
OPTIMAL PARTITIONERS AND END-CASE PLACERS FOR STANDARD-CELL LAYOUT �

A. E. Caldwell, A. B. Kahng and I. L. Markov

UCLA Computer Science Dept., Los Angeles, CA 90095-1596 USA

ABSTRACT

We study alternatives to FM-based partitioning in the context of
end-case processing for top-down standard-cell placement. The
primary motivation is that small partitioning instances frequently
contain multiple cells larger than the prescribed partitioning tol-
erance (balance constraint) and cannot be moved while preserv-
ing the legality of a solution. We focus onoptimal partition-
ing and placement algorithms, based on eitherenumerationor
branch-and-bound, that are invoked for instances below prescribed
size thresholds, e.g.,< 10 cells for placement and< 30 cells
for partitioning. Such partitioners transparently handle tight bal-
ance constraints and uneven cell sizes while typically achiev-
ing 40% smaller cuts than the best of several FM starts for in-
stances between 10 and 35 movable nodes. On such instances,
branch-and-bound codes also achieve surprising speedups, on
average, over single FM starts. Enumeration-based partition-
ers relying on Gray codes, while easier to implement and tak-
ing less time for elementary operations, can only compete with
branch-and-bound on very small instances, to which optimal plac-
ers can be applied. In the context of a top-down global placement
tool, the right combination of optimal partitioners and placers can
achieve up to an average of 10% wirelength reduction and 50%
CPU time savings for a set of industry testcases. The paper con-
cludes with directions for future research.

1. INTRODUCTION

In the placement phase of physical design for standard-cell VLSI
circuits, the essential components of a given placement problem
are theplacement region, possibly with discrete allowed loca-
tions, thecells that are to be placed subject to various constraints,
and thenetlist topologythat shapes the objective function being
minimized. Commercial standard-cell placers typically apply a
top-down, divide-and-conquer approach to define an initialglobal
placement. The top-down approach seeks to decompose the given
placement problem instance into smaller instances by subdividing
the placement region, assigning cells to subregions, reformulating
constraints, and cutting the netlist — such that good solutions to

�THIS WORK WAS SUPPORTED BY CADENCE DESIGN SYS-
TEMS, INC.

Variables: A queue of blocks
Initialization: A single block represents

the original placement problem
Algorithm: while (queue not empty)

dequeue a block
if (small enough) consider end-case
else

bipartition into smaller blocks
enqueue each block

Figure 1. High-level outline of the top-down partitioning-based place-
ment process.

smaller instances (subproblems) combine into good solutions of
the original problem.

In practice, the problem decomposition is accomplished by hy-
pergraph partitioning. Each bipartitioning instance is induced from
a rectangular region, orblock, in the layout:1 nodes correspond
to cells inside the block as well as propagated external terminals
[7], and hyperedges are induced over the node set from the origi-
nal netlist. The actual hypergraph partitioning is performed using
FM-type iterative partitioning heuristics with minimum net cut ob-
jective [13, 10]; the multilevel paradigm can be applied for larger
instances [3, 12]. After a global placement solution has been found
(a minimum requirement being that all cells are placed at legal
sites in cell rows, with no overlaps), detailed placement refinement
occurs.2 A high-level pseudocode for top-down bipartitioning-
based global placement is shown in Figure 1.

Several unique characteristics of the bipartitioning instances are
due to the placement process. In particular, tightbalance con-
straints are imposed, i.e., the sizes of partitions in the solution
are not allowed to deviate from target partition sizes (see [4]
for a review of netlist partitioning formulations and constraints).
Such constraints arise because the proportion of free sites (“white-
space”) inn-layer metal deep-submicron designs is typically less
than a few percent; hence, total total cell area assigned to a block
must closely match the available layout area in the block. When
blocks are partitioned by horizontal cutlines, the discrete row
structure of the layout also forces tight balance tolerances. Al-
though the location of vertical cutlines may enjoy slightly more
flexibility, the difficulty of managing terminal propagation, block
definition, region-based wirelength estimation, etc. again pre-

1A block conceptually corresponds to (i) a placement region with al-
lowed locations, (ii) a collection of cells to be placed in this region, (iii)
all nets incident to the cells, and (iv) locations of all cells beyond the given
region that are adjacent to some cells in the region (consideredterminals
with fixed locations).

2The authors of [2] note that the “quadratic placement methodology”
also fits this model, in that quadratic placers still employ hypergraph parti-
tioning, but with initial partitioning solutions obtained from analytic place-
ments (cf. PROUD [21] or GORDIAN [14]).

cludes the use of large balance tolerances. Essentially, relaxed bal-
ance tolerances can lead to uneven area utilization and overlapping
placements.

As shown in Figure 1, when the partitioning instance is suffi-
ciently small or has sufficiently large block aspect ratio (e.g., when
the block has only one cell row), an alternate partitioner or placer
solves the instanceoptimally. For example, an instance of four
cells will not be recursively bipartitioned. Rather, the four cells
will be placed optimally, e.g., by exhaustive enumeration of all
24 = 4! placements to find the best one. Of course, due to the com-
binatorial nature of the problem, it is not feasible to apply optimal
algorithms to even moderately large partitioning and placement
instances. Factors such as initialization overhead (e.g., building
gain bucket structures in the FM algorithm), solution quality, and
runtime together determine the instance size at which it is best to
switch over from the default (FM-based) hypergraph bipartitioner
to a given optimal algorithm.

1.1. Motivations for Optimal End-Case Processing
With each new deep-submicron process generation, there is a
wider range of cell sizes in cell libraries. For example, an 80x
range of buffer strengths is not uncommon today, and the num-
ber of complex gates in the library also increases. This is due to
the wider range of interconnect layerRC parameters, and to new
methodologies for achieving performance convergence via sizing-
based optimizations [15, 16]. In the context of tight partitioning
area balance constraints, the increased variation in cell sizes leads
to more difficult instances for FM-based partitioners. Such parti-
tioners are less likely to give high-quality results because (i) the
FM algorithm may never reach the feasible part of the solution
space (especially if it has trouble finding an initial balance-feasible
solution), and (ii) even a relative scarcity of feasible moves (from
any given feasible solution) can make the algorithm more suscep-
tible to being trapped in a bad local minimum3 (cf. the analysis of
Dutt and Theny [9]).

