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Abstract — The pressure of fundamental limits on classical
computation and the promise of exponential speedups from quan-
tum effects have recently brought quantum circuits to the atten-
tion of the EDA community [10, 17, 4, 16, 9]. We discuss efficient
circuits to initialize quantum registers and implement generic
quantum computations. Our techniques yield circuits that are
twice as small as the best previously published technique. More-
over, a theoretical lower bound shows that our new circuits can be
improved by at most a factor of two. Further, the circuits grow by
at most a factor of nine under severe architectural restrictions.

I. I NTRODUCTION

As the ever-shrinking transistor approaches atomic propor-
tions, Moore’s law must confront the small scale granularity of
the world: we cannot build wires thinner than atoms. Worse
still, at atomic dimensions we must contend with the laws of
quantum mechanics. For example, suppose one bit is encoded
as the presence or the absence of an electron in a small region.1

Since we know very precisely where the electron is located, the
Heisenberg uncertainty principle dictates that we cannot know
its momentum with high accuracy. Since its speed might be
large, a large potential is needed to keep it in place. A quanti-
tative analysis of the situation leads experts from NCSU, SRC
and Intel [24] to derive fundamental limitations on the scala-
bility of any computing device which moves electrons.

Yet these same quantum effects also facilitate a radically dif-
ferent form of computation [7]. Theoretically,quantumcom-
puters could outperform their classical counterparts when solv-
ing certain discrete problems [8]. A successful large-scale im-
plementation of Shor’s integer factorization [18] would com-
promise the RSA cryptosystem used in electronic commerce.
On the other hand, quantum effects also allow perfectly se-
cure public-key cryptography [3]. Indeed, such cryptography
systems, based on single-photon communication, are already

1Most current computing technologies use electron charges to store infor-
mation; the exception is spintronics-based techniques, e.g. magnetic RAM.

commercially available from MagiQ Technologies in the U.S.
and IdQuantique in Europe.

Quantum bit data states differ from classical states in two
important ways. First, a single quantum bit may take on a
continuum of valuesz1 |0〉+z2 |1〉 for z1,z2 complex numbers.
Readings of the quantum bit return0 or 1 with probability
|zj |2/

√
|z1|2 + |z2|2, so that quantum computers inherently al-

low for probabilistic computation. Second and far more signifi-
cant,nqubits collectively may store more information than that
stored byn isolated (local) one-qubit states. Meaning, the ax-
ioms of quantum mechanics demand ann-qubit quantum state
be a sum of termszb̄

∣∣b̄〉
for each of the2n bit stringsb̄. Thus

n quantum bits in particular store2n probabilities of observing
each bit string.Entanglementis the physical effect allowing
this. An example is the two-qubit register(|00〉+ |11〉)/√2,
where the strings00 and11 are observed with equal probabil-
ity but 01, 10are never observed.

Physically, qubits are stored in quantum-mechanical sys-
tems, such as the nuclear spins of atoms or ions, or the current
in a superconductor. Quantum logic gates can be applied to se-
lected qubits in ann-qubit register and modify the value of the
register. The gate might be applied by an RF pulse or a laser
beam. Usually, gates that act on three or more qubits are pro-
hibitively difficult to implement directly and must be decom-
posed into a sequence of two-qubit gates[6]. Two-qubit gates
may in turn be decomposed into circuits containing one-qubit
gates, and a canonical two-qubit gate called thecontrolled-not
(CNOT). TheCNOTcan be thought of as anXORgate that pre-
vents loss of information by preserving one of the input values.

The first published algorithm to carry out a two-qubit gate
decomposition implemented ann-qubit quantum gate by a cir-
cuit containingO(n34n) CNOTgates [2]. Further improve-
ments use clever circuit transformations and/or Gray codes
[5, 1, 19]. Finally, a different technique [11] has led to
circuits with a CNOT-count of 4n − 2n+1. These numbers
compare to the theoretical, dimension-based lower bound of
d1

4(4n−3n−1)e [16]. Yet prior algorithms remain a factor of
four away and fare poorly for smalln. Each requires at least8
CNOTgates forn = 2, while the lower bound is three. In con-
strast, hand-optimized two-qubit operators [23, 4] obtain three
CNOTs [16, 22, 21]. Even special cases may be treated [16], us-
ing a simple procedure for finding aCNOT-optimal two-qubit
circuits [14]. In contrast, in three qubits the lower bound is14



while the generic decomposition of [11] achieves48 CNOTs
and a specialty circuit [20] achieves40.

