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Abstract

Wirelength estimation in VLSI layout is fundamental to any pre-detailed
routing estimate of timing or routability. In this paper, we develop
new wirelength estimation techniques appropriate for top-down floor-
planning and placement synthesis of row-based VLSI layouts. Our
methods include accurate, linear-time approaches, often with sublinear
time complexity for dynamic updating of estimates (e.g., for annealing
placement). The new techniques offer advantages not only for early
on-line wirelength estimation during top-down placement, but also for
a posteriori estimation of routed wirelength given a final placement.
In developing these new estimators, we have made several theoretical
contributions. Notably, we have resolved the long-standing discrepancy
betweerregion-basedndbounding box-baseRSMT estimation tech-
nigues; this leads to new estimates that are functions of instance size
and aspect ratidR

1 Introduction

Wirelength estimation in VLSI layout is fundamental to any pre-detailed
routing estimate of timing or routability. Accordingly, wirelength esti-
mation has been studied in such contexts as gate-array routability [5],
hierarchical top-down layout [4] [6] [18], floorplanning [9], and growth
rates of rectilinear Steiner minimal trees [16] [17] [3]. Our present work
is aimed at wirelength estimatiaduring the synthesis of row-based
placement.

We distinguish three basic types of wirelength estimations associ-
ated with placementa priori, a posterioriandon-line estimations:

e Apriori estimation seeks to estimate the total wirelength of a lay-

mating channel height in standard-cell layouts [13] [14], choos-
ing between two competing placements, etc. Again, such es-
timates must be faster than actual construction of the routing.
(Note that accuracy need not be perfect if the estimate has good
“fidelity”, i.e., for any two solutions the estimator correctly pre-
dicts which one is better even if the estimate of relative solution
costs may be inaccurate.

e On-line estimation occurs when we want to estimate the wire-

lengthduring top-down hierarchical floorplanning or placement.
This has many applications. For example, the estimate can be
used to stop the placement process early, as soon as it becomes
obvious that the placement process is leading to a bad solution.
Early estimates of wirelength can also be used to shorten the
feedback loops in timing- and wirelength-driven placement: clock
tree synthesis, scan ordering, gate sizing, etc. may all be done
earlier in the flow when good wiring estimates are available. Fi-
nally, wirelength estimates can be useful in determining the merit
of local perturbations to the current solution. For example, the in-
ner loop of a simulated annealing placer requires us to accurately
estimate the quality of a proposed move. Since this incremental
cost estimation is one of the main contributors to annealing place-
ment runtime, an on-line estimator must be very fast. The accu-
racy of on-line wirelength estimation should be between those for
a priori anda posterioriregimes, reflecting the available infor-
mation (more information thaa priori, less thara posterior).

Previous Wirelength Estimation Techniques

out design in advance, before placement. For example, a florihe present work, we equate “wirelength estimation” with “estima-
planner may use such estimates to obtain rough measures of réi@@.of the rectilinear Steiner minimal tree (RSMT) co$tThe input
bility, RC parasitics and circuit performance; these in turn drivi@ the RSMT problem is a pointsetof size|P| = n. P can be chosen
floorplan changes and circuit optimizations. For such estimat@adomly from a uniform distribution over a rectangular regiohav-

to provide leverage, they must be faster than the actual placemggtwidthwg and heighhr. Alternatively, we may know the minimum
or routing constructions, at the cost of reduced accuracy. Suchlegunding box enclosing all points &, having widthwyy, and height
timates are typified by the “wireload models” used in RTL floothp. We now review the most relevant literature for this problem.

planning and logic optimization.

Growth rates of subadditive functionals in the Euclidean plane The

work of [17] [15], in a literature that stems from the seminal work of
e A posterioriestimation occurs when we are given a fixed plac@eardwood et al. [1], shows that the expected cost (total tree length)
ment and want to estimate the post-routing wirelength. Thisd$ a Euclidean Steiner minimal tree overuniformly random points
of value whenever routing requires significantly more CPU timghosen within a bounded plane regi@mf areawg - h is proportional
than placement or wiring estimation. Typical applications ino /wg-hr-n for sufficiently largen. The constant of proportionality,
clude predicting the routability of gate array layouts [5] [6], estidenoted by, is dependent on the functional of the pointset (e.g., the

*This research was supported by a grant from Cadence Design Systems, Inc.
We do not discuss the class afnstructivewiring estimators, which essentially con-

minimum spanning tree cost, or the minimum traveling salesperson tour
cost, have similar growth rates but different constants of proportionality

struct the layout down to global or detailed routing in order to obtain an “estimate” of tB&E MST, BETSH etc.).
wiring. Constructive estimators can be relevant to certain design methodologies, but we\dST-based methods. Hwang [10] shows that the rectilinear Steiner

more concerned with early and fast predictions that afford the leverage essential to fol

synthesis.

il (worst-case ratio of rectilinear minimum spanning tree (RMST)
cost to RSMT cost) is 8. Hence, 23 times the RMST cost is a lower
bound on RSMT cost. Since the RMST cost is an upper bound on
RSMT cost, one might propose, e.g/65times the RMST cost as an

2We understand that router outputs may not be the same as RSMTs (due to the routing
heuristic, congestion, timing or noise constraints, and obstacles), and we understand that
minimum wirelength is not perfectly correlated with minimum delay or maximum routabil-
ity. Nevertheless, pure RSMT cost estimation remains a core technology within today’s
industry floorplanners, 1/0O pin optimizers, global and detailed placers, and related tools.
Our ongoing work is developing extensions to model the effects of routability and perfor-
mance optimization.