Even if the partitioning instance does not have a “tight” balance
constraint, it is not clear whether traditional FM-based algorithms
will yield good solution quality. As discussed in the Rent’s rule
based wirelength estimation literature (e.g., [19] [6]), any subop-
timality in cutsize for a given bipartitioning instance will tend to
increase both the number of terminals in later bipartitioning in-
stances and the total wirelength of the placement. Pathological
examples for the FM algorithm are easy to construct,4 and the pit-
falls of the recursive bisection approach are well-known [18]. Yet,
to our knowledge there is no work in the literature that quanti-
fies the suboptimality of the FM algorithm in practice, except for
large “self-scaled” instances [11]. At the same time, many small
bipartitioning instances are created during the course of top-down
placement, and their solutions contribute significantly to the over-

3Consider a placement block with 25 cells that covers two rows and is
to be bisected parallel to rows. Even, say, 5 cells each having size 2-3x
larger than the average cell size (so that each such cell carries8� 12% of
the total area) leads to a situation where partition assignments of large cells
are determined by the initial solution generator at every start, and are never
changed by the move-based partitioner. Hence, a large number of starts
may be needed to “guess” the optimal assignments of large cells with high
probability.

4A 12-node, 14-edge example has nodesAi; Bi; Ci;Di for i =

1; 2; 3, and edges forming cliques over theA’s, theB’s, theC ’s and the
D’s, along with anA1-C1 edge and aB1-D1 edge. The cliques over the
B’s andD’s have weight 2 per edge; all other edges have weight 1. All
nodes have weight 1, and the balance constraint is for exact bisection. Sup-
pose the initial solution has allA’s andB’s in Partition 0, and allC ’s and
D’s in Partition 1 (i.e., cutsize = 2). Then, the first FM pass will move
A1; C2; A2; C3; A3; C1; B1;D2; B2;D3; B3;D1 in that order, and FM
will then terminate. However, the optimal cutsize is 0.

all wirelength of the global placement solution. Moreover, current
implementations of global placement, to our knowledge, still em-
ploy FM-based heuristics even for relatively small instances. It
is natural to ask whether there can be any benefit from improved
bipartitioning methods, if only for smaller instances.

Given these motivations, our present work studies the poten-
tial benefits of “improved” bipartitioning methods, specifically fo-
cusing onoptimal partitioners that are based on enumeration or
branch-and-bound. We also study linear placement for end-case
processing, again focusing on optimal methods. The goals of this
research are to (i) to assess the cutsize suboptimality of traditional
FM-based approaches for small partitioning instances arising in
top-down placement, (ii) assess the runtime penalty that can also
be incurred with traditional FM-based approaches, and (iii) de-
termine the overall effect of new “end-case placers” and optimal
partitioners in a generic top-down placer implementation.

Interestingly, branch-and-bound algorithms for balancedgraph
partitioning problems have been thoroughly studied in the late
1980s and early 1990s; fast public domain implementations [17]
and experimental studies [5] are available. However, few non-
trivial approaches carry over to hypergraphs, and instances arising
in top-down VLSI placement have not been assessed.

1.2. Contributions and Organization of Paper
In this paper, we develop new, optimal partitioners and “end-case
placers” for end-case processing in top-down layout. We explore
the tradeoffs between (i) exhaustive enumeration approaches based
on Gray codes and (ii) branch-and-bound approaches. Section 2
describes the implementation of optimal partitioning algorithms.
We compare performance of our implementations against that of
LIFO- and CLIP-FM [8] for suites of small partitioning instances
that arise during the top-down placement of industry standard-cell
designs. The experimental data shows that our optimal partition-
ers enjoy runtime advantages over both LIFO- and CLIP-FM for
surprisingly large instance sizes, while also yielding significantly
improved solution qualities. Section 3 describes the implementa-
tion of optimal linear placement algorithms. Section 4 evaluates
the impact of optimal partitioning and placement on a top-down
global placer. We provide details of the top-down placer, followed
by experimental data showing that using the right combination of
optimal partitioners and placers can achieve up to an average of
10% wirelength reduction while producing up to a 50% CPU time
savings for a set of industry testcases, when compared against us-
ing traditional FM-based partitioners.

2. OPTIMAL PARTITIONING

We have explored two optimal algorithms for small instances
of hypergraph partitioning: Gray code based enumeration, and
branch-and-bound.

� A Gray code orderingtraverses all partitioning solutions
using single-node partition-to-partition moves; this allows
cheaply maintaining cutsize during exhaustive enumeration
by only updating the cut of nets incident to the moved node.

� Branch-and-bound performs depth-first traversal of a tree of
partial partitioning solutions. A root-leaf path in this tree as-
signs one node at a time until complete solution is formed.
With each node assignment, a lower bound on the cutsize can
be updated. The lower bound converges to the actual cut-
size of a complete solution when the leaf vertex is reached.
The algorithm will consider completions of a partial solution
only if the lower bound is smaller than the cut size of any
complete solution yet seen. Without bounding, branch-and-
bound would simply perform lexicographic enumeration of
solutions. In the lexicographic ordering of complete parti-
tioning solutions ofN nodes,�(N) partition reassignments

are required on average between successive solutions. Thus,
effective bounding is necessary for branch-and-bound to be
faster than Gray code based enumeration.

2.1. Gray Code Based Optimal Partitioners
Gray code enumeration starts with all nodes in partition zero and
reassigns one node at a time, always producing solutions never
seen before. A Gray code fork-way partitioning ofN nodes is a
sequence of2N � 1 numbers, each taken from the setf0::N � 1g;
it is interpreted as instructions to reassign respective nodes to the
“next” partition modulok.5 The following C++ code builds such
a code fornumPart -way partitioning ofsize nodes.
byte* begin=_tables[size];
byte* ptr = begin;
for(unsigned p=numPart-1; p!=0; p--) *ptr++=0;
for(unsigned i=1; i!=size; i++)
{

unsigned bytesToCopy=ptr-begin;
for(p=numPart-1; p!=0; p--)
{

*ptr++=i;
memcpy(ptr,begin,bytesToCopy);
ptr+=bytesToCopy;

}
}

Our Gray code based enumerative partitioner incrementally
maintains partition balances and cuts for each solution it sees. A
solution that satisfies balance constraints and has smallest cut seen
is recorded as best. Having a lower bound for solution cost can
result in a speedup (e.g., the partitioner will always stop as soon as
it finds a solution of cost zero).

