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Abstract. We discuss the implementation and evaluation of move-based
hypergraph partitioning heuristics in the context of VLSI design applica-
tions. Our �rst contribution is a detailed software architecture, consisting
of seven reusable components, that allows 
exible, e�cient and accurate
assessment of the practical implications of new move-based algorithms and
partitioning formulations. Our second contribution is an assessment of the
modern context for hypergraph partitioning research for VLSI design ap-
plications. In particular, we discuss the current level of sophistication in
implementation know-how and experimental evaluation, and we note how
requirements for real-world partitioners { if used as motivation for research
{ should a�ect the evaluation of prospective contributions. We then use two
\implicit decisions" in the implementation of the Fiduccia-Mattheyses [20]
heuristic to illustrate the di�culty of achieving meaningful experimental
evaluation of new algorithmic ideas. Finally, we provide anecdotal evidence
that our proposed software architecture is conducive to algorithm innova-
tion and leading-edge quality of results.

1 Introduction: Hypergraph Partitioning

in VLSI Design

Given a hyperedge- and vertex-weighted hypergraph H = (V;E), a k-way
partitioning of V assigns the vertices to k disjoint nonempty partitions. The
k-way partitioning problem seeks to minimize a given cost function c(P k)
whose arguments are partitionings. A standard cost function is net cut,1

which is the sum of weights of hyperedges that are cut by the partitioning
(a hyperedge is cut exactly when not all of its vertices are in one partition).
Constraints are typically imposed on the partitioning solution, and make
the problem di�cult. For example, certain vertices can be �xed in par-
ticular partitions (�xed constraints). Or, the total vertex weight in each
partition may be limited (balance constraints), which results in an NP-hard
formulation [21]. Thus, the cost function c(P k) is minimized over the set
of feasible solutions Sf , which is a subset of the set of all possible k-way
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Or simply cut, as in minimum cut partitioning. Note that in the VLSI context, a circuit hypergraph
is called a netlist; a hyperedge corresponds to a signal net, or net; and a vertex corresponds to a
module.



partitionings. E�ective move-based heuristics for k-way hypergraph parti-
tioning have been pioneered in such works as [36], [20], [9], with re�nements
given by [38], [43], [26], [40], [18], [4], [12], [25], [34], [19] and many others.
A comprehensive survey of partitioning formulations and algorithms, cen-
tered on VLSI applications and covering move-based, spectral, 
ow-based,
mathematical programming-based, etc. approaches, is given in [5]. A recent
update on balanced partitioning in VLSI physical design is provided by [31].

1.1 The VLSI Design Context

VLSI design has long provided driving applications and ideas for hyper-
graph partitioning heuristics. For example, the methods of Kernighan-Lin
[36] and Fiduccia-Mattheyses [20] form the basis of today's move-based ap-
proaches. The method of Goldberg-Burstein [24] presaged the multilevel
approaches recently popularized in the parallel simulation [22], [27], [32]
and VLSI [3],[34],[4] communities. As noted in [5], applications in VLSI
design include test; simulation and emulation; design of systems with mul-
tiple �eld-programmable devices; technology migration and repackaging;
and top-down 
oorplanning and placement.
Depending on the speci�c VLSI design application, a partitioning instance
may have directed or undirected hyperedges, weighted or unweighted ver-
tices, etc. However, in all contexts the instance represents { at the transistor-
level, gate-level, cell-level, block-level, chip-level, or behavioral description
module level { a human-designed system. Such instances are highly non-
random. Many e�orts (e.g., [30], [14], [23], [8]) have used statistical at-
tributes of real-world circuit hypergraphs (based on Rent's parameter [39],
shape, depth, fanout distribution, etc.) to generate random hypergraphs
believed relevant to evaluation of heuristics. These e�orts have not yet met
with wide acceptance in the VLSI community, mostly because generated
instances do not guarantee \realism". Hence, the current practice remains
to evaluate new algorithmic ideas against suites of benchmark instances.
In the VLSI partitioning community, performance of algorithms is typi-
cally evaluated on the ACM/SIGDA benchmarks now maintained by the
Collaborative Benchmarking Laboratory at North Carolina State Univer-
sity http:www.cbl.ncsu.edu/benchmarks.2 Alpert [2] noted that many of
these circuits no longer re
ect the complexity of modern partitioning in-
stances, particularly in VLSI physical design; this motivated the release of
eighteen larger benchmarks produced from internal designs at IBM [1].3

Salient features of benchmark (real-world) circuit hypergraphs include (see
also Table 9):
{ size: number of vertices can be up to one million or more (instances of
all sizes are equally important).