RSMT estimator that guarantees at most 16% error. Alternatively, em- even for small values af, which makes them better choices in

pirical studies show tha@% averages around 8B; see [12] for many applications.

areview. While MST-based estimators are exce”ent, we avoid them be'. Second, we make new insights into the discrepancy between asymp-
cause their implementation requir@snlogn) runtime with fairly high totic results of Steele et al. (that expected RSMT cost is propor-
constant, or els@(n?) runtime3 tional to v/Wgr-hr-n) and the accepted practice (that expected
Bounding box based methodsIn iterative improvement placers, the RSMT cost is proportional tQ/n- (Wpp+ hpp)).

objective is typically based on the half-perimeter of the bounding box ) . )

of pin locations for each net, i.e., the RSMT estimatejg-+ hp,. This e Third, we demonstrate why a practical estimator of expected RSMT

is computed in linear time; given appropriate data caching, it can be  €oSt cannot simply be based on a single condtafather, such
updated in expected sublinear time when a cell is moved. The bounding &n estimator must be based on a set of vai{esAR) (whereAR

box half-perimeter exactly gives the RSMT cost for 2- and 3-pin nets, IS the aspect ratio of the region within which points are randomly
and can be fairly accurate for larger nets if the bounding box aspect chosen, or else the aspect ratio of the pointset's bounding box).
ratio becomes large (see below). However, during top-down placement
or floorplanning, the pin locations are typically snapped to the centers
of theregionsin which they are located, after which the bounding box
computation occurs. This can be an unbounded factor smaller than
the correct valu& corrections for special cases have been proposed

e Fourth, we develop new wirelength estimators using pure ana-
lytic techniques (specifically, a direct combination of the first and
third results above), empirical (table-lookup) approafhasd a
combination of the table-lookup and analytic techniques.

by Donath [4] and subsequent authors. We also make the following practical contributions.

Chung and Hwang [3] study the worst-case cost of the rectilinear ) )
Steiner minimal tree (RSMT) over points with bounding box dimen- ¢ \We show that our new estimators are substantially more accurate
SioNSWp, . The maximum value OfOSIRSMT) 4 e 1o VML oo than previous methods that are used in industry tools, including

Wpb+hy 2

n — o. Several authors (e.g., Sechen) ﬁgvebbnoted that this result im-

plies a correction factor to the bounding box half-perimeter estimate ¢ We validate our new wirelength estimators in the on-line context,

for nets with|P| > 3. using a top-down partitioning-based placement tool. We show
Hamada et al. [8] propose a puredypriori wirelength estima- that our new estimators can stably and accurately predict eventual

tion based on local neighborhood analysis. Nets are expanded into total RSMT cost or total bounding box half-perimeter early in the

cliques, and 2-neighborhoods of each are analyzed to obtain parameters top-down placement process. Thus, unpromising solutions can

of branching within the circuit. Multi-pin net wirelength estimates are be pruned earlier in the top-down layout process.

inferred from these parameters and a physical model in which neigh-

bors of a given cell compete for locations close to that cell. 2 The Bounding Box ofn Random Points With Given
Cheng [2] empirically estimates the probability of having a wire  pistribution Among k Rectangles

pass through any given point within a net bounding box when the net

is routed. His methodology is equivalent to estimating the horizontdierarchical partitioning- and annealing-based placers maintain lists of

and vertical components of the RSMT cost, as a correction factor to tBetangular regions and cells assigned to each region. Until the bottom

sum (Wpp + hpp). The correction factor is a function of the net size level of the placement, cells may have no particular location, yet wire-

[2] provides a table of such correction factors obtained by Monte Calthgth cost estimates are needed to drive further partitioning or anneal-

bounding box methods and the method of Cheng [2].

method< ing. We therefore estimate the expected Manhattan wirelength under
o the assumption that cells are uniformly distributed within the rectan-
Our Contributions gular regions to which they are assignédin particular, for each net

In this paper, we develop new on-line wirelength estimation techniqd’gg estimate the expected half-perimeter of the bounding box, assuming

appropriate for top-down floorplanning and placement synthesis of r ich pllln is uniformly c:lhstnbltjted Im the_rigllon tol\\l/v h'c?h'ts celtl_lbelongs.
based VLSI layouts. Our methods include accurate, linear-time &g !y, We areé giveiN rec alqg eR, i=1,...,N, inthe rectilinear
proaches (typically with sublinear time complexity for dynamic updaflane, and we are given that therectangle containg uniformly ran-

ing of estimates) to guide both iterative and top-down piacement mefigm Points. We seek estNimates of the expected width and height of the
ods. bounding box of alh = 3;* ; nj random points.

The straightforward and often used heuristic — assuming that each
cell is placed in the center of its rectangle (i.e., at its expected location)

« First, we develop new bounding box estimators for on-line wirg-c2" be smaller than the correct answer by an unbounded factor. In the
Iengt,h estimation in top-down layout. Specifically, we give bot xample shown after Fact 4, this heuristic underestimates the expected

an exacO(nZ) algorithm and twaD(n) heuristics for computing istance between two pins by one third of the bounqing bo>§ size, and
the expected bounding box afpoints with known distribution can return a zero estimate when the true expected distance i€ large.
amongk regions of a floorplan or hierarchical placement. Im- Since thex— and they—coordinates of each pin are independent

g : dom variables with ranges in segments, we can estimate the two
portantly, our heuristics are much faster that the exact algorlti?ges of the bounding box separately and add the results to obtain the

3As we will emphasize below, our work sedkeear-timeestimators that fit a dynamic / eXpeCted half-perlmeter. Since the eXpeCted side of the boundmg box

on-line use model. We do recognize that MST-based estimators have the interesting febRuRIMply th_e ex_pegted distance between_the n_]a)“mal and the_ minimal
that they return an actual topology, as opposed to just a cost estimate. Our experiéatedom point, finding these two expectations (i.e., of the maximal and
with industrial deep-submicron libraries and process technologies is that with well-balanced
and well-sized circuits the resistive interconnect effects are not dominant, e.g., lumped®The empirical approach easily allows practical variants, e.g., a given routing tool’'s
capacitance or simplg.¢+ estimates as in [11] are adequate. Whether any routing estimatearacteristics can be captured by using the router’s results, rather than the output of an
(as opposed to a detailed Steiner embedding) can be used for noise-avoidance is yet uriRBBIT heuristic, to create the lookup tables.
4Consider two tall and thin regions next to each other; the distance between their cenZThe techniques that we develop below apply to the case where there is a known non-
ters is an unbounded factor smaller than the expected distance between two random paiiftrm probability distribution for pin locations within a given region (e.g., [9]).
chosen from the two regions. 8We are not the first to notice this error, e.g., [9] cite Donath [4] as a source for simple
5A detailed survey of all RSMT estimates is beyond the scope of this draft. For examplerrection factors in the casesMf= 1,2. Our purpose in this section is to develop a more
we omit discussion of methods (e.g., the improvement of Donath’s technique given in [X8]mplete theory than in previous works, and to use it as the basis for novel wirelength
or [9]) that estimate hierarchical interconnections as opposed to RSMTSs. estimators in subsequent sections.