2.2. Branch-and-Bound Based Optimal Partitioners
The key observation underlying branch-and-bound is that a lower
bound for net cut, “cut so far”, is available given assignments of
only some nodes. A hyperedge is considered “already cut” if it
has two nodes assigned to different partitions, and “uncut so far”
otherwise. A similar observation applies to partition balances. All
nodes are ordered from the start, with fixed nodes (i.e., terminals)
followed by movable (i.e., assignable) nodes. A given nodei > 0
can be assigned to a partition only after nodei � 1 has been as-
signed. Our implementation sorts the movable nodes in ascend-
ing order of degree, in order to promote more efficient bounding.
Figure 2 describes input and variables used in branch-and-bound
partitioning and their initialization.

The algorithm operates on a “main stack” that (i) stores par-
tition assignments for all nodes assigned so far, and (ii) allows
nodes to be “unassigned” in the reverse order of how they were
assigned. Because of this structure, no hyperedges have to be tra-
versed: rather, when a node is assigned to a partition without vi-
olating balance constraints, all incident “uncut so far” hyperedges
are updated. If for a given hyperedge this node is the first assigned
node, the hyperedge is marked with the index of the partition to
which the node is assigned. Otherwise, the new assignment is
compared to previous assignments of nodes on the hyperedge, to
check if the net becomes cut (if the net becomes newly cut, the
total cut so far is incremented). Branching is done by pushing a
new partition assignment onto the main stack. Bounding is done
by popping partition assignments from main stack and is triggered
by either partition balances violating prescribed limits or by “cut
so far” reaching the cutsize of a previously seen solution.

2.3. Comparison of Partitioning Algorithms
We now assess the speed and solution quality improvements that
can be obtained using Gray code enumeration or branch-and-
bound partitioners.

5For example, the Gray code for bipartitionings of one item isf 0 g;
f 0 1 0 g for two items; andf 0 1 0 2 0 1 0 g for three.

Branch-and-Bound for Balanced Bipartitioning :
Input and Global Variables

areaMax[0..1] bounds for part. area
Input upperBound seek cheaper solutions

hypergraph node wts,#nodes,#edges
nodeStack =< empty > node to part. assignments
cutStack=< empty > “cut so far”

Global netStacks[0..numEdges]=f0g stacks of net states
variables areaStacks[0..1]=< empty > “area so far” in partitions

and nodeIdx=0 #nodes already assigned
initialization bestPartSolution=< invalid >

bestCutFound=upperBound
foundLegalSolution=false

Figure 2. Input and global variables for branch-and-bound bipartitioning.
A nontrivial upperBound implies a known legal solution of given cost.
EachnetStack contains net states, which can represent a net with no
nodes assigned to partitions, a net with nodes assigned to one partition, or
a cut net.

Test Case Core Cells Pads Nets
1 2741 545 3286
2 8829 182 10715
3 11471 662 11673
4 12146 711 10880
5 20392 185 21987

Table 1. Core cell, pad and net counts for test cases used.

Provenance of Small Instances
Our testbed consists of small hypergraph bipartitioning in-

stances saved from our top-down standard-cell placer, which is
described in Section 4 below. We have saved all instances with
between 10 and 35 (movable)non-terminalnodes that arise dur-
ing the top-down placement of Test Case 1 and Test Case 3, out
of the five industrial test cases described in Table 1. These small
instances have fairly uniform statistical properties across designs
that we have seen; typical statistics (for the Test Case 3 small in-
stances) are given in Table 2. We give the number of instances of
each size, and the average number of hyperedges, average hyper-
edge degree, and average node degree for each instance size. We
also give the same statistics when onlyessential netsare counted:
a net that is guaranteed to be cut in any solution due to fixed ter-
minals isinessential, and does not contribute to the runtime of our
optimal partitioners.

Runtime Comparisons vs. FM and CLIP
Gray code enumeration was found to be competitive with

branch-and-bound only for very small instances. We may com-
pare the two optimal approaches usingruntime ratio, i.e., the ratio
of CPU seconds spent on the same problem instances. Instances
for which either of the CPU readings is less than 0.0001 second6

are considered unreliable and are dropped from the test suite. We
then compute the geometric mean of the runtime ratios for the
remaining “good” instances. Our two implementations perform
comparably on instances with 9 cells, with Gray code enumeration
being 1.9 times slower on instances with 10 cells. The runtime
ratio (Gray code runtime divided by branch-and-bound runtime)
increases by a factor of between 1.5 and 1.9 for each additional
cell. Thus, below we compare only our branch-and-bound code
against the LIFO FM and CLIP [8] algorithms. (While the Gray
code enumeration is faster for instances of 8 cells or less, such
instances are better handled by the end-case placers described in
Section 3.)

6All CPU times reported are for a 300MHz Sun Ultra-10.

#non #inst- All Edges Essential Edges
terms ances #edges e-deg n-deg #edges e-deg n-deg

10 160 16.87 2.189 3.693 15.11 2.196 3.317
11 145 18.1 2.196 3.612 16.33 2.204 3.272
12 94 19.63 2.215 3.622 17.73 2.223 3.285
13 85 20.52 2.256 3.56 18.66 2.269 3.257
14 58 23.28 2.241 3.727 21.12 2.248 3.392
15 78 25.94 2.244 3.88 23.54 2.252 3.533
16 65 27.72 2.251 3.901 25.06 2.261 3.541
17 68 29.19 2.276 3.908 26.16 2.294 3.53
18 40 32.02 2.291 4.076 28.7 2.3 3.667
19 47 33.02 2.288 3.976 29.36 2.304 3.561
20 42 34.76 2.299 3.995 30.62 2.315 3.544
21 44 36.91 2.302 4.045 32.59 2.321 3.602
22 27 39.81 2.264 4.098 35.56 2.27 3.668
23 37 40.43 2.338 4.109 36.54 2.335 3.71
24 30 40.83 2.286 3.889 35.97 2.304 3.453
25 32 42.56 2.33 3.966 37.84 2.35 3.558
26 38 44.08 2.349 3.983 40 2.349 3.613
27 34 44.94 2.366 3.938 40.12 2.389 3.549
28 31 47.13 2.337 3.933 41.71 2.357 3.51
29 21 49.1 2.346 3.972 44.57 2.359 3.626
30 25 50 2.41 4.016 44.8 2.417 3.609
31 12 48.75 2.356 3.704 43.33 2.377 3.323
32 13 51.69 2.369 3.827 46.69 2.39 3.488
33 9 49.78 2.342 3.532 44 2.341 3.121
34 13 53.62 2.31 3.643 47.77 2.337 3.283
35 9 54 2.465 3.803 49.11 2.475 3.473

Table 2. Statistics of end-case instances for Test Case 3: average num-
ber of edges, edge and node degrees. The same statistics are shown for
essential edgesonly, i.e., omitting edges that are guaranteed to be cut in
any partitioning.

