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Abstract— SAT sweeping is the process of merging two or more func-
tionally equivalent nodes in a circuit by selecting one of them to repre-
sent all the other equivalent nodes. This provides significant advantages
in synthesis by reducing circuit size and provides additional flexibility in
technology mapping, which could be crucial in post-synthesis optimiza-
tions. Furthermore, it is also critical in verification because it can reduce
the complexity of the netlist to be analyzed in equivalence checking. Most
algorithms available so far for this goal do not exploit observability don’t
cares (ODCs) for node merging since nodes equivalent up to ODCs do not
form an equivalence relation. Although a few recently proposed solutions
can exploit ODCs by overcoming this limitation, they constrain their anal-
ysis to just a few levels of surrounding logic to avoid prohibitive runtime.

We develop an ODC-based node merging algorithm that performs ef-
ficient global ODC analysis (considering the entire netlist) through sim-
ulation and SAT. Our contributions which enable global ODC-based op-
timizations are: (1) a fast ODC-aware simulator and (2) an incremental
verification strategy that limits computational complexity. In addition,
our technique operates on arbitrarily mapped netlists, allowing for pow-
erful post-synthesis optimizations. We show that global ODC analysis dis-
covers on average 25% more (and up to 60%) node-merging opportunities
than current state-of-the-art solutions based on local ODC analysis.

I. INTRODUCTION

Merging equivalent circuit nodes is a popular and effective tech-
nique to reduce the area of a logic circuit. It scales to very large
netlists, but, unlike BDD-based techniques, requires non-trivial algo-
rithms to identify potential mergers. Such algorithms were first devel-
oped in the context of formal verification to detect possible cut-points
in equivalence checking [6, 8]. To this end, the work in [7, 10] uses
a combination of SAT solving and simulation. Candidate nodes for
merging are first selected by checking whether their outputs corre-
spond when stimulated with random patterns applied to the design’s
inputs. Then, their actual equivalence can be verified using SAT.
The simulation is refined through counterexamples generated by SAT,
which reduces the number of checks resulting in non-equivalence.
Rather than finding equivalent nodes as a post-processing step, the
work in [10] improves equivalence checking by merging equivalent
nodes while constructing the circuit.

Observability don’t cares (ODCs) occur when internal circuit node
values for certain input patterns are irrelevant to the outputs of the
design, and hence they require knowledge of this downstream logic
to be detected. Satisfiable don’t cares (SDCs), also known as control-
lability don’t cares, represent internal values that can never be stim-
ulated from the design’s inputs. Node merging through simulation
and SAT-based analysis inherently exploits SDCs because unsatisfi-
able combinations never arise during simulation. On the other hand,
incremental approaches such as [10] do not allow for the detection of
ODCs because no information about the downstream logic is main-
tained. We show that by taking into account ODCs additional node
mergers should be possible.

Several related algorithms have recently been developed [17, 11,
12, 13, 5] to simplify Boolean networks and improve the efficiency
of SAT solvers in verification applications. However, techniques to
identify ODCs often restrict the computation to a subset of them [13]
or consider small windows of the circuit [12] due to their lack of scal-
ability. A recent work [17] uses bounded-depth simulation of And-
Inverter Graphs (AIGs) [7] to extract local ODCs. This work then
uses the ODCs discovered to efficiently improve SAT sweeping, re-
sulting in a considerable reduction in the size of the underlying AIG.

Because of the computational complexity involved in deriving
ODCs, previous work tends to emphasize local computation as a
synthesis optimization before technology mapping. This emphasis
is well justified for AIGs, which have a much larger number of in-
ternal nodes, and thus possible mergers, compared to mapped cir-
cuits. However, our intended applications are in physical synthesis,
where technology mapping can significantly affect circuit delay, and
the placement of standard cells is crucial. In this context, fewer nodes
are exposed, and one must search for additional don’t cares not found
by existing techniques. Thus, the goal of our work is to quickly iden-
tify nodes equivalent up to global don’t cares, efficiently verify their
equivalence, and use the results to simplify the design structure. Addi-
tionally, our implementation can operate on mapped designs without
requiring costly netlist conversions, which otherwise lead to a loss in
physical information and delay estimates.