{ sparsity: average vertex degrees are typically between 3 and 5 for device-
, gate- and cell-level instances; higher average vertex degrees occur in
block-level design.

2
These benchmarks are typically released by industry or academic designers at various workshops and
conferences (e.g., LayoutSynth90, LayoutSynth92, Partitioning93, PDWorkshop93, ...).

3
While those benchmarks are now used in most partitioning papers, we would like to stress that they
present considerably harder partitioning problems than earlier available benchmarks available from
http://www.cbl.ncsu.edu/benchmarks, primarily due to more esoteric distributions of node degrees
and weights. See, e.g., Tables 9, 7 and 8.



{ number of hyperedges (nets) typically between 0.8x and 1.5x of the
number of vertices (each module typically has only one or two outputs,
each of which represents the source of a new signal net).

{ average net sizes are typically between 3 to 5.
{ a small number of very large nets (e.g., clock, reset, test) connect hun-
dreds or thousands of vertices.

Partitioning heuristics must also be highly e�cient in order to be useful in
VLSI design.4 As a result { and also because of their 
exibility in address-
ing variant objective functions { fast and high-quality iterative move-based
partitioners based on the approach of Fiduccia-Mattheyses [20] have domi-
nated recent practice.

1.2 The Fiduccia-Mattheyses Approach

The Fiduccia-Mattheyses (FM) heuristic for bipartitioning circuit hyper-
graphs [20] is an iterative improvement algorithm. Its neighborhood struc-
ture is induced by single-vertex, partition-to-partition moves.5 FM starts
with a possibly random solution and changes the solution by a sequence of
moves which are organized as passes. At the beginning of a pass, all ver-
tices are free to move (unlocked), and each possible move is labeled with
the immediate change in total cost it would cause; this is called the gain

of the move (positive gains reduce solution cost, while negative gains in-
crease it). Iteratively, a move with highest gain is selected and executed,
and the moving vertex is locked, i.e., is not allowed to move again during
that pass. Since moving a vertex can change gains of adjacent vertices, after
a move is executed all a�ected gains are updated. Selection and execution of
a best-gain move, followed by gain update, are repeated until every vertex
is locked. Then, the best solution seen during the pass is adopted as the
starting solution of the next pass. The algorithm terminates when a pass
fails to improve solution quality.
The FM algorithm can be easily seen to have three main operations: (1) the
computation of initial gain values at the beginning of a pass; (2) the retrieval
of the best-gain (feasible) move; and (3) the update of all a�ected gain
values after a move is made. The contribution of Fiduccia and Mattheyses
lies in observing that circuit hypergraphs are sparse, so that any move gain
is bounded between two and negative two times the maximal vertex degree
in the hypergraph (times the maximal edge weight, if edge weights are
used). This allows hashing of moves by their gains: all a�ected gains can be
updated in linear time, yielding overall linear complexity per pass. In [20],
all moves with the same gain are stored in a linked list representing a \gain
bucket".

4
For example, a modern top-down standard-cell placement tool might perform timing- and routing
congestion-driven recursive min-cut bisection of a cell-level netlist to obtain a \coarse placement",
which is then re�ned into a \detailed placement" by stochastic hill-climbing search. The entire place-
ment process in currently released tools (from companies like Avant!, Cadence, CLK CAD, Gambit,
etc.) takes approximately 1 CPU minute per 6000 cells on a 300MHz Sun Ultra-2 uniprocessor work-
station with adequate RAM. The implied partitioning runtimes are on the order of 1 CPU second for
netlists of size 25,000 cells, and 30 CPU seconds for netlists of size 750,000 cells [16]. Of course, we
do not advocate performance tuning to match industrial-strength runtimes. However, absent other
justi�cations, \experimental validation" of heuristics in the wrong runtime regimes (say, hundreds of
CPU seconds for a 5000-cell benchmark) has no practical relevance.