To compare the FM heuristic to branch-and-bound, we must
account for randomization and the fact that FM does not always
achieve optimal solutions. For each instance in our test suite, our
experiments record the average cutsize achieved by one start of
FM, as well as the average best cutsize achieved over 2, 3 and 100
starts. Then, after running branch-and-bound on the same instance,
we can calculate two figures of merit: theruntime ratio(FM run-
time divided by branch-and-bound runtime), and thequality ratio
(average FM cutsize divided by branch-and-bound (i.e., optimal)
cutsize). We also compute the analogous figures of merit when 2, 3
or 100 starts of FM are used. All ratios are averaged geometrically
over all “good” instances of each size, where “good” excludes in-
stances with optimal cutsize equal to zero, as well as instances that
are solved by branch-and-bound in less than 0.0001 second. Fi-
nally, we repeat the entire experiment using the CLIP algorithm of
Dutt and Deng [8], which is in general a stronger flat partitioner.
We note that our FM implementation is faster and obtains as good
or better solution quality on average than the public-domain im-
plementation of W. Deng that is available from C. J. Alpert’s web
page [1]. Our CLIP implementation exhibits similar quality rela-
tive to reported implementations.

Experimental results are shown in Tables 4 and 5 for Test Cases
1 and 3. We see that FM is clearly slower than branch-and-bound
on all instances of 23 cells or less. This is explained by the rela-
tively high overhead (notably the complicated gain update mech-
anism) of any FM implementation: during each FM pass a hy-
peredge of degreep can be traversedp2 times, while branch-and-
bound never traverses hyperedges.

We also see that the solution quality achieved by several starts
of FM is considerably worse than the optimal cost. In fact, for
many instances (“suboptimal instances”) FM did not find the op-
timal cost in 100 starts. The CLIP algorithm in general fared no
better. As noted in Section 1, we may distinguish two potential
problems for FM on small balanced hypergraph partitioning in-
stances: (i) poor reachability in the solution space due to the bal-

Reduction of block splitting to balanced hypergraph partitioning

Input: Original hypergraph with all cells placed at the centers of the placement
regions of their blocks; A collection of cells in the block to be split; Place-
ment region description for the block to be split (includes legal cell loca-
tions)

Output: Instance of balanced hypergraph bipartitioning with two partitions and
at most two fixed terminals

I. Split the placement region into two subregions (with indices 0 and 1) by ver-
tical or horizontal cutline. This choice is based on the aspect ratio of the
placement region, routing considerations, etc. The subregions will corre-
spond to partitions of the output instance.

II. Build hypergraph with fixed terminals

1. Create a hypergraph with two terminals vertices 0 and 1, fixed in re-
spective partitions, and a vertex for each movable cell in the block

2. For each hyperedge of the original (netlist) hypergraph incident to at
least one of the cell in the block:

(a) clear temporary stack for cells
termPartition=< none >

(b) for each cell on the hyperedge
� if (cell in the block) /* non-terminal */

push the cell onto a temporary stack
continue loop (b)

� otherwise /* terminal */
closestPartition

=

�
index of the subregion closest to the
terminal location or< both > for
equidistant subregions

� if (closestPartition==< both >)
continue the loop in (b)

� otherwise
– if (termPartition=0)

termPartition =closestPartition
continue loop (b) /* skip terminal */

– else if (termPartition6=closestPartition)
/* inessential hyperedge, ignored */
clear stack
break loop (b)

(c) if (size(stack)> 1) add hyperedge connecting the cells on the
stack and, if terminalPartition6= 0, the respective terminal

III. Allocate block area to partition capacities in proportion to legal cell locations
contained in each subregion. Assign partitioning balance tolerance on the
basis of vertical/horizontal cut direction, block size and cell sizes.

Figure 3. Splitting a block in top-down placement.

ance constraint, and (ii) weakness of the FM neighborhood op-
erator. The former means that not all feasible solutions can be
reached from a given solution by legal single-cell partition-to-
partition moves, while the second problem is more fundamental
and can be rephrased as “FM simply makes wrong moves”.

To ensure that our test instances are not overconstrained and
thus decrease the likelihood of (i), we set the partitioning toler-
ance to the maximum of theaveragecell area and either 2% or
10% of the total cell area, for vertical and horizontal cutlines re-
spectively. The harsher tolerance for horizontal cutlines is dictated
by area utilization considerations for neighboring rows; as noted
in Section 1, such a constraint is not easily relaxed without incur-
ring cell overlaps and uneven resource utilization. However, our
top-down algorithm for splitting blocks encourages more horizon-
tal cutlines at earlier stages (see Section 4.1), so that the smaller
partitioning instances in our test suite tend to have vertical cutlines
and lax partitioning tolerances.

3. OPTIMAL PLACEMENT

In the top-down partitioning based placement approach, the origi-
nal placement problem (considered as a “block”) is partitioned into

two subproblems (sub-blocks) and then recursively into smaller
and smaller subproblems (see Figure 1). Eventually, wirelength
can be directly optimized for blocks with few nodes. In this sec-
tion, we describeoptimal placersthat operate on single-row end-
case instances given by:7

� A hypergraph with all nodes (cells) havingwidths. All cell
heights are assumed equal to the row height.

� Every hyperedge has a bounding box of terminal pin locations
that are incident to the respective net and fixed.

� Each hyperedge-to-node connection has apin offsetrelative
to the origin of the respective cell.

� A placement region, i.e., a subrow of a certain length.8

Additionally assuming the uniform distribution of whitespace, we
can consider placement solutions as permutations of hypergraph
nodes. The end-case placement problem thus naturally lends itself
to enumeration and branch-and-bound based approaches. Imple-
mentations based on enumeration are not competitive in our expe-
rience, and will not be covered further.

In our branch-and-bound placer, nodes are added to the place-
ment one at a time, and the bounding boxes of incident edges are
extended to include the new pin locations. The branch-and-bound
approach relies on computing, from a given partial placement, a
lower bound on the wirelength of any completion of the placement.
Extensions of the current partial solution are considered only as
long this lower bound is smaller than the cost of the best complete
solution yet seen.