We make the following theoretical contributions.




minimal coordinates) will solve the problem. Let us specify a giveRact 4 The expected minimum for k independent random points uni-

rectangleR; by its lower-left and upper-right f:orne{sqx,a,y)7 (b5,bY)}  formly distributed on the segmeift 1] is - O
with & < bX andaf <b. Then, the computation of the expected bound-
ing box of then points is given in Figure 1. Example. If two points are uniformly distributed of®, 1] the leftmost

is expected a% and the rightmost — a% Consequently, the straight-
forward estimate for the expected distance between two random points
Computation of the Expected Bounding Box as the distance between their expectations (0 in this case) will be wrong

Input: RectangleR = {(a",a)), (f,b)},i=1..N by 3 of the bounding box size for the region over which the points are
each withn; random points

Output: The expected widtk,,igin and the expected heigBheight distributed (or 100% of the correct result).
of the bounding box of all points
For horizontal segments’’, b’] with nj random points each:

Theorem 2.1 Consider n random points, each of which is indepen-

find Ejefr, the expected location of the leftmost point dently and uniformly distributed on segméat b, i = 1..,n. Let
find Erignt, the expected location of the rightmost point a < g1 and let A= a; and B=minb;. Then the expected minimum
For vertical segmenl{aly,by] with n; random points each: Eg\ is
|

find Etop, the expected ocation of the topmost point 5 - -
find Epottom the expected location of the bottommost point t—ag t—a = t—aj
Output é)width = Eright — Eiett andEneight = Etop — Epottom Enmin = A+/A 1 dt*,Zz/a 1- dt
i=

7b1—a1 bi_ai]:;L bj —a;
Figure 1. Computing the expected bounding box riguoints dis- -
tributed ove rectangles. The formula above can be computedhiateps, spendin@(n) time
on each step to multiplf?(t) by a linear polynomial and integrate the
result.
In the remainder of this section, we will deal with computing the ex-
pected location of thieftmostpoint, because computing any Bfign,
Etop, or EpotiomObviously reduces to computiige +:
. . . The Expected Minimum Algorithm
The Expected Minimum Problem. Given N segments;,bi],i=1,...,N Input. segmentsa;,bi,i = 1..N each containingy random points

on the real line with npoints distributed uniformly in théh segment, | Output: The expected positioBmin of the minimum point
find the expected location of the point with minimum coordinate. SetM = minby, the smallest of the right segment endpoints
. ) ) 5 . Discard all segments with left endpoint greater thén

The following subsection gives an exadtn”) algorithm, and subsec- | Sort the segments by left endpoints, such that ... < a,
tion 2.2 givesO(n) andO(nlogn) heuristics that we use as the basis of SetA =a;

new estimators in later sections. E=A+/M1- élja;l)dt ; Pt)=1
. . Foreachi=2,...,n
2.1 Exact Solution of the Expected Minimum Prob- P(t) = P(t)(1— 1=8=1)
—Di—1
lem E=E-[7 3Pt

We work with a random poirR?; on a segment in terms of icsimulative | Output Emin=E
distribution function p(t) : [a;,bi] — [0,1], which gives the probability
of the point appearing to the left of Thus, 1— p;(t) gives the proba-
bility of the point appearing to the right of The uniform distribution Figure 2: AnO(n2) exact algorithm for expected minimum.
corresponds to the cumulative distributipiit) = ﬁ.
We can extend cumulative distribution functions by 0 to the left
from g and by 1 to the right fronb;, allowing us to deal with ran-
dom pointssupportedon different segments (i.e., taking non-zero andiheorem 2.2 The Expected Minimum Algorithm (Figure 2) finds the
non-one values of the cumulative distribution only on their respectiggpected minimum of n points uniformly distributed in segnfents;]
segments). in time Q(r?). 0
Fact 1 For nindependent random points with cumulative distributions Thegrem 2.1 shows that the expectation of the minimum is com-
pi(t), the distribution of the minimum &s— L, (1 pi(t)). O puted starting from the expectation of one point, with a series of appar-
Fact 2 The expected location of a random point with distributigry — €ntly _expor;%ntially_decl_reasing neQatIiYe corr_ecticﬁns. TEE:S motli?/ates the
s — B 9 question of designing linear or near-linear time heuristitae allow
supported withirfA, B] is E=B— [y'1(t) dt. for small decreasing errors to the above corrections, the cumulative
Since a point distributed da;, by] is also distributed on any contain-error will be small
ing segment (but not vice versa), one can enldagdy;| to any A, B]

when considering products in Fact 1 and the theorems below. Facts 1 . . o
and 2 imply 2.2 Fast Estimation of the Expected Minimum

Fact 3 For n independent random points with cumulative distributionye now present two heuristics for finding the_expected minimum Whic.h
pi(t) supported within the segmei#, B] (i.e. having its non-zero and are significantly faster than the exact algorithm, not only asymptoti-

non-one values withifA, B]), the expected minimum is cally, but' also fpr small \_/al'ues of . '
A, B)), P The linear-time heuristic starts with the segment for the first random