To enable global analysis, we develop a fast simulator that iden-
tifies don’t care conditions and quickly produces signatures for each
node. Extending the work in [17], we use this simulator to consider
ODCs from any depth. After simulation, we can identify candidates
for node merging using an incremental verification approach. We
determine the downstream logic necessary to verify a node merger
through simulation. If simulation under-approximates the down-
stream logic necessary to validate a merger, we refine the simulation
and expand the amount of downstream logic considered. Our solu-
tion easily adapts to simple ODC problems by considering only a few
levels of logic, when those are sufficient to prove equivalence, while
it may encompass the whole netlist when necessary to decide a pos-
sible merging candidate. Our framework is flexible in that it is not
limited to SAT-based verification engines and ATPG engines can be
easily used instead. By means of our contributions we can: 1) find on
average 25% additional mergers compared to [17] and 2) prove when
two given nodes are unmergeable.

Section II gives background on signatures, SAT, and recent ad-
vances in ODC computation. Section III explains a representation
scheme for ODCs, and in Section IV, we describe an efficient sim-
ulator and a strategy for dynamically generating simulation patterns.
Section V introduces the SAT engine that verifies the merger. Finally,
in Section VI, we give results that show the number of ODC-based
mergers performed for several benchmarks.

II. BACKGROUND

In this section, we first discuss prior work in signature-based equiv-
alence checking [7, 10] and then strategies for computing ODCs
[11, 13, 17].
A. Simulation and Satisfiability

A given node F in a Boolean network can be characterized by its
signature, SF , for K input vectors X1 · · ·XK .

Definition 1 SF = {F (X1), . . . , F (XK)} where F (Xi) ∈ {0, 1}
indicates the output of F for a given input vector.

Vectors Xi can be generated at random and used in bit-parallel
simulation to compute a signature for each node in the circuit. For a
network with N nodes, the time complexity of generating signatures
for the whole network is O(NK). Nodes can be distinguished by the
following formula: SF 6= SG ⇒ F 6= G. Therefore, equivalent sig-
natures can be used to efficiently identify potential node equivalences
in a circuit by deriving a hash index for each signature [7]. Since



TABLE I
COMPARISONS BETWEEN RECENT STRATEGIES FOR NODE MERGERS AND DERIVING DON’T CARES.

Property Simulation-guided SAT [6, 10] Window-based ODC+SDC [11] Local SAT-sweep [17] Our global analysis
Don’t cares computed global SDCs local SDCs & local ODCs global SDCs & local ODCs global SDCs & global ODCs
Computational engines simulation + SAT primarily SAT simulation + SAT simulation + SAT
Complexity limited by SAT engine windowing strategy levels of downstream logic moving-dominator incremental SAT
Primary application domain verification synthesis verification verification; logic & physical synthesis

SF = SG does not imply that F = G, this potential equivalence
must be verified, e.g., using SAT, as explained below.

The efficiency of the frameworks in [7, 10] is dependent on the un-
derlying engines for formally verifying the equivalence of nodes with
equivalent signatures. Recent advances in SAT such as learning and
non-chronological backtracking [15] have made SAT a more scalable
alternative to BDDs in applications like equivalence checking. The
equivalence of two nodes, F and G, in a network can be determined
by constructing an XOR-based miter [2] between them and asserting
the output to 1 as shown in the following formula:

(F = G) ⇔ (∀i F (Xi) ⊕ G(Xi) 6= 1) (1)
where

⋃
i
Xi is the set of all possible inputs.

In [7], input vectors are generated from the counter-examples de-
rived from SAT checks that prove F 6= G. These counter examples
improve the quality of the signatures by eliminating situations where
SF = SG despite F 6= G.
B. Observability Don’t Cares

Figure 1(left) shows examples of satisfiability don’t cares (SDCs)
and observability don’t cares (ODCs). ODCs occur when the value
of an internal node does not affect the outputs of the circuit because
of limited observability [4]. For the circuit on the right, when a = 0
and b = 0, the output value of F is a don’t care. An SDC occurs
when certain input combinations do not arise due to limited control-
lability. For example, the combination of x = 1 and y = 0 cannot
occur for the circuit shown on the left in Figure 1(left). SDCs are
implicitly handled when using SAT for equivalence checking because
this combination cannot occur for any satisfying assignment.

Fig. 1. (left) The left circuit shows examples of SDCs, and the right circuit shows
examples of ODCs. (right) Identifying an ODC for an internal node a in a network by
constructing a miter for each output and inverting a in a modified copy of the network.
The set of inputs where the miter is 1 corresponds to the care-set of that node.