In our work, we implement an arbitraryn-qubit operator us-
ing (1/2)×4n−3×2n−1 +1 CNOTgates. This represents an
improvement by a factor of two over the best known results
for both the3-qubit andn-qubit case. The3-qubit count is21
CNOTs, while then-qubit count is a factor of two away from
the lower bound of(4n−3n−1)/4. We also discuss efficient
circuits for initializing quantum registers and consider how ar-
chitectural considerations can affect circuit size. As this paper
reports exploratory work on a revolutionary computing tech-
nology, we do not necessarily seek working prototypes. In-
stead, we emphasize fundamental results and attempt to gain a
better understanding of the structure of quantum circuits.

II. GATES FORQUANTUM LOGIC

Let n be the number of qubits,N = 2n. Thequbit is the sim-
plest possible quantum mechanical system, with only a two-
dimensional state space. To bring out the analogy with a clas-
sical bit, we pick basis vectors|0〉 and|1〉. Note, however, that
in general the state of a qubit is described by a complex vector
|ψ〉 = α |0〉+ β |1〉. An n-qubit vector is a similar sum over
bit strings|φ〉 = ∑b̄ αb̄

∣∣b̄〉
, i.e. vectors inCN. Computations

are in particular unitary operators, i.e. maps|ψ〉 7→ u|φ〉, with
u∈ CN×N anduuT = IN for IN an indentity matrix.

We recall notation for Paui matrices, commonly encountered
in the quantum mechanics literature.

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

Appropriate physical operations may evolve a one-qubit state
|φ〉 7→ eitσ j |φ〉, whereσ j is a Pauli matrix as above or a linear
combination. Anelementary gateis such anRj(θ) = e−iθσ j/2.
One-qubit states may be seen as as vectors in space, and in this
picture theRj are spatial rotations[12,§4.2]. More explicitly:

• Thex-axis rotation:Rx(θ) =
(

cosθ/2 i sinθ/2
i sinθ/2 cosθ/2

)

• They-axis rotation:Ry(θ) =
(

cosθ/2 sinθ/2
−sinθ/2 cosθ/2

)

• Thez-axis rotation:Rz(α) =
(

e−iα/2 0
0 eiα/2

)

These operators suffice to implement an arbitrary one-qubit
computation. In fact, an arbitrary2×2 unitary matrixU has
U = eiΦRz(α)Ry(θ)Rz(β). We discard the leading scalareiΦ as
it is physically unmeasurable. To derive this fact, we recall the
Cosine-Sine decomposition [13] of matrix analysis.2 It factors
an even-dimensional unitary matrixu using smaller unitaries
a,a′,b,b′ and real diagonal matricesc,ssuch thats2 +c2 = 1:

u =
(

a
b

)(
c −s
s c

)(
a′

b′

)

2Source code for computing the Cosine-Sine decomposition can be ob-
tained from Matlab by typingwhich gsvd at the Matlab prompt.

If u was a2×2 matrix, then the left and right matrices are –
up to scalars –Rz matrices. The center matrix is anRy matrix.
Collecting the scalars, we obtain the advertised decomposition.

We next describe a very useful two-qubit gate that can be im-
plemented in practice. The controlled-not (CNOT) gate quan-
tizes the classical reversible two-input two-output logic gate
which inverts the second bit if the first is1. SeveralCNOTs are
depicted in Fig. 3. We writeCi

j for a CNOTgate that flips the

i-th bit if the j-th is 1. The4×4 unitaries forC2
1 andC1

2 are:

C2
1 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 C1

2 =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




If a 2p×2p unitaryU1 acts on ap-qubit register and a2q×2q

unitaryU2 acts on aq-qubit register, then the joint action on a
combinedn = p+ q register isnot a block matrix but rather
the Kronecker (tensor) productU1⊗U2 (e.g. [4]). As a matrix,
U1⊗U2 is blockwise a matrix of multiples ofU2, where the
multiples are the entries ofU1. Since tensors are cheap in the
circuit language, we hope to recognize such factors.