B n B N i i i i
point and gradually shifts both endpoints of this segment to the left as
Emin= B*/A (1*_|_|(1* pi(t)) dt= A+/A (_rl(lf Pi() dt it goes sequentially through the list of all segments. The midpoint of
= = the resulting segment gives an approximation of the expected minimum
O (see Figure 3).
9ldea of the proof: Represent the cumulative distribution as the derivative of the distri- The second heuristic is m_ore accur"?‘te but slower, _Mhlc’g n) .
bution and integrate by parts. runtime. It sorts all segments in decreasing order of their left endpoints




right endpoint will be at% and the approximate expected minimum will

The Fast Expected Minimum Heuristic 1 . . 3
Input: Segmentsa;, bi],i = 1...N, each with one random poit b€ atz. On the other hand, the exact expected minimum |_S§I|II _
Output: Approximate expected location of the leftmost point To assess the relative error of the Fast Expected Minimum Heuris-
1.A=a;,B=Db; o tic, we compute both the approximate and the exact expettedmum
2. For eachof then— 1 remaining segments;, bj| do values as well. Then evaluate the relative error between the heuris-
!]‘: & < é then swap the two segmeriss B and|a;, by] tic's approximated expected distance between maximum and minimum
Ithg'n< values, and the exact expected distance between maximum and mini-
if by > B mum values. In the above example, the relative error of the Fast Ex-
thenB — B (B—a)® pected Minimum Heuristic is 100% since the heuristic’s approximated
fgg:g;gigga)@_b) expected distance i — 3 = 1, while the exact expected distance is
elseB=B- =g ' 2 — 2 = 1); we believe that this is the worst case. Our Monte-Carlo ex-
3. Output Enin = ALZB periments indicate that the average error of the Fast Expected Minimum

Heuristic for random inpdf is about 1.1%.

On the other hand, for the input described above, the Expected Min-
Figure 3: A linear-time heuristic for expected minimum. imum Heuristic finds the exact expected minimum. Monte-Carlo exper-
iments also confirm the benefit of the sorting step: for 10000 random
inputs for each value af = 3,...,30 the expected relative error of the
Expected Minimum Heuristic was always less than 0.6%, and we never

;I'he FXEECtEd '\:gglfglim H61U”S’\tllc it . - encountered any instance with relative error greater than 5%. Based on
nput: segmentsd;, bjf,1 = L1... N each with one random poin the symmetry of the problem, we also believe that the maximum rela-
Output: Approximate expected location the leftmost point 1e sy y P o ot }

T. Sort Segments by Ieft endpoints. such &ab ... > an tive error of the Expected Minimum Heuristic occurs in the case when
2’ Find thg Ieftmostyright endpoiM = minb; all segments are the same. An error bound for this case is given by the
3. Omit all segments with; > R/I following

4. Apply Fast Expected Minimum Heuristic to remaining segmen

ts
Fact 5 If all segments are identical, the maximum possible error of the
Expected Minimum Heuristic s 5.15% 0

Figure 4: A more accurat€(nlogn) expected minimum heuristic. This discussion suggests that the Expected Minimum Heuristic has

small worst-case error. We leave determining the exact performance
ratio as an open problem.

and finds the leftmost right endpoiM = minb;. The Fast Expected Expected RSMT Cost forn Random Points
Minimum Heuristic is then applied to segments whose left endpoints

are not greater thaM (see Figure 4). Distributed in a Plane Region
Step 2 of the Fast Expected Minimum Heuristic is based on tA€jiterature on growth rates of subadditive functionals of pointsets,
following originating with Beardwood et al. [1] and continuing through works

of Steele and Snyder [16] [17], establishes bounds on the expected

Proposition 2.3 If [a, by] and|[ap, bp] (a1 < &) are two segments €acChpg\T cost,E[c(RSMT)], for n points chosen uniformly at random in

containing one random point, then the expected minimum is equal tg regionR. Specifically, we know thaE[c(RSMT)] [ \/WR)'H

whenn grows sufficiently large. The constant of proportionafitsioes
if by <by, not depend on the shape of the regldrEmpirical evidence suggests

that the expected value of the rati\é& converges to the con-
area(R)-n

or otherwise stantB ~ 0.76. If Ris a rectangle, which is often appropriate in layout
1 2 P applications, themreaR) = wr - hg andE[c(RSMT)] O vWr-hr-n.
a+by  g(b2—ap)"— (b2 —ap)(by —ap) + (b1 —ap) Our work in this section is motivated by an apparent contradiction.
2 2(by —ay) If the expected RSMT cost is proportional to the square root of the area
WR - hr of a given region, why are all practical estimates based on the
U half-perimetemwg + hr of the region? Put another way, if the theory

We replace a pair of segments with a new segment such that its nfidg9€sts use of geometric meaestimate, why have practitioners al-
ys used amrithmetic mearestimate® In this section, we resolve

dle approximates the expected minimum of random points in the t§& . .
bp P P %@ puzzle both theoretically and experimentally. We show that there

original segments. This can be viewed as approximating the cumula ) o
distribution of the minimum (over the union of original segments) witl§, Very substantial deviation from théwg- hr - n expected RSMT cost
hen the pointset is small and/or when the redide non-square (i.e.,

a linear cumulative distribution (over the new segment). The appr(ﬁ( ) X ) o
imation error of one such step is the difference between the orig’i'gfS aspect ratio 1). As it happens, these are precisely the conditions
d

atbr (b -a)°
2 6(by —ay)(bz —ap)

expected minimum and the middle of the new segment (“new expecfidnterest for VLSI layout applications. The results of this section,
minimum”). However, when the step is applied many times, additioriP"9 with those of the previous section, together allow us to develop

error is incurred by our removing higher momenta of the expected mftfg" @nd highly accurate RSMT cost estimators in Section 4.

