
FASTER MINIMIZATION OF LINEAR WIRELENGTH

FOR GLOBAL PLACEMENT

Charles J. Alpert4, Tony F. Chan2, Dennis J.-H. Huang1, Andrew B. Kahng1;3;�,
Igor L. Markov2, Pep Mulet2, Kenneth Yan1

1UCLA Computer Science Department, Los Angeles, CA 90095-1596
2UCLA Mathematics Department, Los Angeles, CA 90095-1555

3Cadence Design Systems, Inc., San Jose, CA 95134
4IBM Austin Research Laboratory, Austin, TX 78758

fjenhsin,abk,kyang@cs.ucla.edu, fchan,imarkov,muletg@math.ucla.edu, alpert@austin.ibm.com

ABSTRACT

A linear wirelength objective more e�ectively captures tim-
ing, congestion, and other global placement considerations
than a squared wirelength objective. The GORDIAN-L cell
placement tool [16] minimizes linear wirelength by �rst ap-
proximating the linear wirelength objective by a modi�ed
squared wirelength objective, then executing the following
loop { (1) minimize the current objective to yield some ap-
proximate solution, and (2) use the resulting solution to
construct a more accurate objective { until the solution con-
verges. In this paper, we �rst show that the GORDIAN-L
loop can be viewed as a special case of a new algorithm that
generalizes a 1937 iteration due to Weiszfeld [19]. Speci�-
cally, we formulate the Weiszfeld iteration using a regular-
ization parameter to control the tradeo� between conver-
gence and solution accuracy; the GORDIAN-L iteration is
equivalent to setting this regularization parameter to zero.
Other novel numerical methods described in the paper, the
Primal Newton iteration and the Primal-Dual Newton itera-
tion, further improve upon the linearly convergent Weiszfeld
iteration. Our Primal-Dual Newton iteration stably attains
quadratic convergence, making it a superior choice for im-
plementing a placer such as GORDIAN-L, or for any linear
wirelength optimization.

1. INTRODUCTION

The heart of the \quadratic placement" technique [2, 18])
lies in solving for one-dimensional placements that minimize
squared wirelength. Two such placements in the x- and y-
directions will induce a two-dimensional \global placement"
which, due to the objective function and continuous formu-
lation, will have most cells clumped in the center of the
layout region. Quadratic placers vary mostly in how they
map a global placement to a feasible cell placement (i.e.,
with non-overlapped cells in legal locations). Min-cut par-
titioning and center-of-gravity constraints are among the
means of gradually \spreading out" the global placement
during the course of this mapping.

�This work was supported by a grant from Cadence Design
Systems, where ABK is currently Visiting Scientist (on sabbati-
cal leave from UCLA).

The squared wirelength objective is applied only because
it allows the one-dimensional placement problem to be re-
duced to the solution of a system of linear equations. How-
ever, this objective tends to overpenalize long wires and
underpenalize short wires. Thus, a strongly connected clus-
ter may be spread out over the placement, increasing wiring
congestion for the router. This reduces the routing resource

exibility needed to satisfy timing and signal integrity con-
straints.
Mahmoud et al. [11] compared the linear and squared

wirelength objectives for analog placement and concluded
that the linear wirelength objective is superior. Works such
as [14] have further shown that a linear wirelength objec-
tive can be used to form one-dimensional placements that
directly yield e�ective bipartitioning solutions. In 1991, Sigl
et al. [9, 16] proposed GORDIAN-L, an improved version
of GORDIAN which optimizes the linear wirelength objec-
tive. Since the linear wirelength objective cannot be ad-
dressed directly by numerical methods, GORDIAN-L ap-
proximates the linear objective by a quadratic objective,
then executes the following loop { (1) minimize the current
objective to yield some approximate solution, and (2) use
this solution to �nd a better quadratic approximation of the
linear objective { until the solution converges. GORDIAN-
L achieves solutions with up to 20% less area than GOR-
DIAN while signi�cantly reducing routing density and total
minimum spanning tree cost [16]; it has been used widely in
industry for both ASIC and structured-custom layout (e.g.,
Motorola PrediX
oorplanner, Siemens LINPLACE placer,
etc.). The GORDIAN-L improvement comes at the price
of signi�cantly increased CPU cost ([16] reports a factor
of �ve increase over GORDIAN). To achieve reduced CPU
cost, or improve solution accuracy within given CPU cost
bounds, we have developed alternative numerical methods
for linear wirelength minimization. We make the following
contributions.

� We place the GORDIAN-L approach in the context
of a new generalization, derived below, of a 1937 al-
gorithm by Weiszfeld [19]. In its modern form, the
Weiszfeld algorithm allows imposition of arbitrary lin-
ear constraints on the cell coordinates, including cen-
ter of gravity constraints. Our derivation uses a �-
regularization technique to allow a tradeo� between
runtime and precision; GORDIAN-L corresponds to
the special case of � = 0. The Weiszfeld approach
has linear convergence as opposed to the superlinear
(and sometimes quadratic) convergence of more mod-
ern numerical approaches.

� We next explore alternatives to the Weiszfeld
(GORDIAN-L) solver. Speci�cally, we develop a Pri-

mal Newton iteration (an inexact Newton approach)
and from this basis develop a Primal-Dual Newton it-
eration that stably attains quadratic convergence.1 We
highlight relevant mathematical theory and discuss im-
plementation issues.

