

2.5

3

x1x2

HP
W

L

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2
0.5

1

1.5

2

2.5

3

3.5

Figure 2: HPWL(left) for a 3-pin net | maxfjx1 � x2j; jx1 � 1j; jx2 � 1jg over (x1; x2) 2 [0; 3]� [0; 2]. The p-regularization (right) is

(jx1 � x2jp + jx1 � 1jp + jx2 � 1jp + �)1=p. Here p = 8 and � = 1:0e6.

a prescribed iteration limit (100) OR (ii) the improvement in
the objective function is below a prescribed threshold OR
(iii) the gradient norm falls below a prescribed threshold.
We use line search developed by Jorge J. Mor�e and David J.
Thuente for the MINPACK project in 1983. Although not as
accurate as a binary convex line search, the Mor�e-Thuente is
several times faster and has a better cost-performance ratio.

We use �ve testcases from industry (see Table 2) that
are either original (\top-level") placement instances or have
arisen on further levels of top-down placement.8 Test3
through Test5 correspond to placement blocks at various
levels in top-down placement of industrial designs of sizes
up to 69K cells. Applying analytical placement on higher
levels is not practical as insu�cient number of �xed vertices
leads to degeneracy of the analytical placement model in
Section 2. We use the proposed approximation of HPWL

Instance Modules Nets Design
Fixed Free size

test1 76 200 242 276
test2 545 2686 2840 3.2K
test3 2155 6739 7330 12K
test4 2191 3205 3835 12K
test5 6545 17380 20902 69K

Table 2: Testcase parameters. Test3,4,5 are top-down place-
ment blocks sized at 1=2, 1=4 and 1=4 of their complete designs.

in an algorithm called BoxPlace, which we implemented in
C++ using the SunPro CC4.2 compiler (-O5) and Solaris
2.6 operating system. During experiments, parameters were
set p = 16 and �0 = 0:01.

Table 3 shows that BoxPlace produces better placements
than graph-based algorithms and is faster. Its global con-
vergence was tested by running from multiple random initial
starting points. Alternatively, we started with a \one-point"
solution placing all vertices into one location. This yielded
much better initial wirelength and faster convergence to a
solution comparable to those achieved in the randomized
experiment.

Table 4 gives optimal placement costs and run times re-
quired to achieve those using CPLEX 6.5.1 and academic im-
plementations: LPSolve 2.3 with enhancements by David
Warme and a network-ow-based optimal algorithm by Hur

8Several test circuits had disconnected cells not reachable from
�xed terminals. To avoid degeneracy and subsequent breakdown of
numerical solvers, we assured that only free vertices reachable from
�xed vertices have been passed to the solver. Others have been placed
in the center of the layout to minimize WL.

and Lillis [6].9 Optimal costs provide a baseline for compar-
ing heuristics. We observe that BoxPlace achieves placement
quality within 12% of optimal. On larger instances, Box-
Place runs substantially faster than LP-based implementa-
tions and the Hur-Lillis algorithm. We also ran a multi-level
FM (MLFM) partitioner on the same circuits, and one start
was at least �ve times faster than BoxPlace. Unlike those
methods, our solver can naturally accommodate additional
non-linear terms in the objective function as long as they
are convex and di�erentiable (or can be regularized).

6 Conclusions

We analyzed fundamental placement algorithms that are
used in common placement tools. Quadratic placers and lin-
ear variants are popular primarily due to their ease of imple-
mentation and empirical successes. However, such methods
are strictly indirect in their treatment of the minimization of
half-perimeter wirelength and result in suboptimal solutions
as illustrated by Table 3.

We proposed a fast analytical placement algorithm based
on a new approximation of half-perimeter wirelength that
has arbitrary small error. This is the �rst analytical algo-
rithm to minimize half-perimeter wirelength bypassing tradi-
tional net models. Unlike previously known heuristics, it can
accommodate convex non-linear delay terms and produces
solutions within 12% of optimum. The advantage of our
approach compared to [16] where delay terms are linearized
to apply linear programming, is that the complexity of non-
linear approximations does not grow when better precision
is needed.