Imum. 10We generated (n= 3, ..., 30) random segments in tfi6,1)-interval and found both

To show that the sorting step (Step 1) in the Expected Minimuthe exact and the approximate expected distance between the maximum and minimum. We
Heuristic improves accuracy, consider segmegaisbl} — [07 1] and ran 10000 experiments for eastand found that the average relative error was largest (i.e.,

117 : .. .. about 1.2%) fon = 12 while the maximum relative error was always less than 10%.
[ai’bi] = [27 2]‘ I=2,...,n FOI’_ this input, the FaSt_ E_XpeCted Mini- "The argument is simple. Tile the region with uniform small squares. Apply the known
mum Heuristic correctly determines the expected minimum for the rassult forR = the unit square to each small square, then join the “trees” in each small square
dom points in the first two segments isbut the right endpoint of the tgsther. The cost of joining is asymptotically negligible. )
. . . 12The half-perimeter of the region is twice the arithmetic mé”-’éé—R. We know that

resulting segment is placed %I All other segmentfa;, b, i=3,...,n, many estimates scale as square-root of the number of. pins, whose average for nets in VLSI
further shift the right endpoint to the left. For sufficiently langethe circuits is close to 2.




c(RSMT)//n-area
Aspect Ratio (AR)

(n*area)

n|| 1 2 4 8 16 | 32 | 64 | 128 | 256 E
4| 064 067|078 0.98 | 1.29 | 1.76 | 2.44 | 3.44 | 4.82 D=
51| 067 | 070| 0.80 | 0.99 | 1.30 | 1.76 | 2.43 | 3.39 | 4.76 X5
6| 069 | 072 | 0.81 | 0.99 | 1.27 | 1.73 | 2.41 | 3.36 | 4.68 2]
7] 071|073 | 0.81 | 0.98 | 1.26 | 1.69 | 2.33 | 3.25 | 4.56 1.00
8| 072 | 0.74| 0.82 | 0.97 | 1.24 | 1.66 | 2.28 | 3.16 | 4.44 .
9| 073 | 0.75| 0.81 | 0.96 | 1.21 | 1.62 | 2.21 | 3.07 | 4.33
10 || 0.74 | 0.75 | 0.81 | 0.95 | 1.19 | 1.57 | 2.15 | 2.99 | 4.18
15 || 0.75| 0.76 | 0.80 | 0.90 | 1.10 | 1.42 | 1.91 | 2.62 | 3.67 AR=4
20 || 0.76 | 0.77 | 0.80 | 0.87 | 1.03 | 1.30 | 1.73 | 2.37 | 3.29 =
30 || 0.76 | 0.76 | 0.79 | 0.84 | 0.95 | 1.16 | 1.51 | 2.03 | 2.81
0758 ---=-"7"""---=“--=-==°=====-=-=-=--=-
Table 1: Average values &"%_Ra_%;) over 10000 random-point sam-
ples in a rectangular region with aspect raiiR AR=1
We first show that the convergence of the rati ;r':i'\g)rl to B 0.5
strongly depends on the shape of the redgieven though the value of 45 10 15 20 30

B is asymptotically independent of the shape. We confine our discus- )
sion to the relevant case of rectangular regions; this allows the shape Number of Pins
of the regionR to be expressed as aspect ratio AR= ‘#FF: where we

assume without loss of generality that > hg.

Theorem 3.1 E[c(RSMT)] for n random points chosen uniformly in aFigure 5: Plots of3(n) = E[c(RSMT)]//areaR) - n for different as-
rectangular region R is proportional to the aspect ra%%), when the PectratiosARof the rectangular region.
aspect ratio is sufficiently large.

Avg. RSMT Cost for Unit Square

Our theorem implies that we can reformulate the result from [1] as:

- #points ()
E[c(RSMT)] O y/areaR) - n for a sufficiently large number > No of 4 5 6 8 [ 10 | 15 | 20 | 30
random points chosen uniformly in a regi& whereNy depends on RSMT || 1.28 | 1.50 | 1.69 | 2.04 | 2.33 | 291 | 3.38 | 4.15

; i ; % || 40.6 | 34.8| 31.0| 25.1 | 20.6 | 16.1 | 13.0 | 10.
the shape of the regioR. We experimentally validate the theorem, as | 3¢ || 405 | 348 ) 3101 2511 20.6 264 130 10.0
well as the original result from the literature, by the following experi- 98% 572 | 480 | 432 | 348 | 293 | 226 | 184 | 145
ment. We first generatid = 10000 random instances ofpoints, for
n=45,...,30 (note than = 2,3 are not interesting), chosen from a
uniform distribution in the rectangular regid@, 1] x [0,AR,, for val-  Table 2: Average RMST costs over 10000 randwppint samples in a

ues of aspect ratidR=1,2,4,8,...,512. We then find the cost of aynit square. Maximum relative deviation from average (expressed as a
heuristic RSMT over the generatagoints using the Batched Iteratedpercentage) is computed for “best” 90%, 95% and 98% of samples.
1-Steiner implementation of Griffith et al. [7], and divide this cost by

VAR .13 Table 1 presents the resulting valyg, AR), which we

know should converge B~ 0.76 by the theory of Beardwood, Steele  We begin with an empirical demonstration of the gain from know-
et al. The plot of Figure 5 presents a portion of the Table 1 dataiifgy the bounding box. We generdie= 10000 random instances of

an alternate way, we give individual curves depicting the convergenssints f = 4,5,...,30) chosen from a uniform distribution in the unit

of B(n,AR) for different values of the aspect ratkR Notice that the (1 x 1) square. The first row of Table 2 shows average values of RSMT
convergence is slower for larger valuesARR, and that the deviation cost over the\ samples for each value of (These correspond the first

of B(n,AR) from B is larger whem is small. The wide separation of column of Table 1, scaled by factors ¢i.) The table also shows the
the curves for smalh, and the slow convergence for lard&, explains maximum relative deviation from this average (expressed as a percent-
the discrepancy between the theoretical result and the observed usgyé#) among the 90%, 95% and 98% of the instaftes.

practice of half-perimeter based RSMT estimators. Similarly, in Table 3, the first row gives averages o= 10000
. samples of theatio of the RSMT costdivided by the half-perimeter
4 Expected RSMT Cost ofn Random Points of the pointset’s bounding boxEach column again gives maximum
Distributed in a Specified Bounding Box relative deviations in the middle 90%, 95% and 98% of the data, ex-