III. T HE QUANTUM MUX AND ITS IMPLEMENTATION

A quantum multiplexoris a gate acting onk+ 1 qubits of
which one is designated as thecontrol qubit. Depending on
whether the control bit carries0 or 1, the gate performs either
u0 or u1 on the remainingk bits. If the control bit is the highest

order bit, theMUXmatrix is block diagonal:

(
u0 0
0 u1

)
.

TheCNOTis a good example of a quantum multiplexor. An-
other variant is theuniformlyk-controlledRz gate[19]. Such
a gate operates onk+ 1 qubits, of whichk are controlsand
one is thetarget. A different Rz is applied to the target for
each control bit-string. If the target is the lowest order bit, then
the matrix is block diagonal, with thei-th 2×2 block aRz(θi)
gate given control-stringi. Encoding the parametersθi into a
diagonal matrixδ, the uniformly controlled rotation is given
by e−iσ⊗δ/2. A uniformly controlledRz gate withk controls
requires only2k CNOTgates and2k gatesRz, per Fig. 1.

A (k+ 1)-qubit quantum multiplexor can be implemented
using twok-qubit gates and a uniformlyk-controlledRz gate.
To see this, we formulate an equation for the required gates and
solve it. We want unitaryv,w and unitary diagonald satisfying

(
a

b

)
=

(
v

v

)(
d

d
T

)(
w

w

)
.

To find them, defined andv by diagonalizingab
T = vd2vT .

Thenw = dvTb. As d⊕d
T = eiσz⊗logd, it is a uniformly con-

trolledRz gate controlled on the low order bits.
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Fig. 1. A uniformly controlled rotationexp(iδ⊗σz) is denoted by anRz gate onσz’s wire and square controls onδ’s wires. We assert that such gates can be
recursively decomposed as shown above. For, writeδ = I2⊗δ1 +σz⊗δ2, and use the well-known two-qubit circuit identityC2

1(σz⊗σz)C2
1 = I2⊗σz to rewrite

δ⊗σz = I2⊗δ1⊗σz+C1
n(I2⊗δ2⊗σz)C1

n. Exponentiating produces the circuit in the center. Recursive cancellations are shown at right.

IV. SYNTHESIS OF UNITARY OPERATORS

Recall from Section II theCosine-Sinedecomposition:

u =
(

a
b

)(
c −s
s c

)(
a′

b′

)

The left and right factorsa⊕b anda′⊕b′ are quantum multi-
plexors. The central factor may be writteneiσy⊗log(c−is)/2. In
analogy with uniformly controlledRz gates, we call this a uni-
formly controlledRy gate. It may also be implemented using
Fig. 1. Simplifying multiplexors per Section III, we obtain:
NQ Decomposition: For u ∈ CN×N, uuT = IN, there exist
v1,v2,v3,v4,δ1,δ2,δ3 ∈ CN/2×N/2, v jvT

j = IN/2, δ j diagonal,
real, such that

u = (I2⊗v1)eiσz⊗δ1(I2⊗v2)eiσy⊗δ2(I2⊗v3)eiσz⊗δ3(I2⊗v4)

Hence an arbitraryn-qubit operator can be implemented by
a circuit containing three uniformly controlled rotations and
four (n− 1)-qubit operators, as illustrated in Figure 2. We
next count gates for the resulting recursive unitary synthesis
algorithm. Letc j be the number ofCNOTgates needed to im-
plement aj-qubit operator. Thenc j ≤ 4c j−1 + 3× 2 j−1. In
particular, if`-qubit operators may be implemented using≤ c`

CNOTgates, then the following inequality forcn results.

cn ≤ 4n−`(c` +3×2`−1)−3×2n−1

Apply the decomposition until only one-qubit operators re-
main,cn≤ (3/4)×4n−3×2n−1 CNOTgates. (Cf. [11].) If we
rather terminate the recursion with two-qubit operators, hand-
optimized3-CNOTcircuit decompositions [16, 22, 21] lower
theCNOT-count to(9/16)×4n−3×2n−1.

For (4n − 3× 2n + 2)/2 CNOTs, a final optimization is
needed. End the recursion once4n−2 two-qubit operators re-
main. These two-qubit operators are all on the same lines and
are separated by the controls of uniformly controlled rotations.