Figure 1(right) shows a strategy for identifying ODCs for a node a.
First, the circuit D is copied, and a is inverted in the circuit D∗. Then
miters are constructed between the outputs of the two circuits and the
care set, denoted as C(a), can be derived as follows:

C(a) =
⋃

i:D(Xi)6=D∗(Xi)

Xi (2)

A SAT solver can derive C by adding constraints called blocking
clauses that invalidate previous satisfying assignments to the miter in
Figure 1(right) [11]. The ODC of a is therefore:

ODC(a) =
⋃

i

Xi − C(a) (3)

This approach can be computationally expensive and therefore un-
scalable, particularly when the miters are far from a. In [11], this

complexity is managed by examining only small windows of logic
around each node being optimized. The don’t cares extracted are used
to reduce the circuit literal counts. In [17], a very efficient methodol-
ogy is developed to merge nodes using local don’t cares through simu-
lation and SAT. Their complexity is limited by considering only a few
levels of downstream logic for each node. Our technique enhances
[17] by efficiently performing node mergers using global don’t cares
which enables us to potentially find several more mergers. To do this,
we develop a fast simulator that can quickly extract global don’t care
information. Also, we develop an incremental verification engine that
adjusts to the complexity of the particular merger being examined.
Our work, along with [11, 17], is not limited to compatibility ODCs
(CODCs), which are a subset of ODCs and are easier to compute be-
cause of their convenient properties [14, 13]. Although CODCs have
the nice property that optimizations involving one node’s CODCs do
not affect the CODCs of another, this is not necessary in our work be-
cause we examine one node at a time. We summarize the comparison
between our work and [6, 10, 11, 17] in Table I.

III. IDENTIFYING ODC-BASED NODE MERGERS

In this section, we develop the theory involved behind ODC-based
node merging and describe the use of signatures to identify candidate
mergers. A similar discussion to the theory described in this section
can be found in [7, 11, 17]. Then, in the next section, we discuss how
to extend the technique to extract global don’t cares.
A. ODC-substitutability

Traditionally, a node merger can occur between a and b when they
are functionally equivalent. We define node mergers between a and b
in the presence of ODCs when a is ODC-substitutable to b.

Definition 2 a is ODC-substitutable to b if
ONSET (a) ∪ ODC(b) = ONSET (b) ∪ ODC(b).

When a is ODC-substitutable to b, a merger between a and b means
that a can be substituted for b. Because the ODCs of only one node
are considered, ODC-substitutability is not symmetric as b might not
be ODC substitutable to a.

As in [17], our strategy of merging nodes in the presence of ODCs
first uses signatures to find candidate ODC-substitutabilities. How-
ever, because the candidate merger depends on which node’s ODCs
are considered, more powerful signature matching techniques [17] are
required than the O(1)-time signature hashing in [10]
B. Reasoning About ODCs in Signatures

Each node in the circuit maintains a signature S as defined in Def-
inition 1. In addition, an ODC mask S∗

f is maintained for node f :

Definition 3 S∗
f = {X1 6∈ ODC(f), . . . , XK 6∈ ODC(f)}

When an input vector Xi is in the set ODC(f), that bit position is
denoted by a 0.

Set operations can be efficiently executed on these signatures
through bit-wise manipulations. The following shows how the ⊆ re-
lation is defined using the signatures of two nodes, Sa and Sb:

Definition 4 Sb ⊆ Sa if and only if Sb|Sa = Sa where | represents
bit-wise OR.



Fig. 2. An example showing how ODCs are represented in a circuit. For clarity, the
example only shows ODC information for node c. The other internal nodes show only
signatures S. When examining the first four simulation patterns, node b is a candidate
for merging with c. Further simulation indicates that an ODC merger is not possible.

Figure 2 shows a circuit with signatures for each node and a mask
for node c. Each ODC for a node is marked by a 0 in the ODC mask.
In our framework, we express the flexibility of a given node by main-
taining an upper-bound Shi and lower-bound signature Slo.

Definition 5 Slo = S&S∗ where & represents bit-wise AND and
Shi = S|¬(S∗).

Slo and Shi of node f correspond to range of Boolean function
[f lo, fhi] that are ODC-substitutable to f because the differences be-
tween the range of functions are a subset of ODC(f).

After simulation populates the different signatures, merger candi-
dates can be found. In the example in Figure 2, after the first four
simulation patterns, node b is depicted as a candidate for ODC-
substitutability with c.

Definition 6 Node b is a candidate for ODC-substitutability with
node c if and only if (Sb ⊕ Sc) ⊆ ¬S∗

c . This can be re-expressed
as Sb ⊆ [Slo

c , Shi
c ], in other words, Sb is contained within the range

of signatures defined by Slo
c and Shi

c .