. . . . . pressed as percentages. We see that normalizing to the bounding box
While the results of the previous section allow improved eSt'mateSMIf-perimeter yields a greatly improved estimate.

c(RSMT) for pointsets in a given (rectangular) region, such estimates ginajly, we make a small digression to indicate how far off these

can often be very rough. In practice, e.g., foposterioriestimation, agiimates are from “best possible” non-constructive estimates, namely,
the bounding box of the RSMT instance (indeed, the entire pointsetjigse hased on the rectilinear MST construction. Recall that RMST cost
known. Intuitively, the more we know about the pointset, the better odlknown to average around 12% greater than RSMT cost (cf. analyses

estimate oft(RSMT) should be. In this section, we theoretically angt Bern and de Carvalho, as reviewed in [12]). Table 4 gives the aver-
experimentally determine improvements in RSMT cost estimation that
can be obtained when we know the pointset bounding box. 4The exact calculation is as follows. For each of 10000 samples we find the relative
deviation ofc(RSMT) from the average cost of RSMT for a given The we rank all

13In what follows, we will always use this Batched Iterated 1-Steiner implementation ielative deviations for each given valuerfTo find, say, the maximum relative deviation
approximate the (NP-hard) RSMT solution. Results in [7] indicate that this will overestiver the 90% of samples, we determine thehgfercentiles of the rank order. For example,
mate the true RSMT cost by an average of less than a quarter percent for the instancewre®e from the table that the middle 90% of all 10000 7-point instanceschB&MT)
that we discuss. within 27.003% of the average value@RSMT), which is 1.8748.




e Therefore, if we are givekrandom points having a knowsound-

A FTRSMT Bounding Box Half-Perim. . o .
verage of RSMT Cost/ #gg{:g's”g) ox Pal-renm ing boxwith sideswy,p andhy,, we may predict that the expected
) 5 3 10 T 15 T 20 T 30 RSMT cost is the same as the expected RSMT codt @n-
NRSMT || 1.06 | 1.13 | 1.19 | 1.31 | 1.42 | 1.66 | 1.87 | 2.22 dom points chosen in thegionhaving sidesvg = f_f—i -Wpp and
90% 105 | 11.8 | 142 | 144 | 13.4| 11.6 | 102 | 85 kil
95% 145 | 152 | 158 | 16.7 | 15.6 | 13.8 | 12.1 | 10.1 hr = 121 - hob-
98% 200 | 18.3| 18.7| 18.9 | 186 | 16.4 | 144 | 122

¢ We can then apg)ly lookup in Table 1 to estimate the RSMT cost
over thek points1®

Table 3: First line (NRSMT) gives averages of RSMT cost divided ) ) ] ] ]

by the half-perimeter of the pointset’s bounding box. The 10000  The above recipe defines a new type of estimator that is the first to

point samples are taken from a uniform distribution in the unit squaf@mbine the classic region-based and bounding box-based approaches.

Maximum relative deviation (expressed as a percentage) is compufée have confirmed that wirelength predictors based on the approach

for “best” 90%, 95% and 98% of the samples, respectively. of computingwg = £} - Whp, hr = (£ - hy, differ from empirically
constructed (i.e., via Monte Carlo experiments) predictors by less than
1%.
Average of RMST Cost/ RSMT Costin Unit Square In the empirical approach (which is analogous to the construction
#points () of Table 1, we generate a random seh@iints within a bounding box
4 | 516 | 8 | 10] 15] 2 | 30 of prescribed widttw and heighh in the following way:

MST || 1.10 | 1.11 | 111 | 1.11 | 1.12 | 1.12 | 1.12 | 1.12

9% || 94 | 93 | 82 | 67 | 62 | 48 | 42 | 33 .
95% |l 125] 105 96 | 79 | 73 | 58 | 50 | 39 1. generate a random setropoints in the 1x 1 square;

98% 165 | 132 | 11.8 | 9.3 8.7 7.0 5.8 4.7

2. find the bounding box of this set of points, with dimensians
andh’; and

Table 4: First line (MST) gives average ratios of RMST cost divided

by RSMT cost. The 10006-point samples are taken from a uniform

distribution in the unit square. Maximum relative deviation (expressed

as a percentage) is computed for "best” 90%, 95% and 98% of W% use this construction in finding RSMT costs oier= 10000 sam-

samples. ples ofnrandom points with bounding box aspectratie=1,2, ...,32,

and dividing by the half-perimeter of the bounding box. Table 5 shows

the average values for this ratio of RSMT cost to bounding box half-
imeter, as a function efandAR A similar empirical analysis was

3. multiply all x- andy-coordinates of the points hy/w andh/h,
respectively.

age ratio of RMST cost over RSMT cost, for the same 10000 rand

instances for each value of This allows us to compare the bounding & ¢\ 1o by Cheng [2], but the corresponding coefficients did not de-

box estimator With the minimum s_,pannin_g tree estimator. We conclu nd on aspect ratio. Additionally, the author of [2] used a worse code
that the bounding box-based estimator is much better than the reg 'f'finding heuristic RSMTs. As a result, the entries of the first row
based estimator, and that the MST-based estimator is somewhat bE Lble 5, which we reproduce from [2]’ are larger than our entries

still. However, as we noted earlier, the MST is too expensive to (H%approximately 2% even in the caseAR= 1. In practice, Cheng's

U$ed in p_ractice — Wwe require linear-time on-line wirelength e_stimat_ thod will produce even worse overestimates of RSMT cost because
with sublinear update costs (based on reasonable storage) in the "i?faﬁores the effect of bounding box aspect rafo
tive placement context. '

A New Connection Between Region-Based and Bound-> Practical On-Line Wirelength Estimation

ing Box-Based Estimation To see the practical value of our new estimators, we first observe that