� Extensive experiments show that Primal-Dual New-
ton converges signi�cantly faster than the Weiszfeld
(GORDIAN-L) solver over a range of instance com-
plexities and �-regularization regimes. It is straight-
forward to integrate the Primal-Dual Newton iteration
into existing implementations.

2. PRELIMINARIES

A quadratic placer takes a netlist hypergraph as input and
produces a placement of the cells. To apply existing numer-
ical optimizations the netlist must �rst be transformed into
a graph.
De�nition: An undirected weighted graph G(V; E) con-
sists of a set of vertices V = fv1; v2; : : : vng and a set of
edges E = fe1; e2; : : : ; emg where each edge is an unordered
pair of vertices. A weight function w : E ! <+ assigns a
nonnegative weight w(e) to each edge in e.
To convert the netlist into a graph, the authors of [9]

use a star model wherein a new \net node" is created for
each net in the netlist, and an edge is added between the
net node and each cell connected to the net. Placing the
net node at the center of its incident cells (as GORDIAN
assumes) makes the star model equivalent to a clique model
which introduces an edge of weight 2

p
between every pair

of cells incident to a given p-pin net. The total squared
wirelength will be the same for any placement under either
the star or clique models.
De�nition: The n � n adjacency matrix A = (aij) for
the graph G has entry aij = w(vi; vj) if (vi; vj) 2 E and
aij = 0 otherwise.
De�nition: The n� n Laplacian matrix Q = (qij) of A
has entry qij equal to �aij if i 6= j and entry qii equal toPn

j=1
aij , i.e., qii is the degree of vertex vi.

De�nition: The n-dimensional placement vector x = (xi)
corresponds to the physical locations of cells v1; : : : ; vn on
the real line, i.e., xi is the coordinate of vertex vi.

GORDIAN [9] uses a squared wirelength objective:
Squared Wirelength Formulation: Minimize

�Q(x) =
1

2
xTQx+ dTx =

nX
i;j=1

aij(xi � xj)
2 + dTx

s.t. Hx = b (1)

Here, H is a q�n constraint matrix that represents q center
of gravity constraints (a special case is that of �xed (pad)
locations). Vector b gives the coordinates of the q centers
of gravity. For vj belonging to the i-th group of vertices,
the (i; j) entry of Hx is set to be 1

ni
, where ni is the total

number of vertices in the group. The optional linear term
dTx represents connections of cells to �xed I/O pads. The
vector d can also capture pin o�sets [16].
De�nition: The m� n incidence matrix C = (cki) for
G represents the relationship between edges and vertices
of G. For each edge ek = (vi; vj) 2 E, cki = w(ek) and

1This should not be confusedwith the \primal-dual"approach
for timing-driven placement in [7], but similar variational ideas
are used.

ckj = �w(ek); the orientation of edges (signs of cki and
ckj) can be arbitrary. All other entries of C are zero.
Note that there are 2m non-zero entries in C and that

each row sum is zero. The GORDIAN-L linear wirelength
objective is as follows:
Linear Wirelength Formulation: Minimize

�L(x) =k Cx k1=
nX

i;j=1

aij jxi � xjj s.t. Hx = b (2)

A term dTx can again be added to incorporate pin o�sets
and connections to pads.

3. GORDIAN AND GORDIAN-L

GORDIAN [9] obtains a placement by repeatedly optimiz-
ing �Q, alternating between the horizontal and vertical di-
rections. Constraints for the optimizations are respectively
given by Hxx = bx and Hyy = by, corresponding to the x
and y directions as explained above.2.
The algorithm must ensure that at each iteration Hx and

Hy have maximal rank and constrain each cell by exactly
one center of gravity. This implies that there is exactly one
nonzero element in each column of Hx and Hy.
GORDIAN begins with each cell attracted to the same

center of gravity located in the center of the layout. During
an iteration, for each center of gravity we consider the group
of cells (if of size � 2, i.e., if the constraint is non-trivial)
attracted to it. The corresponding region is cut in two by
a vertical or horizontal line passing through the center of
gravity, and two new groups of cells with respective new
centers of gravity replace the old group. This leads to a
�nal solution where cells do not overlap.
Figure 1 summarizes the
ow of the GORDIAN algo-

rithm. The algorithm takes as input a graph G obtained by
applying the 2

p
-clique model to a circuit netlist; it outputs

the coordinates of the placed cells. The repeat loop in
Steps 2-8 continues as long as the number of cells is bigger
then the number of center of gravity constraints. At each
iteration, Step 3 minimizes a quadratic objective function
which is derived below. The resulting placement is used
to re�ne the center of gravity constraints, yielding left and
right constraints and larger linear systems (Steps 5 and 6).
This process is then repeated in the y direction (Step 7),
with each non-trivial constraint re�ned into top and bottom
constraints. In each iteration, the number of subregions can
quadruple, so the number of iterations through the repeat
loop in Step 2 is O(log n).
We �nd the unique minimizer x for �Q(x) de�ned in

Equation (1) by solving the possibly underdetermined con-
straint system Hx = b, passing to an unconstrained formu-
lation and �nally solving a quadratic programming prob-
lem as follows. Matrix H is diagonalized by a permuta-
tion of columns3 into [Hd jHi] (Hd is q � q-diagonal; Hi

has size q � (n� q)). Correspondingly, the placement vec-
tor x splits into n � q independent variables xi and q de-
pendent variables xd, so that we can rewrite Hx = b as

[Hd jHi]
h
xd
xi

i
= b or Hdxd +Hixi = b.