One difficulty in applying branch-and-bound to end-case place-
ment is varying cell widths. Cells are packed with a fixed-size
space between neighbors, with whitespace distributed equally be-
tween them. Replacing a cell with a cell of different width will
change the location of at least one neighbor, triggering bounding
box recomputations for incident nets. To simplify maintenance,
the nodes are packed from left to right and always added to or re-
moved from the right end of the partially-specified permutation.
Such a lexicographic ordering naturally leads to a stack-driven im-
plementation, where the states of incident nets are “pushed” onto
stacks when a node is appended on the right side of the ordering,
and “popped’ when the node is removed. Bounding entails “pop-
ping” nodes at the end of a partial solution before all lexicograph-
ically greater partial solutions have been visited. Pseudocode is
provided in Figure 4.

4. END-CASE PROCESSING IN GLOBAL PLACEMENT

Recall from Figure 1 that top-down placement reduces to (i) split-
ting blocks, and (ii) solving end-cases. We first describe our split-
ting algorithm because it significantly affects end-case instances.
While blocks are responsible for the nets incident to their cells, our
implementation does not explicitly transcribe nets from a block to
its sub-blocks. Incident nets are deduced from the original netlist.
Each external cell adjacent to a cell in the block is fixed at the
center of its block. Thus, splitting a block reduces to balanced
hypergraph partitioning with fixed terminals, as detailed in Figure
3. In particular, the possibly numerous terminals of a block are
collapsed into at most two terminals in the hypergraph that is pro-
duced. Nets incident to fixed terminals in both partitions (inessen-
tial nets) will necessarily be cut and are therefore removed from
consideration. Our implementation chooses a horizontal cutline to
split a block withM cells if the block containsM=15 or more

7End-cases have only one row because our top-down placer (see Section
4.) preferentially splits small multi-row blocks between rows.

8For unfortunately short subrows that cannot accommodate all cells
without overlaps, our end-case placer minimizes the wirelength subject to
minimum overlap.

Single Row Placement Branch-and-Bound
Input and Global Variables

cellWidth[0..N] width of each cell
Input pinOffsets[cellId][netId] pin-offsets for each cell-pin pair

terminalBoxes[netId] bounding boxes of net terminals
RowBox bounding box of the row
nodeQueue =[0....N-1] inverse initial ordering

Vari- nodeStack=< empty > placement ordering
ables counterArray=< empty > loop counter array

idx=N � 1 index
costSoFar=0 cost of the current placement
bestYetSeen = Infinite cost of best placement yet found
nextLoc = row’s left edge location to place next cell at

Single-Row Placement with Branch-and-Bound : Algorithm
1 while(idx< numCells)
2 f
3 s.push(q.dequeue())// add a cell at nextLoc (the right end)
4 c[idx] = idx
5 costSoFar = costSoFar + cost of placing cell s.top()
6 nextLoc.x = nextLoc.x + cellWidth[s.top()]
7
8 if(costSoFar� bestCostSeen)bound
9 c[idx] = 0

10
11 if(c[idx] == 0) // the ordering is complete or has been bounded
12 f
13 if(idx == 0 and costSoFar< bestCostSeen)
14 f
15 bestCostSeen = costSoFar
16 save current placement
17 g
18 while(c[idx] == 0)
19 f
20 costSoFar = costSoFar - cost of placing cell s.top()
21 nextLoc.x = nextLoc.x - cellWidth[s.top()]
22 q.enqueue(s.pop())// remove the rightmost cell
23 idx++
24 c[idx] - -
25 g
26 g
27 idx - -
28 g

Figure 4. Branch-and-Bound algorithm for single-row placement is pro-
duced from a lexicographic enumeration of placement orderings by adding
code forboundingin lines 8 and 9 (in bold).

rows; otherwise, the choice of cut is due to the aspect ratio of the
block. The blocks are split into sub-blocks as evenly as possible,
so that blocks with less than15 cells will have one row, simplifying
end-case analysis.

To assess the impact of optimal partitioners and placers on top-
down global placement, we have run our implementation on five
industry test cases (see Table 1). We vary the two thresholds: (i)
below which branch-and-bound partitioning is invoked, from 0 to
40, and (ii) below which the end-case placer is called, from 3 to
8. All applications of FM consist of four independent starts; our
experience indicates that any smaller number of starts will result
in substantial degradation of solution quality, making comparisons
uninteresting.

The best choice of thresholds in Table 3 yields total wirelength
reductions of 10% while simultaneously reducing runtime by as
much as 50%. Overall, invoking end-case optimal bipartitioners
for instance sizes of 30-35 or less and end-case optimal placers for
instance sizes of 7 or less leads to good results.

5. CONCLUSIONS

In the circuits we studied, roughly10% of the nets in small parti-
tioning instances do not affect partitioning solutions and can be re-

Threshold Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5
Part Plac WL t WL t WL t WL t WL t

0 3 6.89 64 5.48 203 3.79 246 3.85 248 7.13 459
0 4 6.81 57 5.36 178 3.74 204 3.83 208 7.09 399
0 5 6.74 48 5.43 159 3.75 186 3.82 188 7.02 359
0 6 6.73 40 5.43 146 3.70 172 3.80 175 6.94 329
0 7 6.79 38 5.36 143 3.68 166 3.78 170 6.95 323
0 8 6.65 40 5.28 164 3.68 187 3.76 190 6.90 365
10 3 6.73 35 5.36 135 3.70 154 3.78 159 6.97 306
10 4 6.65 34 5.30 130 3.70 146 3.76 151 6.91 294
10 5 6.65 33 5.25 125 3.70 143 3.77 148 6.97 287
10 6 6.72 31 5.25 124 3.68 143 3.75 147 6.88 282
10 7 6.59 34 5.20 130 3.65 148 3.74 150 6.87 290
10 8 6.69 45 5.25 154 3.65 182 3.73 180 6.90 348
20 3 6.54 30 5.25 114 3.65 132 3.73 139 6.92 272
20 4 6.55 28 5.29 110 3.57 125 3.74 132 6.77 256
20 5 6.51 24 5.20 106 3.59 121 3.73 129 6.78 248
20 6 6.54 27 5.20 105 3.60 120 3.70 128 6.76 245
20 7 6.49 26 5.13 109 3.61 125 3.71 132 6.66 254
20 8 6.41 33 5.18 135 3.54 159 3.70 158 6.79 309
25 3 6.52 26 5.23 111 3.60 129 3.710 135 6.79 265
25 4 6.47 24 5.19 106 3.51 121 3.68 129 6.72 249
25 5 6.40 22 5.10 102 3.55 118 3.70 126 6.68 241
25 6 6.51 22 5.14 100 3.56 117 3.68 125 6.69 240
25 7 6.44 24 5.11 107 3.52 121 3.66 128 6.70 249
25 8 6.45 32 5.10 131 3.51 159 3.67 159 6.67 304
30 3 6.39 24 5.13 113 3.49 129 3.68 136 6.62 264
30 4 6.45 22 5.15 105 3.50 121 3.65 129 6.70 249
30 5 6.36 22 5.14 103 3.48 118 3.64 127 6.58 242
30 6 6.37 22 5.15 101 3.49 117 3.66 126 6.59 239
30 7 6.35 24 5.15 107 3.47 124 3.64 130 6.60 254
30 8 6.34 33 5.12 132 3.44 162 3.61 159 6.53 311
35 3 6.38 26 5.19 114 3.50 133 3.66 143 6.63 279
35 4 6.35 24 5.11 108 3.41 124 3.64 138 6.59 268
35 5 6.38 23 5.13 106 3.43 120 3.63 131 6.63 260
35 6 6.29 22 5.05 112 3.45 121 3.62 132 6.53 250
35 7 6.32 26 5.11 112 3.39 128 3.61 137 6.53 284
35 8 6.33 33 5.04 136 3.39 167 3.60 164 6.45 317
40 3 6.27 32 5.21 154 3.42 150 3.61 190 6.53 333
40 4 6.28 30 5.11 121 3.42 140 3.61 175 6.47 328
40 5 6.30 27 5.08 117 3.38 138 3.60 174 6.48 300
40 6 6.30 29 5.04 128 3.40 152 3.62 168 6.44 316
40 7 6.26 31 5.07 131 3.35 183 3.58 280 6.44 299
40 8 6.25 38 4.98 158 3.34 175 3.56 200 6.44 389