5
By contrast, the stronger Kernighan-Lin (KL) heuristic [36] uses a pair-swap neighborhood structure.



1.3 Contributions of This Paper

In this paper, we discuss the implementation and evaluation of move-based
hypergraph partitioning heuristics, notably the FM heuristic, in the context
of VLSI design applications. Our �rst contribution is a detailed software
architecture, consisting of seven reusable components, that allows 
exible,
e�cient and accurate assessment of the practical implications of new move-
based algorithms and partitioning formulations. Our second contribution is
an assessment of the modern context for hypergraph partitioning research
for VLSI design applications. In particular, we discuss the current level of so-
phistication in implementation know-how and experimental evaluation, and
we note how requirements for real-world partitioners { if used as motivation
for research { should a�ect the evaluation of prospective contributions. We
then use two \implicit decisions" in the implementation of the FM heuristic
to illustrate the di�culty of achieving meaningful experimental evaluation
of new algorithmic ideas. Finally, we provide brief anecdotal evidence that
our proposed software architecture is conducive to algorithm innovation and
leading-edge quality of results.

2 Architecture of a Move-Based Partitioning

Testbench

In this section, we describe a seven-component software architecture for
implementation of move-based partitioning heuristics, particularly those
based on the FM approach. By way of example, we reword the Fiduccia-
Mattheyses algorithm in terms of these seven software components. By
carefully dividing responsibilities among components we attempt to pro-
vide the implementation 
exibility and runtime e�ciency that is needed
to evaluate the practical impact of new algorithmic ideas and partitioning
formulations.

2.1 Main Components

Common Partitioner Interface. Formally describes the input and out-
put to partitioners without mentioning internal structure and imple-
mentation details. All partitioner implementations then conform to this
input/output speci�cation.

Initial Solution Generator. Generates partitionings that satisfy given
constraints, typically using randomization in the construction.

Incremental Cost Evaluator. Evaluates the cost function for a given
partitioning and dynamically maintains cost values when the partition-
ing is changed by applying moves. Updates typically should be per-
formed in constant time.

Legality Checker. Veri�es whether a partitioning satis�es a given con-
straint. The Legality Checker is used to determine the legality of a move.
Multiple constraints may be handled with multiple legality checkers.

Gain Container. A general container for moves, optimized for e�cient al-
location, retrieval and queueing of available moves by their gains. Moves
can be retrieved by, e.g., the index of the vertex being moved, and/or



the source or destination partition. The Gain Container supports quick
updates of the gain for a move, and fast retrieval of a move with the
highest gain. The Gain Container is also independent of the incremen-
tal cost evaluator and legality checker; it is populated and otherwise
managed by the Move Manager.

Move Manager. Responsible for choosing and applying one move at a
time. It may rely on a Gain Container to choose the best move, or
randomly generate moves. It can undo moves on request. If used in
pass-based partitioners, it incrementally computes the change in gains
due to a move, and updates the Gain Container.
The Move Manager maintains \status information", such as the current
cost and how each partition is �lled. It may be controlled by the caller
via parameter updates before every move selection (e.g. a temperature
parameter in simulated annealing).

Pass-Based Partitioner (proper). Solves \partitioning problems" by ap-
plying incrementally improving passes to initial solutions. A pass con-
sists of legal moves, chosen and applied by the move manager. Within
a pass, a partitioner can request that the Move Manager undo some of
the moves, i.e. perform inverse moves. The Pass-Based Partitioner is
an implementation of the Common Partitioning Interface.

This modularity allows for separate benchmarking and optimization of most
components. It also provides 
exibility to use multiple alternative imple-
mentations relevant to special cases.6 A fundamental facility enabling such
modularity is a common e�cient hypergraph implementation.7

2.2 Component Descriptions

We now give somewhat more detailed component descriptions, omitting
three components for which implementation choices are less critical.

Incremental Cost Evaluator Initialized with a hypergraph, the In-
cremental Cost Evaluator is responsible for evaluating the cost function for
a given partitioning, and incrementally maintaining this value when the
partitioning changes (i.e., a vertex is moved). When the cost function is
computed as sum of hyperedge costs, those costs should also be maintained
and available.