2To handle non-unit areas a(vi) for each vertex vi, entry ij is

changed to a(vi)
Aj

, where Aj is the sum of the areas of all vertices

with center of gravity bj.
3This is possible since every column has exactly one nonzero

element and constraints are non-degenerate.

GORDIAN Placement Algorithm
Input: Graph G(V; E) representing a circuit netlist,

and its Laplacian Q; O�set vectors dx, dy
Output: Vectors x; y denoting the vertex coordinates
Variables: Constraint systems Hxx = bx;Hyy = by

of increasing size representing current
set of center of gravity constraints

1. Set bx and by to 1-dim vectors cx and cy
where (cx; cy) is the center of the layout
Set up the objectives
�Q(x) = xTQx+ dTx x and �Q(y) = yTQy + dTy y

2. repeat (Steps 3-7)
3. Minimize �Q(x) s.t. Hxx = bx
4. for each non-trivial constraint do (Steps 5-6)
5. Replace with two new constraints:

the cells to the left from the center are
attracted to the center of the left half
of the region. Similarly, for those cells
to the right from the center. Update Hx;Hy

6. Replace the center of gravity bi with
centers of gravity of two new groups
(update bx and by)

7. Repeat Steps 3-6 for y instead of x
(in Step 5 use top/bottom instead of left/right)

8. until no two cells share the same center of gravity
9. return x, y

Figure 1. The GORDIAN algorithm.

Inverting the diagonal matrix, we get

xd = �H�1
d Hixi +H�1

d b

This allows us to express x as

x =
h
xd
xi

i
=

�
�H�1

d Hi

I

�
xi +

�
H�1
d b
0

�

or as x = Zxi + � with obvious notation for Z and �. We
combine this formula with (1) to reduce the dimension of
the unknown minimizer and obtain an unconstrained for-
mulation

�Q(x) =
1

2
xTi Z

TQZxi + (Q� + d)TZT xi +C

where C represents all constant terms. As �Q(x) depends
on xi only, we introduce 	Q(xi) = �Q(x), so that

	Q(xi) =
1

2
xTi Z

TQZxi + c0
TZT xi +C

where c0 = Q� + d. We see now that 	(xi) gives an
(n� q)-dimensional unconstrained quadratic programming
problem. To determine its optimal solution, the gradient
r	(xi) is set to zero, yielding the (n � q)� (n� q) linear
system

ZTQZxi = �c
which can be e�ciently solved with, e.g., conjugate gradient
or another Krylov subspace solver [6]. Once the optimal
value xi is obtained, the optimal solution for x is given by
x = Zxi + �.

GORDIAN-L

Placement with minimum squared wirelength objective has
an unique solution that can be found by solving the corre-
sponding linear system. In contrast, placement with a min-
imum linear wirelength objective can have multiple optimal
solutions. For example, a single movable cell connected to
two �xed pads by edges of equal weight can be optimally
placed anywhere between the two pads. In general, the set
of optimal placements is closed and lies within the convex
hull of �xed pads (see [18]). Direct minimization of a linear
objective function can be achieved by linear programming,
but this is usually computationally expensive.
Sigl et al. [16] minimize the linear wirelength objective

�L(x) by repeatedly applying the GORDIAN quadratic
solver. They observe that the linear objective can be rewrit-
ten as

�L(x) =
X

(i;j)2E

aij jxi � xjj =
X

(i;j)2E

aij(xi � xj)2

jxi � xjj :

If jxi�xj jwere constant in the denominator of the last term,
then a quadratic objective would be obtained and could be
handled easily. The GORDIAN-L solver �rst solves the sys-
tem �Q(x) to obtain a reasonable approximation for each
jxi�xjj term. Call this solution x0. GORDIAN-L then de-
rives successively improved solutions x1;x2; : : : until there
is no signi�cant di�erence between xk and xk�1. From a
given solution xk�1, the next solution xk is obtained by
minimizing

�k
L(x

k) =
X

(i;j)2E

aij(xki � xkj)
2

jxk�1i � x
k�1
j j =

X
(i;j)2E

g
k
ij �(xki�xkj)2 (3)

where gkij =
aij

jxk�1
i

�xk�1
j

j
. Note that the coe�cients gkij are

adjusted between iterations. The iterations terminate when
the factors (xki � xkj) no longer change signi�cantly.4 Just

as with �Q(x), we can minimize �k
L(x) in Equation (3) by

applying a Krylov subspace solver. The GORDIAN algo-

GORDIAN-L Solver (new Step 3 for Figure 1)
Input: Adjacency matrix A, constraint matrix Hx

and vector bx.
Output: Solution x that optimizes �L(x)

such that Hx = bx.
Variables: Intermediate solutions xk

1. Solve �(x(0)) as in Step 3 of Figure 1. Set k = 1.
2. do (Steps 3-7)
3. Update each edge weight gkij to

aij

jxk�1
i

�xk�1
j

j
.

4. Construct �k
L(x

k) from Equation (3).
5. Minimize �k

L(x
k) s.t. Hxx

k = bx.
6. k = k + 1.
7. while

P
1�i�n

jxki � xk�1i j > �

8. return xk .

Figure 2. The GORDIAN-L solver.

4Some convergence criterion must be speci�ed in any imple-
mentation. Unfortunately, we do not know convergence crite-
rion used in GORDIAN-L, which makes CPU time comparisons
impossible.

rithm can be transformed into GORDIAN-L by replacing
Step 3 of Figure 1 with the solver shown in Figure 2.5

4. WEISZFELD METHOD

We now show that the GORDIAN-L solver is equivalent
to a special case of what we call the \Weiszfeld algorithm".
More precisely, we will describe, in modern terms, a method
�rst suggested in 1937 by Weiszfeld [19] and later gener-
alized by Miehle [12]. A contemporary exposition of this
method, along with a proof of its global linear6 convergence,
can be found in [4, 5] (see also [10]). Technical di�erences
between GORDIAN-L and our generalization of Weiszfeld
(vis-a-vis what we call �-regularization) are discussed in the
second subsection.