Therefore, by simple application of S∗
c , it can be determined that b

is an ODC-substitutable candidate with c. However, in this example,
further simulation reveals that the candidate merger is incorrect. Sim-
ilar to Definition 2, if b is an ODC-substitutable candidate with c, it
does not imply that c is an ODC-substitutable candidate with b.

Unlike checking for equivalence with signatures, O(1)-time com-
plexity hashing cannot be used to identify ODC-substitutability can-
didates. Each node needs to apply its mask to every other node
to find candidates. The result is that for N nodes, finding all
ODC-substitutability candidates for the design requires O(N 2K)-
time complexity assuming that applying a mask is an O(K)-time op-
eration. We now introduce a strategy that significantly reduces com-
putation in practice.

First, all of the signatures, S, in the design are sorted by the
value obtained by treating each K-bit signature as a single K-bit
number. This operation requires O(NKlgN)-time. Then, for a
given node c, candidates can be found by performing two binary
searches with Slo

c and Shi
c to obtain a lower and upper bound on

the sorted S, an O(KlgN)-time operation. Searching for comple-
mented candidates can be accomplished by simply complementing
Slo

c and using this to derive an upper bound and similarly comple-
menting Shi

c and using this to derive a lower bound. We expect bi-
nary searches on this contiguous data structure to involve less pointer
chasing and be faster, in practice, than the binary trie used in [17].
The following formula defines the set of signatures Sx that will be
checked for candidacy (ignoring the case of negation for simplicity):⋃

x
Sx if num(Slo

c ) ≤ num(Sx) ≤ num(Shi
c ) where num repre-

sents the K-bit number of the signature. This set is linearly traversed
to find any candidates according to Definition 6.

IV. GLOBAL ODC ANALYSIS

Below, we describe an efficient simulator that generates ODC in-
formation by considering downstream logic, whose complexity is
comparable to non-ODC signature generation without considering
downstream logic.

Generating ODC masks S∗ efficiently is integral to maintaining
the scalability of our framework. Whereas each node’s S can be com-
puted from its immediate fanin, computing each node’s S∗ often re-
quires all downstream logic.

The S∗ can be computed for each node by determining the care-
set using Equation 2 where the Xi are the random simulation vec-
tors. This approach requires circuit simulation of each Xi for each
node. For K simulation vectors and N nodes the time-complexity is
O(N2K). Although the simulation can be confined to just the fanout
cone of the node, the procedure is computationally expensive.
A. Approximate ODC Simulator

We now describe our approximate ODC simulator whose complex-
ity is only O(n′K) where n′ is the number of nets or wires in the
design. The algorithm for generating masks using the approximate
simulator is shown in Figure 3.

void gen odc mask(Nodes N ){
set output S∗(N );
reverse levelize(N );
for each node ∈ N

{
node.S∗ = 0;
for each output in node.fanout
{
temp S∗ = get local ODC(node, output);
temp S∗ = temp S∗ & output.S∗;
node.S∗ |= temp S∗;
}
}
}

Fig. 3. Efficiently generating ODC masks for each node.

The function set output S∗ initializes the masks of nodes di-
rectly connected to the input of a latch or primary output to all 1s.
The nodes are then ordered and traversed in reverse topological or-
der as generated by reverse levelize. The immediate fanout
of each node is then examined. The function get local ODC per-
forms ODC analysis for every simulation vector for node as defined
by Equation 2 except only the sub-circuit defined by node and output
is considered. This local ODC mask is bitwise-ANDed with output’s
S∗ and is subsequently ORed with node’s S∗.

The algorithm requires only a traversal of all the nets given by the
two for each loops and the K simulation vectors considered for each
net in get local ODC, resulting in the O(n′K) complexity. This
algorithm enables our global ODC simulator to be more efficient than
simply extending the local observability calculations in [17] to per-
form global ODC analysis.

Fig. 4. The ODC information produced by approximate ODC simulation. Sometimes
reconvergence can cause ODC simulation to produce incorrect ODC masks. S

∗ and S

are shown for the internal nodes, and only S are shown for the inputs and outputs.