. . they are extremely efficient.
From the results of Section 3 we know there is a dependency of RSM"iey y

cost on the aspect ratio of tiregion from which points are chosen. e Inthe on-line (top-down placement) context, we haygns dis-
When we also consider the previous results of this section, we are mo- tributed among various regions. Instead of returning the bound-
tivated to seek a dependency of RSMT cost on the the aspect ratio of ing box of the region centers, we apply the linear-time heuristic
the pointset bounding boas well. Intuitively, if we can estimate this of Figure 3 in Section 2 to obtain the expected bounding box of
dependency, we will be able to more accurately predict the RSMT cost  the pins, then perform lookup (with linear interpolation as appro-
for random points with a known bounding box. In the remainder of this  priate) in Table 5 of Section 4.

section, we will give a formal basis for such an estimation, then confirm

our ideas experimentally. ¢ In the a posteriori context, we haven pins in exact locations.
The results of Section 3 allow us to estimate RSMT cost for random  Instead of returning any of the previous bounding box based es-
pointsets chosen inragionwith given aspect ratio, based on empirical timates, we perform lookup (again with linear interpolation as

values ofp(n,AR). From the previous results of this section, we know  appropriate) in Table 5.
that estimates that exploit knowledge of the pointset bounding box arer - time comnlexity of our estimates in each contexdis). Up-
more accurate than estimates that use only knowledge of the re%%n the estimzfte ern a pin is moved. as lond as we 'ha\f)e exact
from which the pointset was chosen. The difficulty is thatftfig AR) 9 dd d P he heuristi gf o 3 ;
values from Section 3 cannot be directly applied when we have a SB)&_&UOHS and do not need to execute the heuristic of Figure 3, requires
cific pointset with a specific bounding box. We resolve this difficulty 15this simple approach is very accurate, as we will discuss next. It may be possible to

as follows. improve its accuracy by considering all possible region dimensigrendhg, weighted by
the likelihood that the pointset was actually chosen from within those region dimensions.
. . . However, we believe that the advantages of such a complicated extension will be minimal.
e From Fact 4, we knC_JW that if we choogerandom poInts IN @ 16\ . Readers may notice that the entries A= 1 in Table 5 are slightly different
rectangular region with sides andh, the expected sides of thefrom the entries in the first row of Table 3. This is because the Table 3 entries are averaging
i i — _ 2 - __over all bounding box aspect ratios, not jdd®= 1. The expected bounding box aspect
bc2Jund|ng box of these pomts ane W(l k+_1) andh h(l ratio for random points is somewhere between 1 and 2, and this is consistent with the data
K1) in the two tables.




Average RSMT Cost for Pointset_s With BBox Half-Perimeter = 1 Test Casell Number of Cells| Number of Nets
e Foolnts f(;) S Testl 1756 1492
T || 1.08| 115 | 1.22 | 1.34 | 1.45 | 1.60 | 1.89 | 2.23 Test2 3286 2902
D || 122|134 | 155| 152| 144 | 127 | 11.4| 952 Test3 6692 6527
1 106 | 113 119 | 1.32| 1.42| 166 | 1.87 | 2.22 Test4 12133 11828
D 11.2| 125| 145| 141| 135| 11.6 | 10.3 | 8.64 Test5 12857 10880
2 105| 1.11| 1.16 | 1.27 | 1.36 | 1.59 | 1.78 | 2.10
D 9.83 | 10.3 | 12.3| 126 | 12.6 | 11.2 | 10.1| 8.64 . .
v 103 107 111 118 125 121 157 1.82 Table 6: Parameters of five standard-cell test cases from industry.
D 6.87 | 6.93| 850 | 9.54 | 9.98 | 9.87 | 9.35 | 8.13
10 || 1.01| 1.03| 1.05| 1.08 | 1.12 | 1.21 | 1.29 | 1.45
D 3.37 | 344 | 439 | 505 | 553 | 6.18 | 6.51 | 6.53
Average Relative Error of Wire Length Estimates
Table 5: Each entry represents an average, over 10000 samptes of % of levels completed
H H H H H Estimat 10 20 30 40 50 60 70 80 90 100
random_ points havmg_prescrlbed bou_ndlng box aspect ratio, of RSMT o235 —15 o860 0310000
cost divided by bounding box half-perimeter. The first row reproduces Hes 236 | 189 | O11 | 511 | 298 | 169 | 071 | 029 | 002 | 000
coefficients from the paper by Cheng [2]. Each row marked with D | gss 1901 | 110 | 050 | 025 | 025 | 022 | ‘015 | 006 | 001 | ‘000
T 1 T 19t H 0, Ch .208 139 .085 .051 .038 .027 .039 .057 .065 .065
gives the maximum relative deviation from the average in 90% of the | ghend || 208 | 239 | 085} 0511 098 | 0271 0351 057 ] 095 | 0%
samplesv expressed as a percentage, HBBtab 237 | 161 | 920 | 509 | .293 | .164 | .066 | .025 | .010 | .010
HBBOtab 140 .097 072 .047 .026 .020 011 .008 .010 .010
HBBGtab 120 .069 .061 .045 .046 .040 .032 .018 .010 .010

only a constant number of operations after the net bounding box fable 7: Relative errors of estimated sums of bounding box half-
beenupdated Thus, speedups of bounding bogdatesthat are used perimeters and RSMT costs during the top-down placement. Data for 5
in practice (see, e.g., TimberWolf-related papers of Sechen et al) hetestcases are normalized and averaged.

transfer directly into our methods. Having established efficiency, we

next show that our methods lead to improved estimation accuracy in

the on-line context. . Thus, we have proposed two corrections to our basic models. (1) In the