Table 3. Average wirelength (WL) and CPU time (t) for placements
generated with various small partitioner and placer size thresholds.
CPU time was measured on a 200Mhz Sun Sparc Ultra10.

moved. Our experiments also show that optimal partitioners based
on branch-and-bound are easy to implement and outperform FM-
based heuristics by as much as 40% on problem instances of up to
30 nodes; they are also faster than a single start of FM when there
are fewer than 25 nodes.

Given that FM always stops after the first non-improving pass,
our findings are rather surprising. We believe that even with algo-
rithm modifications to find better solutions (e.g., [9]), FM-based
algorithms are not likely to compete with branch-and-bound on
small instances. At the same time, the huge suboptimality of FM
solutions suggests that other move-based partitioning algorithms
(e.g., simulated annealing) for which maintaining legality of the
current solution is important may perform poorly on small in-
stances with non-uniform cell sizes.9

While our experiments have been limited to available bench-
mark circuits, the overall superiority of optimal end-case proces-
sors should carry over to larger circuits, where the number of
small partitioning instances will increase with circuit size, while
the same relative improvement in quality is likely. More efficient
branch-and-bound codes are undoubtedly possible, and their study
is the subject of ongoing research. Other important questions in-
clude the use of multi-way partitioners as well as alternative parti-
tioning and placement objectives.

9Many popular move-based partitioning algorithms were originally
proposed foruniformcell sizes and have not been extensively studied oth-
erwise. While they trivially apply to non-uniformly sized cells as well,
their performance may deteriorate for reasons not previously considered.

REFERENCES
[1] C. J. Alpert, “Partitioning Benchmarks for VLSI CAD Commu-

nity”, Web page, http://vlsicad.cs.ucla.edu/˜cheese/benchmarks.html
(see also the parent home page for partitioning codes).

[2] C. J. Alpert, T. Chan, D. J.-H. Huang, I. Markov and K. Yan,
“Quadratic Placement Revisited”,Proc. ACM/IEEE Design Automa-
tion Conference, 1997, pp. 752-757.

[3] C. J. Alpert, J.-H. Huang and A. B. Kahng,“Multilevel Circuit Parti-
tioning”, ACM/IEEE Design Automation Conference, pp. 530-533.

[4] C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partition-
ing: A Survey”,Integration, 19(1995) 1-81.

[5] J. Clausen and J. L. Tr¨aff, “Do Inherently Sequential Branch-
and-Bound Algorithms Exist?”,Parallel Processing Letters4(1-2)
(1994), pp. 3-13.

[6] J. A. Davis, V. K. De and J. D. Meindl, “A Stochastic Wire-Length
Distribution for Gigascale Integration (GSI) - Part I: Derivation and
Validation”, IEEE Transactions on Electron Devices, 45(3) (1998),
pp. 580-589.

[7] A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement
of Standard Cell VLSI Circuits”,IEEE Transactions on Computer-
Aided Design4(1) (1985), pp. 92-98

[8] S. Dutt and W. Deng, “VLSI Circuit Partitioning by Cluster-Removal
Using Iterative Improvement Techniques”,Proc. IEEE International
Conference on Computer-Aided Design, 1996, pp. 194-200

[9] S. Dutt and H. Theny, “Partitioning Around Roadblocks: Tackling
Constraints With Intermediate Relaxations”,Proc. IEEE Interna-
tional Conference on Computer-Aided Design, 1997, pp. 350-355.

[10] C. M. Fiduccia and R. M. Mattheyses, “A Linear Time Heuristic for
Improving Network Partitions”,Proc. ACM/IEEE Design Automa-
tion Conference, 1982, pp. 175-181.

[11] L. Hagen, J. H. Huang and A. B. Kahng, “Quantified Suboptimality
of VLSI Layout Heuristics”,Proc. ACM/IEEE Design Automation
Conference, 1995, pp. 216-221.

[12] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multi-
level Hypergraph Partitioning: Applications in VLSI Design”,Proc.
ACM/IEEE Design Automation Conference, 1997, pp. 526-529.

[13] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs”,Bell System Tech. Journal49 (1970), pp. 291-
307.

[14] J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, “GORDIAN:
VLSI Placement by Quadratic Programming and Slicing Optimiza-
tion”, IEEE Trans. on Computer Aided Design10(3) (1991), pp. 356-
365.

[15] R. H. J. M. Otten, “Global Wires Harmful?”,Proc. ACM/IEEE Intl.
Symp. on Physical Design, 1998, pp. 104-109.

[16] R. H. J. M. Otten and R. K. Brayton, “Planning for Performance”,
Proc. ACM/IEEE Design Automation Conference, 1998, pp. 122-127.

[17] R. Preis and R. Diekmann,The PARTY Partitioning-Library User
Guide, Version 1.1, University of Paderborn, September 1996.