TABLE II
EFFICIENCY/QUALITY OF THE APPROXIMATE ODC SIMULATOR.

bench runtime(s) #cands %pos %neg
sim simodc approx

ac97 ctrl 1 6 1 63758 0.0 0.0
aes core 2 79 1 315917 0.1 0.0
des perf 9 410 7 296095 0.0 0.0
ethernet 4 76 2 8852009 0.3 0.8
mem ctrl 1 119 1 867145 1.0 1.4
pci bdge32 1 28 1 1158654 0.2 0.4
spi 0 39 0 156291 0.0 3.1
systemcaes 1 48 1 285189 0.2 0.2
systemcdes 0 24 0 5288 2.8 0.7
tv80 1 130 1 1348277 1.5 9.0
usb funct 1 11 1 1685374 2.2 1.8
wb conmax 3 69 4 1904773 0.0 0.0

B. Accuracy of Approximate Simulator
Because we do not consider logic interactions that occur because

of reconvergence, it is possible for the algorithm in Figure 3 to in-
correctly produce 0s (false positives) or 1s (false negatives) in S∗.
For the example in Figure 4, node a misses a don’t care (false nega-
tive) in the third bit of S∗

a . Notice that node b and c do not have any
ODCs and no local ODCs exist between a and b or a and c, resulting
in no ODCs being detected by the approximate simulator. However,
the reconvergence of downstream logic makes the third value of node
a a don’t care. In a similar manner, false positives can occur when
the interaction of multiple signals with local ODCs at a reconvergent
node produces a flip at its output.

Incorrect simulation does not affect the correctness of the overall
algorithm. When false negatives are produced, merger opportunities
can be missed, resulting in less optimization. When false positives
are produced, incorrect merger candidates will be later disproven by
an equivalence checking tool, resulting in increased runtime. Our ex-
periments show that these situations are rare.
C. Performance of Approximate Simulator

In Table II, the quality of the approximate ODC simulator is as-
sessed. The first column indicates the benchmarks examined. The
second column, sim, gives the time required to generate only signa-
tures S for each node. We use this as a baseline to assess the cost of
generating masks. The third column, simodc, shows the time required
to generate S∗ for each node using Equation 2. The fourth column,
approx, shows the time to compute S∗ using the approximate simu-
lator. The last few columns show the number of ODC-substitutability
candidates identified by the approximate simulator and the percent of
candidates incorrectly found due false positives or missed due to false
negatives.

The results indicate that the approximate simulator is comparable
to that of sim and is much faster than sim odc. In addition, the number
of false positives and negatives is typically a small percentage of the
number of opportunities identified. These results were generated by
running 2048 random simulation vectors.
D. Refining Simulation

The quality of the simulation patterns used is integral in limiting
candidates found to those that are valid mergers. We can prune sev-
eral candidates that are later proven invalid by refining our simulation
dynamically based on counter-examples derived from SAT similar to
the approach in [17, 10].

When a merger is performed, the signatures in the fanout cone of
the node being replaced could be different from the previous values,
resulting in inaccurate don’t care information. However, since signa-
tures are used to find candidates that are later proven by a SAT solver,
incorrect signatures can never lead to an incorrect merger and updates
are not necessary.

V. INCREMENTAL VERIFICATION OF MERGER CANDIDATES

In this section, we outline a new approach to ODC-aware verifica-
tion of node mergers which dynamically increases the logical depth

of downstream logic so as to avoid unnecessarily large miters.
Figure 1(right) shows how ODCs can be identified for a given node

in a network. We can prove whether b is ODC-substitutable to a in
a similar manner. Instead of using a′ in the modified circuit D∗, b
is substituted for a and miters are constructed at the outputs. If the
care-set determined by Equation 2 is null, b is ODC-substitutable to a
and a merging opportunity exists. The whole care-set does not need
to be derived as a single satisfiable solution proves non-equivalence.

For large circuits, proving ODC-substitutability could be pro-
hibitive because all downstream logic is considered. We intro-
duce a dynamic SAT framework that attempts to determine ODC-
substitutability by considering a small portion of downstream logic.
We can use the complexity of the verification procedure to explicitly
limit the mergers considered.

Consider Figure 5, where b is a candidate of ODC-substitutability
with a. If a miter is constructed across a and b instead of the primary
outputs as shown in part a), a set of differences between a and b that
results in satisfying assignments is given by DIFFSET (a, b) =
ONSET (a) ∩ OFFSET (b) ∪ OFFSET (a) ∩ ONSET (b). A
satisfying solution here indicates the non-equivalence for the given
section of logic considered. If the satisfying solution is simulated
for the remaining downstream logic and discrepancies between the
two circuits exist at the primary outputs, then non-equivalence for the
whole circuit is proven. If the DIFFSET is null, substitutability is
proven.