4.1. Derivation of the Weiszfeld algorithm

We wish to minimize f(x) =k Cx k1 subject to Hx = b.
Observe that

f(x) =k Cx k1=
mX
j=1

jCjxj �
mX
j=1

q
(Cx)2j + �

where � > 0 is a small constant. The purpose of � is to
approximate the non-di�erentiable objective function by a
smooth function. In order to write the derivative of f(x)
compactly, notice that7

d(jCjxj2)
dx

= 2CT
j Cjx (4)

Hence,

5f(x) =

mX
j=1

CT
j Cjxp

(Cjx)2 + �

and the partial derivatives of the Lagrangian L(x; �) are

�L

�x
=

mX
j=1

CT
j Cjxp

(Cjx)2 + �
+ �HT = 0 (5)

�L

��
=Hx� b = 0 (6)

Thus, the original minimization problem has been trans-
formed into two systems of equations which can be com-
bined to yield the nonlinear system�

B(x) HT

H 0

� h
x
�

i
=
h
0
b

i
(7)

where B(x) =
Pm

j=1

CT
j
Cjp

(Cjx)2+�
.

5Note that GORDIAN-L [16] also includes an additionalmod-
i�cation. Rather than subdivide each region into two subregions,
GORDIAN-L subdivides each region into three subregions and
then minimizes the objective �L; the result is then used to sub-
divide the region into �ve subregions, and the minimization is
performed again. The resulting solution is used as the output
for Step 3 in Figure 1, and centers of gravity are assigned as be-
fore. This modi�cation improves performance but increases the
number of calls to the numerical solver.

6Choose a norm and let �(k) denote the norm of the residual

vector at the k-th iteration. Assume that log �(0)
�(k) � Bks for

some constant B and s 2 f1;2g. We say that the convergence is
linear when s = 1 and quadratic when s = 2.

7Here CT
j Cjx = Cj
Cj a.k.a. the Kronecker product.

To solve this system, we guess an initial approximation
x0 and solve the system with B(x1) = B(x0), where x1

is the next iterate. In general, we compute the Weiszfeld
iterate8 xk from the previous value xk�1 by solving the
linear system

�
B(xk�1) HT

H 0

��
xk

�

�
=
h
0
b

i
(8)

which we call the low-level system. The iterations continue
until a convergence criterion is met, e.g., one may look at
some norm of the residual vector (the di�erence between
the left hand side and the right hand side of Equation (7)).
This is the main
ow of the Weiszfeld algorithm.
Recall that the heart of the GORDIAN-L solver is

its approximation of the linear wirelength objective by a
quadratic objective:

�L(x
k) =

X
(i;j)2E

aij(x
k
i � xkj)

2

jxk�1i � xk�1j j (9)

In other words, GORDIAN-L uses the same type of itera-
tion as Weiszfeld. Equation (9) can be rewritten as

�L(x
k) =

mX
j=1

(Cjx
k)2

jCjxk�1j

for which the Lagrangian is

L(xk ; �) =

mX
i=1

(Cjx
k)2

jCjxk�1j + �
T (Hxk � b)

and

�L

�xk
=

mX
j=1

CT
j Cjx

k

jCjxk�1j + �HT = 0 (10)

Setting ~B(x) =
CT
j
Cjx

k

jCjx
k�1 j

and using Equation (6), we obtain

a system very similar to Equation (8) except that B(xk�1)

is now replaced with ~B(xk�1). The only di�erence between
these two matrices is that the Weiszfeld algorithm approxi-

mates jCjxj with
p
(Cjx)2 + �. This is necessary to avoid

numerical problems when jxk�1i � x
k�1
j j becomes too small

(cf. Step 3 of Figure 2). In GORDIAN-L (see [16]), if this
term becomes smaller than the minimal gate width, it is re-
placed with this gate width. In summary, it is simply a mat-
ter of Weiszfeld and GORDIAN-L using di�erent schemes
(�-regularization versus minimal gate size, cf. Figure 3) in
order to guarantee reasonable behavior of the solver at the
cusps of the objective function. �-regularization is superior
to using the minimal gate width in the sense that it is closer
to the original objective function and its unique minimizer
has convenient limit behavior when � ! 0 (see below).

8The mathematical idea behind solving Equation (7) is to
build an iteration xk 7! xk�1 whose �xed point is the un-
known solution. Hence, Weiszfeld can be classi�ed as a �xed-
point method.

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

beta=0.02

Reg(x)
MinGW(x)

Figure 3. Comparing the Minimal Gate Width func-
tion (MinGW) with the �-regularization (Reg) in one
dimension. The original objective is represented by
jxj. Here � = 0:02 and the minimal gate width is set
to
p
� � 0:141. Note that the discontinuous MinGW

has continuous one-sided derivative (optimality condi-

tions), as its branches are given by x2

2
p
�
and jxj. By

demanding continuity of the objective function and
therefore dropping the factor of 1/2, we would make
the optimality conditions discontinuous.

4.2. �-regularization.