6
For example, many optimizations for 2-way partitioning from the general k-way case can be encap-
sulated in the evaluator. On the other hand, in our experience optimizing the Gain Container for
2-way is barely worth maintaining separate pieces of code.

7
A generic hypergraph implementation must support I/O, statistics, various traversals and optimiza-
tion algorithms. However, no such implementation will be optimal for all conceivable uses.

In particular, the excellent LEDA library is bound to have certain ine�ciencies related to hyper-
graph construction and memory management. We decided to implement our own reusable components
based on the Standard Template Library and optimize them for our use models.

Features directly supported by the hypergraph component include memory management options,
conversions, I/O, various construction options such as ignoring hyperedges of size less than 2 or
bigger than a certain threshold, lazily executed calls for sorting nodes or edges in various orders etc.
Many trade-o� had to be made, e.g. the hypergraph objects used in critical pieces of code have to be
unchangeable after their initial construction so as to allow for very e�cient internal data structures.

None of the many existing generic implementations we reviewed was su�ciently malleable to meet
our requirements without overwhelming their source code by numerous compiler #defines for adapting
the code to a given use model. Having complete control over the source code and internal interfaces
also allows for maximal code reuse in implementing related functionalities.



E�cient implementations typically maintain an internal state, e.g. relevant
statistics, for each hyperedge. This facilitates e�cient constant-time cost
updates when single moves are performed. An Evaluator whose values are
guaranteed to be from a small (esp. �nite) range should be able to exploit
this range to enable faster implementations of the Gain Container (e.g.
buckets versus priority queues).
Interface:
{ Initialize (internal structures) with a hypergraph and a partitioning
solution.

{ Report current cost (total or of one net) without changing internal
state.

{ Complete change of internal state (re-initialization) for all vertices and
nets.

{ Incremental change of internal state (for all nets whose cost is a�ected
or for a given net) due to one elementary move without updating the
costs.8

Gain Container The Gain Container stores all moves currently available
to the partitioner (these may not all be legal at a given time) and prioritizes
them by their gains (i.e., the immediate e�ect each would have on the total
cost). A container of move/gain pairs is de�ned by the interface below,
which allows quick updates to each and any move/gain pair after a single
move.
A Gain Container should be able to �nd the move with highest gain quickly,
possibly subject to various constraints such as a given source or destina-
tion partition, and may provide support for various tie-breaking schemes

in order to choose the best move among the moves with highest gain. A
Gain Container does not initiate gain updates by itself and is not aware
of Cost Evaluators, the Move Manager, or how the gains are interpreted.
Gain Containers do not need to determine the legality of moves. This makes
them reusable for a range of constrained partitioning problems. Faster im-
plementations (e.g. with buckets) may require that the maximal possible
gain be known.
Interface:
{ Add a move to the Container, given the gain.
{ Get the gain for a move.
{ Set the gain for a move (e.g. to update).
{ Remove a move from the Container.
{ Find a move of highest gain.
{ Invalidate current highest gain move, in order to request the next high-
est gain move.9 Typically applied if the current highest gain move ap-
pears illegal.

{ Invalidate current highest gain bucket to access the next highest gain
bucket.

The primary constituents of a Gain Container are a repository and priori-

tizers.

8
Changing the state of one net will, in general, make the overall state of the evaluator inconsistent.
This can be useful, however, for \what-if" cost lookups when a chain of incremental changes can
return to the original state.

9
Note that this does not remove the move from the Gain Container.



Repository for gain/move pairs handles allocation and deallocation of
move/gain pairs, and supports fast gain lookups given a move.

Prioritizer �nds a move with highest gain. In addition, may be able to
choose choose best-gain moves among moves with certain properties,
such as a particular destination or source partition. Updates gains and
maintains them queued, in particular, is responsible for tie-breaking
schemes.

We say that some moves stored in the repository are prioritized when they
participate in the prioritizer's data structures. Not prioritizing the moves
a�ecting a given vertex corresponds to \locking" the vertex, as it will never
be chosen as the highest-gain move. The standard FM heuristic locks a
given cell as soon as it is moved in a pass; however, variant approaches to
locking have been proposed [15].

