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1 PROBLEM DEFINITION

This problem is concerned with efficiently determining constrained positions of objects while min-
imizing a measure of interconnect between the objects, as in physical layout of integrated circuits,
commonly done in 2-dimensions. While most formulations are NP-hard, modern circuits are so
large that practical algorithms for placement must have near-linear runtime and memory require-
ments, but not necessarily produce optimal solutions. While early software for circuit placement
was based on Simulated Annealing, research in algorithms identified more scalable techniques which
are now being adopted in the Electronic Design Automation industry.

One models a circuit by a hypergraph Gh(Vh, Eh) with (i) vertices Vh = {v1, . . . , vn} representing
logic gates, standard cells, larger modules, or fixed I/O pads and (ii) hyperedges Eh = {e1, . . . , em}
representing connections between modules. Every incident pair of a vertex and a hyperedge connect
through a pin for a total of P pins in the hypergraph. Each vertex vi ∈ Vh has width wi, height hi

and area Ai. Hyperedges may also be weighted. Given Gh, circuit placement seeks center positions
(xi, yi) for vertices that optimize a hypergraph-based objective subject to constraints (see below).
A placement is captured by x = (x1, · · · , xn) and y = (y1, · · · , yn).

Objective: Let Ck be the index set of the hypergraph vertices incident to hyperedge ek. The
total half-perimeter wire length (HPWL) of the circuit hypergraph is given by HPWL(Gh) =∑

ek∈Eh
HPWL(ek) =

∑
ek∈Eh

[maxi,j∈Ck
|xi − xj |+ maxi,j∈Ck

|yi − yj |]. HPWL is piece-wise lin-
ear, separable in the x and y directions, convex, but not strictly convex. Among many objectives
for circuit placement, it is the simplest and most common.

Constraints:

1. No overlap. The area occupied by any two vertices cannot overlap; i.e., either |xi − xj | ≥
1
2(wi + wj) or |yi − yj | ≥ 1

2(hi + hj), ∀vi, vj ∈ Vh.

2. Fixed outline. Each vertex vi ∈ Vh must be placed entirely within a specified rectangular
region bounded by xmin (ymin) and xmax (ymax) which denote the left (bottom) and right
(top) boundaries of the specified region.

3. Discrete slots. There is only a finite number of discrete positions, typically on a grid. How-
ever, in large-scale circuit layout, slot constraints are often ignored during global placement,
and enforced only during legalization and detail placement.
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Other constraints may include alignment, minimum and maximum spacing, etc. Many placement
techniques temporarily relax overlap constraints into density constraints to avoid vertices clustered
in small regions. A m × n regular bin structure B is superimposed over the fixed outline and
vertex area is assigned to bins based on the positions of vertices. Let Dij denote the density of bin
Bij ∈ B, defined as the total cell area assigned to bin Bij divided by its capacity. Vertex overlap
is limited implicitly by satisfying Dij ≤ K, ∀Bij ∈ B, for some K ≤ 1 (density target).

Problem 1 (Circuit Placement).
Input: Circuit hypergraph Gh(Vh, Eh) and a fixed outline for the placement area.
Output: Positions for each vertex vi ∈ Vh such that (1) wire length is minimized and (2) the
area-density constraints Dij ≤ K are satisfied for all Bij ∈ B.

2 KEY RESULTS

An unconstrained optimal position of a single placeable vertex connected to fixed vertices can be
found in linear time as the median of adjacent positions [7]. Unconstrained HPWL minimization
for multiple placeable vertices can be formulated as a linear program [8, 11]. For each ek ∈ Eh,
upper and lower bound variables Uk and Lk are added. The cost of ek (x-direction only) is the
difference between Uk and Lk. Each Uk(Lk) comes with pk inequality constraints that restricts its
value to be larger (smaller) than the position of every vertex i ∈ Ck. A hypergraph with n vertices
and m hyperedges is represented by a linear program with n + 2m variables and 2P constraints.

Linear programming has poor scalability and integrating constraint-tracking into optimization
is difficult. Other approaches include non-linear optimization and partitioning-based methods.

2.1 Combinatorial techniques for wire length minimization

The no-overlap constraints are not convex and cannot be directly added to the linear program for
HPWL minimization. Such a program is first solved directly or by casting its dual as an instance
of the min-cost max-flow problem [12]. Vertices often cluster in small regions of high density. One
can lower-bound the distance between closely-placed vertices with a single linear constraint that
depends on the relative placement of these vertices [11]. The resulting optimization problem is
incrementally re-solved, and the process repeats until the desired density is achieved.