However, if a and b are very different, the DIFFSET could re-
sult in a prohibitive amount of simulation. To reduce the size of the
DIFFSET , we construct miters further from the merger site while
reducing the amount of downstream logic considered. We introduce
the notion of a dominator set to define where we place the miters.
Definition 7 The dominator set for node-a is a set of nodes in the
circuit such that every path from node-a to a primary output contains
a member in the dominator set and where for each dominator member
there exists at least one path from node-a to a primary output that
contains only that member. Multiple dominator sets can exist for a
given node.

Fig. 5. An example that shows how to prove that b is ODC-substitutable to a. a) A
miter is constructed between a and b to find test vectors that are incompatible. b) A
dominator set can be formed in the fanout cone of a and miters can be placed across the
dominators.

Algorithm: in part b) of Figure 5, we show miters constructed for
a dominator set of a. Dominator sets close to the candidate merger
will result in less complex SAT instances but potentially more down-
stream simulation to check whether satisfying assignments prove non-
substitutability. We devise a strategy that dynamically moves the
dominator set closer to the primary outputs depending on the num-
ber of satisfying assignments generated. Our moving-dominator al-
gorithm is outlined in Figure 6.



bool odc substitutable(a, b){
current dom = calculate initial doms();
while(dom Sat(miter(current dom, a, b)) == SAT){
if(simulation(satisfying solution){
return false;
}
else{
current dom = calculate new dom();
}
}
return true;
}

Fig. 6. Determining the substitutability of two nodes in the presence of ODCs.

The moving-dominator algorithm starts by deriving a
dominator set that is close to the merger site given by
calculate initial dom. The details of this function will
be given later. Then dom SAT solves an instance where miters
are placed across the current dominator set. An UNSAT solution
means ODC-substitutability and the procedure exits. Otherwise,
the satisfying solution is checked by simulating all downstream
logic. If simulating the satisfying assignment does not result in
an ODC at a, b is not ODC-substitutable to a. Otherwise, a new
dominator set is generated as determined by calculate new dom.
calculate new dom increases the logic considered and will be
defined later.

With each invocation of the SAT solver, we add additional con-
straints indicated by the current dominator set. By incrementally
building the SAT instance each time the dominator set is moved, we
can reuse learned information and other useful heuristics between sev-
eral SAT calls.

ATPG techniques can be easily substituted for the SAT-engine de-
scribed in the previous algorithm. By placing a MUX with a dangling
select input between the two nodes in the potential merger, we can
generate test patterns for single-stuck-at faults (SSF) on the MUX se-
lect input. If a test pattern cannot be generated, the merger can take
place because both nodes have the same effect on the outputs. The
circuit considered can be limited by the dominator set, and a test pat-
tern counter-example can be used to refine this dominator set. In our
experiments, we work exclusively with SAT for two reasons. First,
we have access to the API of a highly optimized SAT solver, but not
an ATPG library. Second, the ability to share clauses over multiple
SAT calls by incrementally building the instance is an advantage over
ATPG approaches which typically do not share information between
multiple calls.

Calculating Dominators: using simulation, we calculate a domi-
nator set that tries to minimize the amount of downstream logic nec-
essary to prove a merger. In general, we check the downstream logic
required to prove specific ODCs for certain input combinations and
use that to determine an initial dominator set. We, then, take counter-
examples produced from the SAT solver to refine the dominator set.
Details of this approach are given in the following.

In Figure 1(right), ODC(a) is derived by examining observability at
the primary outputs. However, by placing miters along a cut defined
between a and the primary outputs, it is possible to calculate an ODC-
set for a, ODCcut(a), where ODCcut(a) ⊆ ODC(a). Previously,
we defined this cut as the dominator set. An ideal dominator set would
be the closest cut to the merger site sufficient to prove substitutability.
We define the minimal dominator set as follows:

Definition 8 The minimal dominator set Dmin for proving that
b is ODC-substitutable to a is the closest cut to a such that
DIFFSET (a, b) ⊆ ODCDmin(a).

calculate initial dom is used to calculate an initial domi-
nator set. We randomly select several input vectors Xi and approx-
imately generate Dmin using Definition 8 by constructing the sets,
DIFFSET (a, b) and ODC(a), from the Xis. Since not all input

TABLE III
AREA REDUCTIONS ACHIEVED BY PERFORMING THE ODC MERGING ALGORITHM
AFTER THE ABC REWRITING ALGORITHM [9]. OUR ALGORITHM HAS A TIMEOUT