In the Weiszfeld algorithm the objective function was �-
regularized, in particular, to bound the denominator in
Equation (5) away from zero. We now discuss some prop-
erties of the regularized objective function and its relation
to the original objective function.
By changing all expressions of the form j � j in the origi-

nal objective to
p
(�)2 + �, the resulting objective becomes

strictly convex and therefore has an unique global mini-
mizer. As � ! 0, this minimizer approaches that of the
original linear objective which, in turn, can have plenty of
minimizers. For example, consider �L for the instance of
a single movable vertex connected to two �xed pads on
opposite ends of the layout. One can see that �L will
have uncountably many optimal solutions, while the �-
regularization will have but one (for � > 0).
Clearly, as � increases, the disparity between the regu-

larized objective and the original objective increases as well
(and the derived solutions will be further from optimal).
On the other hand, if � is too small, the derivative of the
objective function (which is used in variational methods)
will behave badly near points where the original objective
is not smooth: matrices in linear systems will become ill-
conditioned and solving them will become computationally
expensive, if impossible.
The �rst question now is: \How should � be expressed

to have comparable e�ects for various unrelated placement
problems?" In the original objective function, all expres-
sions of form j � j are actually jxi � xjj. These expres-
sions are upper bounded by L, the length of placement
interval, which varies across di�erent placement instances.
If we set � = �rL

2, where �r is a small number, thenp
(xi � xj)2 + � = L

p
(~xi � ~xj)2 + �r with ~xi and ~xj be-

ing on order of 100 for any placement problem. Our experi-
ments show that in this way we obtain similar behavior for
di�erent placement problems if we use the same value of
�r | independent of problem size. We have worked with
values ranging from 101 to 10�7.

The second question | how to choose good values of �r
| is harder; the answer largely depends on how the solu-
tions produced by the Weiszfeld method are used. One can
repeatedly solve Weiszfeld for decreasing values of � and
stop when the di�erence between successive placements is
small; alternatively, one can stop when the objective func-
tion stabilizes. Both strategies can lead to premature stop-
ping, and �nding a good heuristic is an open question.

5. THE PRIMAL NEWTON METHOD

The Newton approach is often used as a base for devel-
oping more sophisticated methods with superlinear conver-
gence(e.g. in [1, 10]). In this section, we develop what
we call the Primal Newton method for minimizing the lin-
ear wirelength objective. Our main purpose is to introduce
the reader to techniques that we will use in developing the
Primal-Dual Newton method.9 Primal-Dual will also be a
Newton method, but with an additional set of dual vari-
ables. Because the Primal-Dual Newton method converges
at least as fast as the Primal Newton method and is more
stable (i.e., its region of convergence is strictly larger), we
do not report experimental data for Primal Newton.
Consider minimizing

Pm

j=1

p
(Cjx)

2 + � such that

Hx = b. As before, Cj 2 Rn contains only two nonzero en-
tries | plus and minus the i-th edge weight | at locations
corresponding to the two vertices of the edge.
The Lagrangian for this problem is

L(x; �) =

mX
j=1

q
(C

j
x)2 + � + �

T (Hx� b) (11)

Taking partial derivatives and using Equation (4), gives us

�L

�x
=

Pm

j=1

CT
j
Cjxp

(Cjx)
2+�

+HT� = 0 (12)

�L

��
= Hx� b = 0 (13)

Applying the Newton method to this nonlinear system, we
rewrite the system (invoking the fact that rows of matrix
C are precisely Cj and utilizing some linear algebra) as
follows: �

M HT

H 0

�h
�x
��

i
= �

h
K(x; �)
Hx� b

i
(14)

where
M(x) = CTE(x)

�1
F(x)C (15)

and the following notations are used:

� K(x; �) =
Pm

j=1

CT
i
Cix
�p

(Cix
k)2+�

+HT�

� �i =
p
(Cixk)2 + �, with � de�ned as for the Weiszfeld

algorithm

� E(x) is an m�m diagonal matrix with values in the
i-th row equal to �i

� F(x) is an m�m diagonal matrix with values in the

i-th row equal to (1� (Cix
k)2

�2
i

)

9The key issue addressed by Primal-Dual Newton is global
convergence, which Primal Newton lacks. No precise mathemat-
ical statement about global convergence of Primal-Dual New-
ton has been proven, but its reliable convergence properties have
been observed in the literature (e.g. [1, 10]) and our experiments.

At the end of each iteration, we update x and � as

x = x+ �x

� = �+ ��

Starting with initial values of x and �, we compute corre-
sponding values for M(x) and K(x;�), then update x and
� by solving the system in (14). This is repeated until some
convergence criterion is met. We call this particular imple-
mentation of the Newton method Primal Newton.
The Primal Newton method does not possess any kind of

global convergence property. Local convergence takes place
| a proof can be found in [13] | but we do not know of any
estimates of the size of the local convergence region. One
can use various globalization techniques (e.g., line search
and trust regions) to guarantee convergence of the Primal
Newton method everywhere. However, all of these global-
ization techniques are known to be ine�cient in a number
of applications10 due to the small size of the region where
Primal Newton converges quadratically. Modi�cations to
a Newton method which allow it to achieve global conver-
gence can be found in [10], where a corresponding theorem
is proven and numerical results demonstrating advantages
over the Weiszfeld method are shown. [10] also contains
a discussion of degeneracy | a feature of some placement
problems for which Newton-like methods are only linearly
convergent.
The various considerations related to top-level stopping

criteria for Weiszfeld in the previous section do not carry
over to the Newton method, since we are searching for x
which cannot be characterized as satisfying a particular lin-
ear system. In other words, we do not have an analogue for
the residual norm. However, convergence criteria in terms
of successive iterates are easily de�ned since �x is the dif-
ference between successive iterates. Alternatively, various
convergence criteria can be deduced from the observation
that the nonlinear residual| the right hand side of (14) |
goes to zero as the Newton method progresses.