The min-cut placement technique is based on balanced min-cut partitioning of hypergraphs and
is more focused on density constraints [10]. Vertices of the initial hypergraph are first partitioned
in two similar-sized groups. One of them is assigned to the left half of the placement region, and
the other one to the right half. Partitioning is performed by the Multi-level Fiduccia-Mattheyses
(MLFM) heuristic [9] to minimize connections between the two groups of vertices (the net-cut
objective). Each half is partitioned again, but takes into account the connections to the other
half [10]. At the large scale, ensuring the similar sizes of bi-partitions corresponds to density
constraints and cut minimization corresponds to HPWL minimization. When regions become small
and contain < 10 vertices, optimal positions can be found with respect to discrete slot constraints
by branch-and-bound [2]. Balanced hypergaph partitioning is NP-hard [3], but the MLFM heuristic
takes O((V + E) log V ) time. The entire min-cut placement procedure takes O((V + E)(log V )2)
time and can process hypergraphs with millions of vertices in several hours.

A special case of interest is that of one-dimensional placement. When all vertices have identical
width and none of them are fixed, one obtains the NP-hard Minimum Linear Arrangement
problem [3] which can be approximated in polynomial time within O(log V ) and solved exactly for
trees in O(V 3) time as shown by Yannakakis. The min-cut technique described above also works
well for the related NP-hard Minimum-Cut Linear Arrangement problem [3].
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2.2 Nonlinear optimization

Quadratic and generic non-linear optimization may be faster than linear programming, while rea-
sonably approximating the original formulation. The hypergraph is represented by a weighted graph
where wij represents the weight on the 2-pin edge connecting vertices vi and vj in the weighted
graph. When an edge is absent, wij = 0, and in general wii = −Σi6=jwij .

Quadratic placement: A quadratic placement (x-direction only) is given by

Φ(x) =
∑
i,j

wij

[
(xi − xj)2

]
=

1
2
xTQx + cTx + const. (1)

The global minimum of Φ(x) is found by solving Qx + c = 0 which is a sparse, symmetric posi-
tive definite system of linear equations (assuming ≥ 1 fixed vertex), efficiently solved to sufficient
accuracy using any number of iterative solvers. Quadratic placement may have different optima
depending on the model (clique or star) used to represent hyperedges. However, for a k-pin hyper-
edge, if the weight on the 2-pin edges introduced is set to Wc in the clique mode and kWc in the
star model, then the models are equivalent in quadratic placement [8].

Linearized quadratic placement: Quadratic placement can produce lower quality placements.
To approximate the linear objective, one can iteratively solve Equation 1 with wij = 1/|xi −
xj | computed at every iteration. Alternatively, one can solve a single β-regularized optimization

problem given by Φβ(x) = minx
∑

i,j wij

√
(xi − xj)

2 + β, β > 0, e.g., using a Primal-Dual Newton
method with quadratic convergence [1].

Half-perimeter wire length placement: HPWL can be provably approximated by strictly
convex and differentiable functions. For 2-pin hyperedges, β-regularization can be used [1]. For an
m-pin hyperedge (m ≥ 3), one can rewrite HPWL as the maximum (l∞-norm) of all m(m− 1)/2
pairwise distances |xi − xj | and approximate the l∞-norm by the lp-norm (p-th root of the sum
of p-th powers). This removes all non-differentiabilities except at 0 which is then removed with
β-regularization. The resulting HPWL approximation is given by

HPWLp−β−reg(Gh) =
∑

ek∈Eh

(
∑

i,j∈Ck

|xi − xj |p + β)
1/p

(2)

which overestimates HPWL with arbitrarily small relative error as p →∞ and β → 0 [8]. Alterna-
tively, HPWL can be approximated via the log-sum-exp formula given by

HPWLlog−sum−exp(Gh) = α
∑

ek∈Eh

[
ln(

∑
i∈Ck

exp(
xi

α
)) + ln(

∑
vi∈Ck

exp(
−xi

α
))

]
(3)

where α > 0 is a smoothing parameter [6]. Both approximations can be optimized using conjugate
gradient methods.

2.3 Analytic techniques for target density constraints

The target density constraints are non-differentiable and are typically handled by approximation.