[18] H. D. Simon and S.-H. Teng, “How Good is Recursive Bisection?”,
SIAM J. Scientific Computing18(5) (1997), pp. 1436-1445.

[19] D. Stroobandt, “Improving Donath’s Technique for Estimating the
Average Interconnection Length in Computer logic”,ELIS technical
report, Royal University of Ghent, June 1996.

[20] L. Trotter, “PERM (Algorithm 115)”,Communications of the ACM5
(1962).

[21] R. S. Tsay and E. Kuh, “A Unified Approach to Partitioning and
Placement”,IEEE Trans. on Circuits and Systems, 38(5) (1991), pp.
521-633.

TEST CASE 1 / LIFO FM

size #good #SOpt 1 start 2 starts 3 starts 100 starts
inst inst time cut time cut time cut time cut

10 24(20) 7 23.23 2.035 46.47 1.796 69.70 1.670 2323.4 1.175
11 37(30) 6 16.63 2.018 33.26 1.730 49.89 1.591 1663.1 1.064
12 31(26) 1 17.24 2.291 34.49 1.961 51.73 1.799 1724.5 1.020
13 22(19) 2 22.65 2.199 45.30 1.867 67.95 1.711 2265.0 1.029
14 22(21) 7 14.29 2.037 28.58 1.766 42.87 1.639 1429.2 1.069
15 20(20) 4 11.46 2.001 22.92 1.734 34.38 1.617 1146.0 1.056
16 9(9) 4 10.13 1.690 20.26 1.493 30.40 1.404 1013.3 1.095
17 12(11) 4 7.066 1.887 14.13 1.677 21.19 1.579 706.6 1.077
18 6(6) 5 8.281 1.915 16.56 1.722 24.84 1.639 828.0 1.256
19 8(8) 5 9.344 2.315 18.68 2.007 28.03 1.857 934.3 1.173
20 11(11) 9 3.562 2.340 7.124 2.088 10.68 1.959 356.2 1.275
21 12(12) 10 3.361 2.258 6.723 2.027 10.08 1.916 336.1 1.257
22 10(10) 9 3.831 2.099 7.662 1.904 11.49 1.800 383.1 1.242
23 7(7) 7 1.312 2.166 2.624 1.979 3.936 1.884 131.2 1.371
24 8(8) 8 1.187 2.154 2.373 1.968 3.560 1.877 118.6 1.394
25 7(7) 7 1.325 2.342 2.651 2.114 3.976 2.003 132.5 1.403
26 11(11) 11 0.703 2.473 1.405 2.266 2.108 2.158 70.25 1.503
27 8(8) 8 0.662 2.405 1.324 2.183 1.986 2.083 66.18 1.482
28 10(10) 10 0.418 2.522 0.835 2.286 1.253 2.168 41.77 1.403
29 9(9) 9 0.746 2.316 1.492 2.118 2.238 2.019 74.59 1.434
30 2(2) 2 1.026 3.094 2.052 2.803 3.078 2.654 102.58 1.789
31 7(7) 4 0.596 1.958 1.192 1.811 1.788 1.743 59.59 1.474
32 4(4) 2 0.675 2.196 1.351 1.930 2.026 1.800 67.53 1.273
33 1(1) 1 0.213 3.046 0.427 2.801 0.640 2.700 21.33 2.143
34 3(3) 3 0.142 2.453 0.285 2.258 0.427 2.151 14.23 1.641
35 2(2) 2 0.007 2.062 0.014 1.932 0.021 1.854 0.707 1.401

TEST CASE 1 / CLIP FM

10 24(20) 9 24.08 1.938 48.166 1.710 72.248 1.600 2408.2 1.180
11 37(31) 7 22.60 1.992 45.209 1.692 67.814 1.552 2260.4 1.057
12 31(26) 3 18.94 2.134 37.899 1.839 56.848 1.700 1894.9 1.040
13 22(17) 6 18.00 2.248 36.005 1.910 54.007 1.762 1800.2 1.105
14 22(19) 4 15.05 2.085 30.113 1.802 45.169 1.667 1505.6 1.046
15 20(20) 7 14.95 2.018 29.899 1.749 44.849 1.628 1494.9 1.091
16 9(9) 2 10.09 1.709 20.184 1.507 30.276 1.420 1009.2 1.026
17 12(12) 4 6.797 1.851 13.595 1.648 20.392 1.549 679.7 1.072
18 6(5) 4 7.477 1.972 14.953 1.788 22.430 1.702 747.6 1.200
19 8(8) 5 8.437 2.335 16.875 2.014 25.312 1.862 843.7 1.218
20 11(9) 7 3.683 2.385 7.366 2.130 11.049 1.992 368.3 1.227
21 12(12) 11 3.882 2.270 7.764 2.038 11.646 1.922 388.1 1.269
22 10(10) 9 2.717 2.117 5.433 1.920 8.150 1.827 271.6 1.285
23 7(7) 7 1.316 2.158 2.633 1.964 3.949 1.867 131.6 1.354
24 8(8) 7 1.334 2.126 2.668 1.941 4.001 1.851 133.3 1.321
25 7(7) 6 1.387 2.359 2.775 2.114 4.162 1.997 138.7 1.283
26 11(11) 11 0.618 2.461 1.236 2.253 1.853 2.149 61.77 1.497
27 8(8) 7 0.544 2.406 1.089 2.171 1.633 2.062 54.44 1.370
28 10(10) 10 0.389 2.527 0.778 2.305 1.167 2.199 38.91 1.671
29 9(9) 9 0.792 2.320 1.583 2.116 2.375 2.018 79.15 1.394
30 2(2) 2 1.772 3.049 3.543 2.807 5.315 2.695 177.1 1.891
31 7(7) 4 0.624 1.930 1.247 1.788 1.871 1.734 62.36 1.393
32 4(4) 2 0.921 2.206 1.842 1.982 2.763 1.878 92.09 1.185
33 1(1) 1 0.217 3.021 0.433 2.778 0.650 2.672 21.66 2.000
34 3(3) 3 0.120 2.464 0.241 2.280 0.361 2.179 12.02 1.689
35 2(2) 2 0.007 2.074 0.015 1.932 0.022 1.866 0.731 1.477

Table 4. Comparison of LIFO FM and CLIP FM against
Branch-and-Bound for Test Case 1, using runtime and solu-
tion quality ratios for average of 1 start, average best of 2
starts, average best of 3 starts and best of 100 starts. “Good”
instances have non-zero optimal cut and are sufficiently diffi-
cult for branch-and-bound so that CPU time can be measured
(this can only make FM look better). “Suboptimal” (SOpt)
instances are those on which FM failed to find the optimum
solution in 100 random starts. Ratios greater than 1.0 indicate
FM losses. Transition points for run time are shown in bold.