6. THE PRIMAL-DUAL NEWTON METHOD

The idea of the primal-dual Newton approach was devel-
oped by Conn and Overton in [3] and has been recently
used for a denoising application in image processing (see
[1]). Numerical results suggest that the approach has fast
convergence, stability and signi�cant practical value.
Recall that the optimization problem we will solve is: �nd

x which minimizes

f(x) =

mX
j=1

q
(Cjx)

2 + � s. t. Hx = b (16)

where Cj 2 Rn again contains only two nonzero entries |
plus and minus the i-th edge weight | at locations corre-
sponding to the two vertices of the edge. Let sj = Cjx,
Then we can rewrite (16) as: �nd x which minimizes

mX
j=1

q
s2j + � s. t. Cjx� sj = 0 and Hx = b (17)

The Lagrangian for this problem is

L(x; s; z; �) =

mX
j�1

q
s2j + �+

mX
j�1

zj(Cjx� sj)+�(Hx�b)

10Experience indicates that our application is one; image pro-
cessing is another.

where � and z are the Lagrange multipliers for x and s. The
Karush-Kuhn-Tucker �rst order necessary conditions are

@L

@x
=

Pm

j=1
CT
j zj +HT� = 0 (18)

@L

@sj
=

sjp
s2
j
+�

� zj = 0; j = 1; :::;m (19)

@L

@zj
= Cjx� sj = 0; j = 1; :::;m (20)

@L

@�
= Hx� b = 0 (21)

Using (20) to eliminate sj from (19) and rearranging
slightly:

mX
j=1

CT
j zj +HT

� = 0 (22)

Cjx� (
p
(Cjx)2 + �)zj = 0; j = 1; :::;m (23)

Hx� b = 0 (24)

We can now apply Newton's method to this nonlinear sys-
tem. Di�erentiating the left hand side of Equation (22)
with respect to z and writing the result as a matrix, we get
CT (because CT is composed of CT

j). Di�erentiating the
left hand side of Equation (23) with respect to x, we get
(refer to (4))

Cj � zj(x
TCT

j)Cjp
(Cjx)2 + �

; j = 1; :::;m (25)

which can be rewritten in matrix form as

I(z;x)C (26)

with I(z;x) = diag(1 � zi(x
TC

T
i)

�i
), �j =

p
(Cjx)2 + �. We

introduce E = diag(�i) to express in matrix form the deriva-
tive of the left hand side of Equation (23) with respect to
z.
Finally, Newton's method gives the following linear

system11 which we need to solve repeatedly:"
CT 0 HT

E �I(z;x)C 0
0 H 0

#"
�z
�x
��

#
= �

"
CTz+HT�
Ez�Cx
Hx � b

#

(27)
To reduce the dimension of this system, we eliminate �z by
substituting its second equation

�z = �z+ E(x)�1Cx +E(x)�1I(z;x)C�x (28)

into the �rst equation. After cancelation, we get

CTE�1I(z;x)C�x+HT
�� = �(CTE�1Cx +HT

�)

and together with the third equation of (27) this makes�
CTE(x)

�1
I(z;x)C HT

H 0

��
�x
��

�
= �

�
K(x; �)
Hx� b

�
(29)

11Here, dual variable z and matrices E, I are m-dimensional,
while x;b; � and H are n-dimensional. C has size m� n.

where12

K(x; �) = CTE�1Cx+HT
� =

mX
j=1

CT
i Cix

�i
+HT

� (30)

In the overall algorithm, �z gives an update direction for z,
and we are free to use �z with any factor we want. However,
as noted in [1, p.9], for the matrix in (29) to be nonsingular
one requires k zk k1� 1. To ensure this, iterates zk of
the dual variable are de�ned recursively with z0 = 0, and
updates computed at each iteration by (28) and the line

search formula zk+1 = zk + S �z, where

S = minf0:9 supfSj k zk + S �z k1< 1g; 1g (31)

One computes the supremum by looping over coordinates
and solving �1 � zk+S �z � 1 for S. (In practice, S ! 1 as
iterates converge, and we �nd that S = 1 for most iterates.)
The variables x and � are updated at each iteration using

x = x+ �x

� = �+ ��

Computationally, we deal with the system (29) just as
with the Primal Newton method for linear objective in
Section 5. To �nd an initial approximation close to the
quadratic convergence region, one can solve a few linear
systems as if using the Weiszfeld algorithm, then switch to
Primal-Dual iterations13 .
The right hand side of (14) goes to zero as top-level it-

erates converge. This means that all convergence tests in-
volving residual vectors should be formulated in terms of
relative tolerance or should otherwise depend on the right
hand side of the system. We have observed in our exper-
iments that if for some reason (14) is not solved precisely
enough, Newton top-level iterates can start to diverge.
The remarks given for the Primal Newton method above

also apply to Primal-Dual Newton (see [1]); in particu-
lar, Primal-Dual Newton possesses quadratic convergence
(see [8, 5.4.1]) and is preferable to the linearly conver-
gent Weiszfeld algorithm. Primal-Dual Newton converges
quadratically in strictly larger regions than Newton method
and is only 30-50% more expensive in computation and
memory per iteration than the Weiszfeld method.