Force-based spreading: The key idea is to add constant forces f that pull vertices always from
overlaps, and recompute the forces over multiple iterations to reflect changes in vertex distribution.
For quadratic placement, the new optimality conditions are Qx+ c+ f = 0 [7]. The constant force
can perturb a placement in any number of ways to satisfy the target density constraints. The force
f is computed using a discrete version of Poisson’s equation.
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Fixed-point spreading: A fixed point f is a pseudo-vertex with zero area, fixed at (xf , yf ),
and connected to one vertex H(f) in the hypergraph through the use of a pseudo-edge with
weight wf,H(f). Quadratic placement with fixed points is given by Φ(x) =

∑
i,j wi,j(xi − xj)2 +∑

f wf,H(f)(xH(f)−xf )2. Each each fixed point f introduces a quadratic term wf,H(f)(xH(f)−xf )2.
By manipulating the positions of fixed points, one can perturb a placement to satisfy the target
density constraints. Fixed points generalize constant forces [5]. Fixed points improve the control-
lability and stability of a placement iteration.

Generalized force-directed spreading: The Helmholtz equation models a diffusion process
and makes it ideal for spreading vertices [4]. The Helmholz equation is given by

∂2φ(x,y)
∂x2 + ∂2φ(x,y)

∂y2 − εφ(x, y) = D(x, y), (x, y) ∈ R
∂φ
∂v = 0, (x, y) on the boundary of R

(4)

where ε > 0, v is an outer unit normal, R represents the fixed outline, and D(x, y) represents
the continuous density function. The boundary conditions, ∂φ

∂v = 0, specify that forces pointing
outside of the fixed outline be set to zero —this is a key difference with the Poisson method which
assumes that forces become zero at infinity. The value φij at the center of each bin Bij is found
by discretization of Equation 4 using finite differences. The density constraints are replaced by
φij = K̂,∀Bij ∈ B where K̂ is a scaled representative of the density target K. Wire length
minimization subject to the smoothed density constraints can be solved via Uzawa’s algorithm.
For quadratic wire length, this algorithm is a generalization of force-based spreading.

Potential function spreading: Target density constraints can also be satisfied via a penalty
function. The area assigned to bin Bij by vertex vi is represented by Potential(vi, Bij) which
is a bell-shaped function. The use of piecewise quadratic functions make the potential function
non-convex, but smooth and differentiable [6]. The penalty term given by

Penalty =
∑

Bij∈B

(
∑

vi∈Vh

Potential(vi, Bij)−K)2 (5)

can be combined with a wire length approximation to arrive at an unconstrained optimization
problem which is solved using an efficient conjugate gradient method [6].

3 APPLICATIONS

Practical applications involve more sophisticated interconnect objectives, such as circuit delay,
routing congestion, power dissipation, power density, and maximum thermal gradient. The above
techniques are adapted to handle multi-objective optimization. Many such extensions are based
on heuristic assignment of net weights that encourage the shortening of some (e.g., timing-critical
and frequently-switching) connections at the expense of other connections. To moderate routing
congestion, predictive congestion maps are used to decrease the maximal density contraint for
placement in congested regions. Another application is in physical synthesis, where incremental
placement is used to evaluate changes in circuit topology.

4 EXPERIMENTAL RESULTS

Circuit placement has been actively studied for the past 30 years and a wealth of experimental
results are reported throughout the literature. A 2003 result demonstrated that placement tools
could produce results as much as 1.41× to 2.09× known optimal wire lengths on average (advances
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have been made since this study). A 2005 placement contest found that a set of tools produced
placements with wire lengths that differed by as much as 1.84× on average. A 2006 placement
contest found that a set of tools produced placements that differed by as much as 1.39× on average
when the objective was the simultaneous minimization of wire length, routability and run time.
Placement run times range from minutes for smaller instances to hours for larger instances.

5 DATA SETS

Benchmarks include the ICCAD ‘04 suite (http://vlsicad.eecs.umich.edu/BK/ICCAD04bench/),
the ISPD ‘05 suite (http://www.sigda.org/ispd2005/contest.htm) and the ISPD ‘06 suite
(http://www.sigda.org/ispd2006/contest.htm). Instances in these benchmark suites contain
between 10K to 2.5M placeable objects. Other common suites can be found, including large scale
placement problems with known optimal solutions (http://cadlab.cs.ucla.edu/∼pubbench).

6 CROSS REFERENCES: Floorplanning and Circuit Partitioning
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