OF 5000 SECONDS.
benchmarks #gates ABC(s) #merge %area reduct glob.ODC(s)
dalu 1054 0 91 12.0% 10
i2c 1055 0 30 3.2% 3
pci spoci ctrl 1058 0 97 9.2% 6
C5315 1368 0 8 0.7% 2
C7552 1541 1 25 3.4% 8
s9234 1560 0 10 1.2% 8
i10 1884 1 38 1.3% 12
alu4 2559 1 469 22.9% 64
systemcdes 2655 1 111 4.7% 9
s13207 2725 1 15 1.8% 17
spi 3342 1 23 1.3% 84
tv80 8279 3 606 7.1% 1445
s38417 9499 2 33 1.0% 275
systemcaes 10093 4 518 3.8% 360
s38584 11306 2 150 0.8% 223
mem ctrl 12192 5 1797 18.0% 738
ac97 ctrl 13178 3 185 2.0% 188
usb funct 15514 5 186 1.4% 681
pci bridge32 19872 6 82 0.1% 1134
aes core 21957 9 2144 8.6% 1620
b17 24947 6 224 1.6% 5000
wb conmax 49236 19 2433 6.2% 5000
ethernet 67129 28 45 1.4% 5000
des perf 80218 50 3148 3.7% 5000
average 4.9%

vectors are considered, it is possible that the cut is an under approxi-
mation and results in the SAT solver reporting non-substitutability. To
improve the approximation, calculate new dom extends the cut
further from a for every satisfying assignment found by dom Sat.

VI. EXPERIMENTS

We implemented our algorithms in C++. The SAT engine was de-
veloped by modifying MiniSAT [3]. Random simulation patterns are
used to generate the initial ODC signatures. The circuits are from
the IWLS 2005 suite [16]. We perform our ODC-based node merg-
ing algorithm by examining each node in a circuit in one topological
traversal. The tests were run on a Pentium-4 3.2 GHz machine.

For combinational simulation and equivalence checking, we con-
sider only the combinational portion of the testbenches. Every inter-
nal node with a non-empty ODC-set is examined for merging oppor-
tunities. If an ODC-substitutability is detected for the node, a merger
is made. We ignore mergers that increase the number of logic levels
in the design. After running our tool, we check the correctness of our
transformations using the equivalence checking tool included in the
ABC package [1].
A. Post-Synthesis Optimization

In this section, we show that our global ODC analysis discovers
node mergers even after synthesis optimizations [1, 9]. These addi-
tional reductions can be easily performed in conjunction with layout
information to help achieve design closure.

To produce a realistic experimental setup, we first optimized the
netlist of each benchmark by running a synthesis optimization phase
in ABC [1], which further compressed the designs (the netlist was
mapped to a barebone set of logic gates). In particular, we synthe-
sized each testbench by using the resyn2 script in the ABC package,
which performs local circuit rewriting optimization [9]. The first col-
umn of Table III, #gates, gives the number of gates in each design
after synthesis with ABC. The second column gives the synthesis run-
times using the resyn2 script. The next column gives the number of
ODC-based mergers that we find, and the corresponding reduction in
area. The final column gives the additional runtime for performing
node mergers. For a few of the testbenches, we report the number of
mergers within the time budget that we allowed. Despite the ABC-
based pre-optimization, we see that benchmarks can still be further
optimized with an improvement of over 10% in some cases. These re-



TABLE IV
PERCENTAGE OF MERGERS PROVABLE WITH K LEVELS OF LOGIC.

benchmarks K=1 K=2 K=3 K=4 K=5 K=∞
dalu 9.9 14.3 19.8 31.9 38.5 100
i2c 36.7 53.3 60.0 66.7 80.0 100
pci spoci ctrl 21.6 51.5 67.0 84.5 93.8 100
C5315 87.5 87.5 87.5 87.5 87.5 100
C7552 36.0 64.0 64.0 68.0 72.0 100
s9234 0 0 20.0 20.0 40.0 100
i10 15.8 28.9 60.5 71.1 86.8 100
alu4 13.2 26.9 35.2 42.6 50.1 100
systemcdes 26.1 38.7 60.4 74.8 86.5 100
s13207 13.3 46.7 60.0 80 93.3 100
spi 60.9 82.6 91.3 95.7 100 100
tv80 11.9 23.4 38 49 56.3 100
s38417 12.1 54.5 78.8 100 100 100
systemcaes 21.6 45.8 70.5 72.8 73.9 100
s38584 17.3 55.3 70.7 82.0 85.3 100
mem ctrl 26.5 43.0 55.4 68.3 77.0 100
ac97 ctrl 63.2 88.1 93.5 96.8 97.8 100
usb funct 42.5 69.4 81.7 87.6 91.4 100
pci bridge32 45.1 54.9 68.3 78.0 87.8 100
aes core 9.7 15.4 22.9 31.6 42.3 100
b17 21.4 30.4 35.7 42.4 44.2 100
wb conmax 7.9 16.5 26.0 36.5 48.5 100
ethernet 31.1 48.9 68.9 77.8 84.4 100
des perf 16.8 27.4 39.4 55.7 74.0 100
average 27.0 44.5 57.3 66.7 74.6 100