TEST CASE 3 / LIFO FM

size #good #SOpt 1 start 2 starts 3 start 100 starts
inst inst time cut time cut time cut time cut

10 160(134) 32 20.73 1.976 41.46 1.700 62.19 1.564 2073.1 1.080
11 145(130) 25 18.84 2.112 37.69 1.803 56.54 1.651 1884.7 1.069
12 94(83) 8 17.02 1.948 34.05 1.671 51.08 1.537 1702.7 1.029
13 85(81) 10 16.10 2.054 32.21 1.757 48.32 1.609 1610.8 1.030
14 58(55) 11 11.14 1.892 22.29 1.623 33.44 1.496 1114.9 1.042
15 78(76) 24 10.13 1.840 20.27 1.603 30.41 1.496 1013.7 1.059
16 65(62) 20 6.796 1.846 13.59 1.634 20.38 1.530 679.6 1.053
17 68(68) 32 5.422 1.933 10.84 1.713 16.26 1.611 542.2 1.118
18 40(40) 25 4.430 1.907 8.860 1.717 13.29 1.628 443.0 1.149
19 47(46) 38 3.577 1.967 7.154 1.775 10.73 1.681 357.7 1.214
20 42(40) 29 2.761 1.913 5.523 1.726 8.284 1.635 276.1 1.178
21 44(44) 39 2.191 2.000 4.382 1.806 6.573 1.711 219.1 1.228
22 27(27) 22 1.429 2.001 2.857 1.810 4.286 1.721 142.8 1.217
23 37(37) 36 1.134 1.969 2.268 1.806 3.402 1.721 113.4 1.275
24 30(30) 27 0.871 2.088 1.743 1.896 2.614 1.805 87.14 1.294
25 32(32) 32 0.826 2.159 1.652 1.993 2.478 1.905 82.60 1.415
26 38(38) 38 0.512 2.368 1.023 2.171 1.535 2.072 51.16 1.512
27 34(34) 31 0.495 2.198 0.990 2.010 1.484 1.913 49.47 1.354
28 31(31) 31 0.357 2.227 0.713 2.054 1.070 1.963 35.67 1.468
29 21(21) 19 0.261 2.201 0.523 2.031 0.784 1.939 26.13 1.434
30 25(25) 24 0.151 1.973 0.302 1.834 0.453 1.765 15.11 1.390
31 12(12) 10 0.251 2.000 0.502 1.868 0.753 1.805 25.10 1.465
32 13(13) 9 0.261 1.698 0.522 1.595 0.783 1.550 26.08 1.287
33 9(9) 7 0.106 1.903 0.211 1.782 0.317 1.720 10.56 1.397
34 13(13) 13 0.078 2.773 0.155 2.562 0.233 2.447 7.759 1.816
35 9(9) 9 0.052 2.326 0.104 2.183 0.157 2.111 5.218 1.678

TEST CASE 3 / CLIP FM

10 160(124) 27 24.23 1.971 48.47 1.688 72.71 1.552 2423.8 1.070
11 145(120) 20 21.66 2.129 43.33 1.819 65.00 1.666 2166.6 1.056
12 94(86) 9 17.96 1.985 35.93 1.698 53.90 1.563 1796.8 1.035
13 85(77) 7 15.76 2.005 31.52 1.712 47.29 1.572 1576.3 1.023
14 58(55) 9 10.47 1.867 20.95 1.601 31.43 1.473 1047.9 1.036
15 78(77) 24 10.68 1.867 21.37 1.625 32.05 1.508 1068.6 1.068
16 65(65) 26 7.488 1.890 14.97 1.670 22.46 1.564 748.7 1.099
17 68(68) 35 5.959 1.945 11.91 1.728 17.87 1.623 595.8 1.133
18 40(40) 26 3.926 1.908 7.851 1.720 11.77 1.623 392.5 1.157
19 47(47) 36 3.481 1.965 6.962 1.774 10.44 1.678 348.1 1.198
20 42(42) 29 3.150 1.922 6.301 1.736 9.451 1.645 315.0 1.177
21 44(43) 35 2.276 1.989 4.552 1.806 6.827 1.714 227.5 1.213
22 27(27) 21 1.422 1.999 2.843 1.817 4.265 1.720 142.1 1.245
23 37(37) 34 1.186 1.979 2.372 1.813 3.558 1.733 118.5 1.296
24 30(30) 29 0.923 2.100 1.846 1.912 2.769 1.818 92.29 1.300
25 32(32) 32 0.779 2.151 1.559 1.974 2.338 1.885 77.92 1.398
26 38(38) 37 0.519 2.380 1.037 2.185 1.556 2.086 51.86 1.541
27 34(34) 33 0.585 2.199 1.169 2.008 1.754 1.912 58.45 1.374
28 31(31) 31 0.361 2.219 0.723 2.038 1.084 1.947 36.13 1.421
29 21(21) 20 0.242 2.183 0.485 2.011 0.727 1.925 24.24 1.439
30 25(25) 24 0.155 1.988 0.311 1.849 0.466 1.781 15.53 1.369
31 12(12) 10 0.248 2.002 0.496 1.865 0.744 1.799 24.80 1.393
32 13(13) 9 0.289 1.691 0.578 1.593 0.867 1.554 28.88 1.305
33 9(9) 7 0.104 1.913 0.209 1.791 0.313 1.731 10.43 1.374
34 13(13) 13 0.080 2.747 0.161 2.540 0.241 2.427 8.049 1.816
35 9(9) 9 0.052 2.327 0.105 2.178 0.157 2.103 5.230 1.613

Table 5. Comparison of LIFO FM and CLIP FM against
Branch-and-Bound for Test Case 3, using runtime and solu-
tion quality ratios for average of 1 start, average best of 2
starts, average best of 3 starts and best of 100 starts. “Good”
instances have non-zero optimal cut and are sufficiently diffi-
cult for branch-and-bound so that CPU time can be measured
(this can only make FM look better). “Suboptimal” (SOpt)
instances are those on which FM failed to find the optimum
solution in 100 random starts. Ratios greater than 1.0 indicate
FM losses. Transition points for runtime are shown in bold.