We have also pointed out that \second-order" informa-
tion is important for handling the clique/clustered nature
of circuit hypergraphs and encourages the use of Newton-
type methods in conjunction with twice-di�erentiable ap-
proximations. To avoid the di�culties of computing Hes-
sian information in the context of HPWL minimization,
we have adapted a known limited memory quasi-Newton
method which implicitly keeps track of second order infor-
mation derived from gradient computations. Comparisons
to the authors' implementation of Weiszfeld algorithm [1]
con�rms the superiority of quadratically convergent meth-
ods and goes well with comments in [24] that GORDIAN-L
is rather slow. Our techniques are applicable to other ob-
jectives, e.g., to the piece-wise linear objective in [22].

9Compared to [25], our linear programs have 50% less additional
variables for 2- and 3-pin nets as well as correspondingly fewer con-
straints for 2-pin nets.



HEURISTIC PLACEMENT ALGORITHMS FOR HALF-PERIMETER WIRELENGTH OBJECTIVE
BoxPlace from random BoxPlace from \one-point" Quadratic Weiszfeld[1]

initial �nal WL CPU� initial �nal WL +greed x2 CPU� WL CPU� WL CPU�

test1 5.73e7 6.38e6 0.4 6.72e6 6.39e6 6.23e6 0.2 7.66e6 0.11 6.72e6 0.15
test2 3.08e8 3.25e7 24.4 3.51e7 3.11e7 3.01e7 15.0 4.20e7 3.75 3.51e7 7.12
test3 6.27e6 2.36e6 28.5 2.69e6 2.32e6 2.21e6 13.8 2.75e6 19.9 2.67e6 22.4
test4 5.37e6 1.49e6 13.1 1.91e6 1.44e6 1.38e6 5.8 1.61e6 5.4 1.78e6 12.9
test5 3.75e7 2.56e7 45.1 1.50e7 1.40e7 1.33e7 33.8 1.50e7 72.1 1.47e7 87.6

Table 3: BoxPlace algorithm compared to graph-based algorithms by total HPWL (the sum of x- and y-values). Run times are in
seconds on a Sun Ultra-10/300 MHz and averaged over x� and y� to represent expected runtime in top-down placement.

OPTIMAL PLACEMENT ALGORITHMS WITH HALF-PERIMETER WIRELENGTH
Linear Program Optimal LPSolve2.3w CPLEX 6.5.1 CPU� Hur-Lillis [6]

rows cols non0s WL(x + y) CPU� primopt netopt tranopt CPU�

test1 1050 512 2250 5.93e6 1.2 0.54 0.34 0.32 X
test2 15602 6602 32500 2.75e7 6 min 31 9.11 10.74 X
test3 21276 9046 45563 1.98e6 8 hr 30 min 2 min 2.2 min 6.58
test4 43486 17598 93860 1.24e6 1 hr 72 18.44 21.97 48.82
test5 123648 47438 265750 1.19e7 >3days 12 hr 12 min 15 min 3.3min

Table 4: Optimal hypergraph placement implementations for the HPWL objective. Run times are averaged over the x� and y�
directions and given in seconds unless indicated otherwise. LPSolve3.2w runs were performed on a Sun Ultra-10/300MHz, CPLEX 6.5.1
| on an IBM RS/6000 3CT workstation, which measured 1:6 � 1:15 times slower than the Sun Ultra-10. The Hur-Lillis algorithm [6]
ran on a Sun Ultra-1/200Mhz that measured 1:4 slower than the Ultra-10. Optimal costs are sums of x� and y� components. test1
and test2 are only available in LEF/DEF format, thus we could not run Hur-Lillis on them. x� and y� linear programs have the same
numbers of rows and columns, the numbers of nonzeros are averaged.
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