TABLE V
PERCENTAGE OF MERGERS PROVABLE USING K=5 LEVELS OF LOGIC FOR CIRCUITS

UNROLLED 1-5 TIMES.
benchmarks 1 2 3 4 5
i2c 80.0 57.0 42.8 43.1 43.2
pci spoc ctrl 93.8 87.8 86.5 84.8 84.5
s9234 40.0 51.4 42.0 38.2 42.9
systemcdes 86.5 85.3 88.7 86.2 86.3
spi 100 70.7 71.7 64.6 67.5
ac97 ctrl 97.8 83.2 64.2 46.6 38.9
average 83.0 72.6 66.0 60.6 60.6

sults illustrate that our strategy is sufficiently strong for post-synthesis
optimizations.
B. ODC Locality

In this section, we show that several levels of downstream logic are
often needed to prove ODC-substitutability. Because of our efficient
simulation and incremental verification technique, we can enhance the
local ODC analysis performed in [17] by considering node mergers of
unbounded depth.

In Table IV, we show the percentage of mergers that can be proven
using K levels of downstream logic, for K=1..5, compared to un-
bounded K. We optimize the benchmarks using ABC as in the pre-
vious section. The results indicate that most mergers are proven using
only a few levels of logic. However, on average, we gain 25% more
mergers by not limiting the depth of logic considered.

We also performed an experiment to evaluate the impact of cir-
cuit unrolling on the number of node-merging opportunities. Circuit
unrolling is a key step in bounded model checking and in finding se-
quential don’t care opportunities in physical synthesis. These two
reasons motivate us to investigate further netlist compressions avail-
able for unrolled circuits. We expect that unrolled circuits present
higher potential for node merging because of the larger amount of
combinational logic available. In our experiment, we consider a range
of sequential designs and unroll them between 1 and 5 times, and,
for each scenario, we evaluate the percentage of mergers discovered
by considering only 5 levels of logic, compared to considering the
whole unrolled netlist. We, again, pre-optimized our netlists through
ABC. For a few of the benchmarks, the percentage of mergers that
are missed by using only local ODC computation is highly impacted
by the amount of unrolling of the circuit: the more the circuit is un-
rolled, the higher the fraction that is missed. An example is ac97 ctrl

where, with no unrolling, only 2% of the mergers are missed doing
local analysis compared to global analysis; however, with 5 unrolling
the miss percentage becomes 60%. On one hand, the local analysis
has better performance, in fact, we could not show the full range of
results for all sequential designs because of timeout conditions. On
the other hand, our solution presents better flexibility to adjust to a
wide range of design sizes.

VII. CONCLUSIONS

The increasing impact of interconnect on design performance ne-
cessitates aggressive physical synthesis optimizations. Current state-
of-the-art synthesis strategies tend to be local in nature. Although a
significant improvement is reported in [17] by considering up to 5
levels of logic in AIGs, this would typically correspond to fewer logic
levels in mapped circuits resulting in less optimization in the physi-
cal synthesis domain. Therefore, we present a node merging strategy
that can operate directly on mapped netlists. Unlike the work in [17],
our techniques pursue global ODCs, which are successfully evaluated
against logic synthesis transformations. By exploiting global don’t
cares we identify several node mergers even after extensive synthesis
optimizations, resulting in up to 23% area reduction. Furthermore,
our techniques are not restricted to mapped circuits and can be used
directly on AIGs in sequential verification applications. In this con-
text, global ODC analysis becomes more important because of the
greater depth in unrolled circuits.

A key contribution of our work is our strategy to avoid unnecessary
computation of ODCs in logic synthesis, verification, and physical
synthesis while maximizing optimization strength. This is accom-
plished through an efficient approximate global ODC analysis and
on-demand SAT-based equivalence checking which considers only as
much downstream logic as necessary. These observations enable scal-
able ODC analysis of unbounded depth that discovers approximately
25% more node mergers than local ODC analysis.
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