7. EXPERIMENTAL VALIDATION

In this section, we review some aspects of our experimen-
tal testbed and substantiate the e�ciency of Primal-Dual
Newton in comparison to Weiszfeld.

12The second equality in (30) relies on Q = �CT0WC0 , which
expresses the Laplacian Q in terms of the pure (i.e. having only
0, 1 and �1 entries) incidence matrix C and the weight matrix
W. In the simple case where the edge weights of the original

graph are all 1,
Pm

j=1

CT
i
Ci

�j
can be interpreted as the negative

Laplacian of the graph with connectivity matrix C and edge
weights given by �

�1
j

. (Here, E = W.) The general case can be

reduced to the simple case by writing C =WC0.
13This is needed only as a speedup. As seen from the ex-

perimental results below, Weiszfeld algorithm can �nd a rough
approximation faster than Primal-Dual.

Test Case Pads Cells Nets
primary1 107 752 704
biomed 97 6417 6442
avq small 64 21854 21884
golem3 2767 100281 144949

Figure 4. VLSI benchmark circuits used in comparing
the Weiszfeld and Primal-Dual Newton methods.

7.1. Implementing the Low-Level Solver

We implemented the Weiszfeld and Primal-Dual Newton it-
erations within our own sparse-matrix testbed; this testbed
is coupled to a design database and partitioning and layout
tools, with interfaces via standard design interchange for-
mats. Thus, we were able to verify our methods using stan-
dard benchmarks from the literature (ftp to cbl.ncsu.edu).
When implementing the Primal-Dual method, it is cru-

cial to solve the linear system (29) precisely enough that
the top-level iterates will converge. One �nds that matri-
ces arising in (29) are usually much denser and more ill-
conditioned than in analogous systems arising from denois-
ing problems in image processing or from numerical solution
of partial di�erential equations. This makes it harder for
any low-level solver to �nd su�ciently precise approximate
solutions. To avoid undue loss of sparsity when O(p2) edges
are introduced for some very large p-pin net, we represent
any large net with > 100 pins by a random cycle through
its cells14 .
Since our implementation is designed to accommodate

examples of any size, we use iterative solvers, speci�cally,
GMRES or BICGSTAB with ILU preconditioner15 . Here,
we must refer the reader to [8, Chap 6], where usage of it-
erative (inexact) solvers is considered with special regard
to Newton methods. Our solver changes the values of rel-
ative tolerance according to the rule in (6.18) of [8], using
parameters
 = 0:5 and �Max = 10�4 in that rule.

7.2. Convergence of Primal-Dual Newton and
Weiszfeld Methods

We now give experimental evidence showing that the
Primal-Dual Newton iteration achieves quadratic conver-
gence. Figure 5 compares its convergence behavior with
that of Weiszfeld algorithm on standard benchmarks (see
Table 4) maintained by the CAD Benchmarking Labora-
tory. While our implementation is not yet optimized for
speed, runtimes for the avq small test case are still only on
the order of 7 CPU seconds per Weiszfeld iteration on a 140
MHz Sun Ultra-1.16

In all of our tests, the residual norm tends to converge lin-
early in the beginning, although not always monotonically.
However, when Primal-Dual iterates near the optimal so-
lution, their residual norm converges quadratically. At the
same time, the Weiszfeld method shows linear convergence

14Note that the graph representation of the netlist must be
connected, e.g., when using an ILU preconditioner.
15For better results with examples of small size (say, under

1000 cells), one can solve the linear systems (7) and (29) directly;
this limit can be increased if matrices are sparser. Also note
that matrices arising from (29) and (7) are always symmetric
and semide�nite. Thus, other Krylov Subspace methods which
can be used here are BICGSTAB, QMR, SYMMLQ, etc.
16Iterations can be sped up considerably if we relax accuracy

requirements in the solver and preconditioner. In general, many
control parameters allow tradeo�s between solution quality and
runtime.

everywhere. We stop the top-level iterations when the non-
linear residual has decreased by a prescribed factor (10�13

in this experiment), or when the iteration count reaches 40.
The �r value we used was 10�4.

-12

-10

-8

-6

-4

-2

0

2

4

0 5 10 15 20 25 30 35 40

Lo
g

of
 R

es
id

ua
l N

or
m

Iterations

Primary1

Weiszfeld
Primal-Dual

-12

-10

-8

-6

-4

-2

0

2

4

0 2 4 6 8 10 12 14 16 18 20
Lo

g
of

 R
es

id
ua

l N
or

m

Iterations

Biomed

Weiszfeld
Primal-Dual

-6

-5

-4

-3

-2

-1

0

1

2

0 2 4 6 8 10 12 14 16 18 20

Lo
g

of
 R

es
id

ua
l N

or
m

Iterations

AVQ Small

Weiszfeld
Primal-Dual

-12

-10

-8

-6

-4

-2

0

2

4

0 2 4 6 8 10 12 14 16 18 20

Lo
g

of
 R

es
id

ua
l N

or
m

Iterations

Golem3

Weiszfeld
Primal-Dual

Figure 5. Comparison between convergence of Primal-Dual
and Weiszfeld. We plot log10 of L2 norm of the nonlinear
residual against the number of top-level iterations.

We discovered (Figure 6) that more iterations are needed
to reach the quadratic convergence region for smaller �r
values. However, the di�erence in convergence behavior be-
tween the two algorithms is more apparent for smaller �r
values.