Fig. 2. A circuit diagram illustrating the NQ matrix decomposition.

u
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Diagonal operators pass through controls. Also, for any two-
qubit operatorv, there is a diagonal diagonal two-qudit opera-
tor d so thatvd anddv may be implemented using twoCNOTs
([14], Prop. III.3.) Passing through theIn−2⊗d’s, the remain-
ing two-qubit operators cost twoCNOTgates. Since we save
oneCNOTin the implementation of every two-qubit gate but
the first, the count above results. Note that forn= 3, 21CNOTs
are needed. This is the best known circuit at present (Cf. [20].)

V. PRACTICAL CONSIDERATIONS

Certain common primitives in classical computering are not
available for quantum computation. For example, intializing
an n-quantum bit register requiresΩ(2n) gates rather thann,
since an amplitudeαb̄ is set for each bit string. Moreover, some
architectures only allow gate operations on neighboring qubits.

We next describe how to optimally initialize a quantum reg-
ister from |0〉 to a givenn-qubit state|φ〉. Suppose first that
the vector describingφ has only real entries. Partition the vec-
tor representing|φ〉 into 2-element blocks, and consider each
as a vector inR2. Let the j-th such vector have lengthλ j and
form an angle ofθ j with thex-axis. Taking|φ′〉= ∑λ j | j〉 and
δ = ∑θ j | j〉〈 j|, we see thatexp(iδ⊗σy) |φ′〉 |0〉= |φ〉. The re-
cursive technique suggested by this equation yields a circuit
with 2n−2 CNOTs. The real|φ〉 differs from the general case
by a diagonal unitaryd, which differ from a uniformly con-
trolled Rz by ann−1 qudit diagonald′. Hence a circuit ford.
Cancellations between these two circuits reduce the count to
2n+1−2n−2 CNOTs [15].

Second, we note that our circuits adapt well to qubit-chain
libraries, where qubits are ordered in a sequence and only
CNOTs between adjacent qubits are allowed. MostCNOTgates
used in our decomposition already act on nearest neighbors,
e.g. those gates implementing the two-qubit operators. More-
over, Fig. 1 shows that only2n−k CNOTgates of lengthk
(where the length of a localCNOTis 1) will appear in the cir-

Fig. 3. Implementing a long-rangeCNOTgate with nearest-neighborCNOTs.
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Number of Qubits
1 2 3 4 5 6 7

VMS [19] 0 4 64 536 4156 22618 108760
MVBS [11] 0 8 48 224 960 3968 16128

NQ 0 3 21 105 465 1953 8001

TABLE I
A COMPARISON OFCNOT-COUNTS VERSUS NUMBER OF QUBITS FOR

SEVERAL RECENT SYNTHESIS ALGORITHMS.

cuit implementing a uniformly-controlled rotation withn con-
trol bits. Fig. 3 decomposes a lengthk CNOTinto 4k−4 length
1 CNOTs. It follows that9×2n−1−8 nearest-neighborCNOTs
suffice to implement the uniformly controlled rotation. There-
fore restrictingCNOTgates to nearest-neighbor interactions in-
creasesCNOTcount by at most a factor of nine.

VI. CONCLUSIONS ANDFUTURE WORK

Our approach to quantum circuit synthesis emphasizes sim-
plicity, a well-pronounced top-down structure, and practical
computation via the Cosine-Sine decomposition. By intro-
ducing the quantum multiplexor, we have reinterpreted the
Cosine-Sine decomposition to allow recursive implementation
of quantum gates. While applying our methods to the prob-
lem of 3-qubit circuit synthesis is presently the best approach,
future specialty techniques developed to solve this problem
can be used as terminal cases of our recursion. We have also
discussed various problems specific to quantum computation,
specifically initialization of quantum registers and mapping to
the nearest-neighbor gate library.

As seen in Table I, the universal circuit reported in this work
achieves the best known controlled-not counts, both for small
numbers of qubits and asymptotically. However, ultimately
this just means that our exponentially large circuits are a con-
stant factor smaller than the next best exponentially large cir-
cuits. More telling is the fact that our technique performs well
in finding small circuits when this is possible.
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