948B0 and HBBOtab estimates, we assign a zero bounding box half-

centelr-blased, boundirt1)g é)Oﬁ](-baseld,dandbChheng [(Zj] estimates, into aﬁ? imeter to nets that still belong to the same block (i.e., region) of the
ternal placement testbed that includes both top-down partitioning g8f_ o partitioning. This captures the fact that most of these internal

annealing engine. Specifically, we compare the following nine wire-, il end up being placed with their cells close together (a conse-
length estimates (the first four alggrlthms estimate half-perlmeters ence of Rent’s rule). If a net already has its cells in different regions,
net bounding boxes and the rest five algorithms estimate Steiner {{g€, o\ our regular estimate since we already know these cells must
lengths taking in account the net sizes and the aspect ratios of bounding up in separated locations. (2) An alternate way of modeling the
boxes): fact that cells that share a net should end up closer together than ran-
. . . . om cells is to restrict the possible cell locations. To do this, we scale
¢ SE;B : Sf,t;nd?rdi br?iunn\c/jvllz]ig hb?rf es;t/lmnateinuisnrg tr;e dcenter coorﬁ{-e dimensions of each region by one-sttwhile keeping the region
ates ot the regio chthe given pin is locate centered at the same coordinates. This leads to the HBB6 and HBB6tab
e HBB : Heuristic bounding box estimate using the linear-timgstimates.
heuristic of Figure 3 Our experiments thus far have evaluated the accuracy of on-line
o ) wirelength estimation in a top-down partitioning-based placer. We have
e HBBO : Heuristic BBox with length scaled down to zero for netgsed five standard-cell test cases Testl,.. ., Test5, obtainedrfdors: i

completely contained in a region try; their parameters are given in Table 6.

Our results are given in Table 7. For each test case, we run the top-
wn partitioning based placer to completion, then measure both total
net bounding box half-perimeter and total Iterated 1-Steiner heuristic
RSMT cost of the result. For the bounding box estimators (the first
e Cheng : CBB estimate, scaled by the coefficients of Cheng [fur rows of each table), each table entry gives the relative error of the

e HBB6 : Heuristic BBox assuming that regions have dimension
that are scaled to 1/6 of their actual values (with the scaled
gions having the same centers as the original regions)

(reproduced in the first line of Table 5) estimated sum of bounding box half-perimeters after the ifir0%
(i=1,...,10) levels of the top-down partitioning based placement, ver-
o CBBtab : CBB estimate, followed by lookup in Table 5 sus the final sum of bounding boxes. (We report data for every 10% of

the levels because the number of placement levels varies according to
instance size.) For the wirelength estimators (the last five lines of each
table), each table entry gives the relative error of the estimated sum of
Steiner tree costs, versus the final sum of 11S heuristic RSMT costs.
o HBB6tab : HBB6 estimate, followed by lookup in Table 5 Table 7 gives the average of all the values. We see that our new es-
timators aresubstantiallybetter in the on-line context than previous
Notice that if we blindly follow the uniform distribution assump-methods of estimating either sum of bounding box half-perimeters or
tion, we will tend to overestimate wirelengths during the early stagéém of RSMT costs. In other words, we can obtain accurate estimates
of the top-down placement process. This is because cells that are gdribe final values of these objectives, relatively early in the top-down
nected by a net will end up closer together than predicted by the rand@lgcement process. This allows pruning of bad solution paths, and large

model, due to the contribution of the net to the placement objectigg@tential runtime savings. At the same time, everefosterioriesti-

mation our new methods are superior to previous approaches.
17Placements that we obtain from our internal testbed are competitive — in terms of run-

time, various solution metrics, and routability by industrial routers — with placements from

industry placers that we are aware of. 8The empirical factor of 16 is a result of fine-tuning our estimates.

e HBBtab : HBB estimate, followed by lookup in Table 5
 HBBOtab : HBBO estimate, followed by lookup in Table 5




6 Conclusions and Future Work

We have developed new wirelength estimation techniques appropr@ﬁ

for top-down floorplanning and placement synthesis of row-based VL
layouts. Our methods give accurate, truly linear-time approaches, typi-
cally with sublinear time complexity for dynamic updating of estimat
(e.g., for annealing placement). The new techniques offer advanta
not only for early on-line wirelength estimation during top-down place-
ment, but also fom posterioriestimation of routed wirelength given a

final placement. In developing these new estimators, we have m&HR]

several theoretical contributions. Notably, we have resolved the long-
standing discrepancy betweeggion-basedand bounding box-based

[12] A. B. Kahng and G. Robins.On Optimal Interconnections for

VLSI Kluwer, 1994.

M. Pedram and B. Preas. Interconnection length estimation for
optimized standard cell layouts. Proceedings IEEE Interna-
tional Conf. on Computer-Aided Desigmages 390-393, 1989.

4] C. Sechen. Average interconnection length estimation for random

and optimized placements. RProceedings IEEE International
Conf. on Computer-Aided Desigpages 190-193, 1987.

T. L. Snyder and J. M. Steele. A priori bounds on the euclidean
traveling salesmarSIAM Journal of Computing?4(3):665—671,
June 1995.

RSMT estimation techniques; this leads to new estimates that are fud&] J. M. Steele. Growth rates of euclidean minimal spanning trees

tions of instance size and aspect ratidR
We have validated our new techniques experimentally using test

with power weighted edgesAnnals of Probability 16(4):1767—
1787, 1988.

cases from industry; the HBBO and HBBOtab are substantially suf¢Z] J. M. Steele and T. L. Snyder. Worst-case growth rates of some

rior to previous methods. Our ongoing research addresses such issue

as (1) confirming that our new cost estimates can successfully drive

sClassical problems of combinatorial optimizatiocBIAM Journal

of Computing18(2):278-287, 1989.

partitioning- and annealing-based placers to improved solutions (di8] D. Stroobandt. Improving Donath’s technique for estimating the

liminary results are quite promising); and (2) improving the intuitions
that led to the HBB0/6 and HBBO/6tab refinements of our original esti-
mators.

The assumption about uniform distribution of cells in bounding
boxes may not hold in some VLSI CAD applications. We believe that
our methods can be applied if actual distributions are available, in par-
ticular, our exact algorithm for expected minimum can accommodate
many piece-wise polynomial distributions.

Extending our present results to non-uniform cell distributions ap-
pearing in top-down placement presents an intriguing direction for fu-
ture work.
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