-12

-10

-8

-6

-4

-2

0

2

4

0 5 10 15 20 25 30 35 40

Lo
g

of
 R

es
id

ua
l N

or
m

Iterations

Weiszfeld

beta=0.1
beta=0.01

beta=0.001

-12

-10

-8

-6

-4

-2

0

2

4

0 2 4 6 8 10 12 14 16

Lo
g

of
 R

es
id

ua
l N

or
m

Iterations

Primal-Dual

beta=0.1
beta=0.01

beta=0.001

Figure 6. Dependence of convergence (Primary1 bench-
mark) on the value of �r used (10�1; 10�2 and 10�3). We
plot log10 of L2 norm of the nonlinear residual versus the
number of top-level iterations.

8. CONCLUSIONS

As shown in the previous section, the Weiszfeld algorithm
corresponding to GORDIAN-L is at best linearly conver-
gent, while Primal-Dual Newton provides robust quadratic
convergence.
We note that the original Weiszfeld formulation is in fact

much weaker than what we have developed (in the original
work, only one point is placed and there is no concept of
�-regularization). Our generalization and underlying for-
mulation have signi�cant theoretical value in that they al-
low derivation of a large family of e�ective global optimiza-
tion methods in an uniform mathematical setting. We have
recently begun integration of the Primal-Dual Newton al-
gorithm to address linear17 wirelength minimization and a
variety of alternate objectives within a standard-cell place-
ment engine.

REFERENCES
[1] T. F. Chan, G. H. Golub and P. Mulet, \A Nonlinear

Primal-Dual Method for TV-Based Image Restoration", In

17As well as for arbitrary real exponent � � 1.

Proc. of ICAOS'96, 12 th Int'l Conf. on Analysis and Op-
timization of Systems: Images, Wavelets and PDEs, Paris,
June 26-28, 1996, M. Berger et al (eds.), No. 219 in Lec-
ture Notes in Control and Information Sciences, 1996, pp.
241-252.

[2] C. K. Cheng and E. S. Kuh, \Module Placement Based on
Resistive Network Optimization", IEEE Transactions on
Computer-Aided Design, CAD-3, 1984, pp. 218{225.

[3] A. Conn and M. Overton, \A Primal-Dual Interior Point
Method for Minimizing a Sum of Euclidean Distances",
Computer Science Department, New York University,Tech-
nical Report, 1995.

[4] U. Eckhardt, \On an Optimization Problem Related to
Minimal Surfaces with Obstacles", in: R. Bulirsch,W. Oetti
and J. Stoer editors; \Optimization and Optimal Control",
Lecture Notes in Mathematics 477 Springer Verlag, 1975,
pp. 95-101.

[5] U.Eckhardt, \Weber's Problem and Weiszfeld's Algorithm
in General Spaces", Mathematical Programming 18, 1980,
pp. 186-196.

[6] W. Hackbush, Iterative Solution of Large Sparse Systems,
Springer Verlag, 1994.

[7] T. Hamada, C.-K. Cheng and P. M. Chau, \Prime: A
Timing-Driven Placement Tool using A Piecewise Linear
Resistive Network Approach", Proc. 30th ACM/IEEE De-
sign Automation Conference, 1993, pp. 531-536.

[8] C. Kelley, \Iterative Methods for Linear and Nonlinear
Equations", Frontiers in Applied Mathematics, vol. 16,
SIAM, 1995.

[9] J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, \GOR-
DIAN:VLSI Placement by Quadratic Programming and
Slicing Optimization." IEEE Transactions on Computer-
Aided Design. 10 (3), March 1991, pp. 356-365.

[10] Y. Li, \A Newton Acceleration of the Weiszfeld Algorithm
for Minimizing the Sum of Euclidean Distances", Cornell
University, Technical Report, 1996.

[11] I.I. Mahmoud, K. Asakura, T. Nishibu and T. Ohtsuki,
\Experimental Appraisal of Linear and Quadratic Objec-
tive Functions E�ect on Force Directed Method for Analog
Placement", IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, E77-A
(4), April 1994, pp. 719-725.

[12] E. Miehle, \Link-LengthMinimization in Networks", Oper-
ations Research, 6, 1958, pp. 232-243.

[13] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of
Nonlinear Equations in Several Variables, New York, Aca-
demic Press, 1970.

[14] B. M. Riess, K. Doll and F. M. Johannes, \Partition-
ing Very Large Circuits Using Analytical Placement Tech-
niques", Proc. 31st ACM/IEEE Design Automation Con-
ference, 1994, pp. 646{651.

[15] B. Riess and G. Ettelt, \SPEED: Fast and E�cient Timing
Driven Placement", Proc. IEEE Int. Symp. Circuits and
Systems, vol. 1, 1995, pp. 377{380.

[16] G. Sigl, K. Doll and F. Johannes, \Analytical Placement:
A Linear or a Quadratic Objective Function?" Proc. 28th
ACM/IEEE Design Automation Conference, 1991, pp. 427-
432.

[17] W. Swartz and C. Sechen. \Timing Driven Placement for
Large Standard Cell Circuits", Proc. 32nd ACM/IEEE De-
sign Automation Conference, 1995, pp. 211{215.

[18] R. S. Tsay, E. Kuh, \A Uni�ed Approach to Partitioning
and Placement", IEEE Transactions on Circuits and Sys-
tems, Vol.38, No.5, May 1991. pp. 521-633.

[19] E. Weiszfeld, \Sur le Point pour Lequel la Somme des Dis-
tances de n Points Donn�ees est Minimum." Tôhoku Math-
ematics J. 43, 1937, pp. 355-386.