Move Manager A Move Manager handles the problem's move structure
by choosing and applying the best move (typically, the best legal move),
and incrementally updates the Gain Container that is used to choose the
best move. The Move Manager reports relevant \status information" after
each move, e.g. current cost and partition balance, which allows the caller
to determine the best solution seen during the pass. In order to return to
such best solution, the move manager must perform undo operations on
request.

Interface:

{ Choose one move (e.g., the best feasible) and apply it. Ensure all nec-
essary updates (gain container, incremental evaluator).

{ Return new \status info", e.g., total cost, partition balances, etc.

{ Undo a given number of moves (each move applied must be logged to
support this).

Pass-Based Partitioner (Proper) Recall that a Pass-Based Parti-
tioner applies incrementally improving passes to initial solutions and re-
turns best solutions seen during such passes.10 A pass consists of moves,
chosen and applied by move manager. After a pass, a Partitioner can re-
quest that the Move Manager perform undo operations to return to the best
solution seen in that pass. A Partitioner decides when to stop a pass, and
what intermediate solution within the pass to return to, on the basis of its
control parameters and status information returned by the Move Manager
after each move. The Partitioner can have access to multiple combinations
of Incremental Cost Evaluators, Move Managers and Gain Containers, and
can use them 
exibly at di�erent passes to solve a given partitioning prob-
lem. Note that a Partitioner is not necessarily aware of the move structure
used: this is a responsibility of Move Managers.

Interface:

{ Takes a \partitioning problem" and operational parameters on input.

{ Returns all solutions produced, with the best solution marked.

10
While every pass as a whole must not worsen current solution, individual moves within a pass may
do so.



2.3 A Generic Component-based FM Algorithm

A \partitioning problem" consists of

{ hypergraph

{ solution placeholders (\bu�ers") with or without initial solutions

{ information representing relevant constraints, e.g., �xed assignments of
vertices to partitions and maximum total vertex area in each partition

{ additional information required to evaluate the cost function, e.g., ge-
ometry of partitions for wirelength-driven partitioning in the top-down
placement context.

The Partitioner goes over relevant places in solution bu�ers and eventually
writes good partitioning solutions into them. An existing solution may thus
be improved, but if a place is empty, an initial solution generator will be
called. A relevant Move Manager must be instantiated and initialized; this
includes instantiation of the constituent Evaluator and Gain Container. The
Partitioner then performs successive passes as long as the solution can be
improved.

At each pass, the Partitioner repetitively requests the Move Manager to
pick one [best] move and apply it, and processes information about the new
solutions thus obtained. Since no vertex can be moved twice in a pass, no
moves will be available beyond a certain point (end of a pass). Some best-
gain moves may increase the solution cost, and typically the solution at the
end of the pass is not as good as the best solutions seen during the pass.
The Partitioner then requests that the Move Manager undo a given number
of moves to yield a solution with best cost.

While the reinitialization of the Move Manager at the beginning of each pass
seems almost straightforward, picking and applying one move is subtle. For
example, note that the Move Manager requests the best move from the
gain container and can keep on requesting more moves until a move passes
legality check(s). As the Move Manager applies the chosen move and locks
the vertex, gains of adjacent vertices may need to be updated.

In performing \generic" gain update, the Move Manager walks all nets
incident to the moving vertex and for each net computes gain updates
(delta gains) for each of its vertices due to this net (these are combinations
of the given net's cost under four distinct partition assignments for the
moving and a�ected vertices; see Section 3.4). These partial gain updates
are immediately applied through Gain Container calls, and moves of a�ected
vertices may have their priority within the Gain Container changed. Even
if the delta gain for a given move is zero, removing and inserting it into
the gain container will typically change tie-breaking among moves with the
same gain.

In most implementations the gain update is the main bottleneck, followed
by the Gain Container construction. Numerous optimizations of generic al-
gorithms exist for speci�c cost functions, netcut being particularly amenable
to such optimizations.



3 Evaluating Prospective Advances in

Partitioning

3.1 Formulations and Metrics for VLSI Partitioning

VLSI design presents many di�erent 
avors of hypergraph partitioning. Ob-
jective functions such as ratio-cut [46], scaled cost [11], absorption cut [45]
sum of degrees, number of vertices on the cut line [28], etc. have been ap-
plied for purposes ranging from routability-driven clustering to multi-level
annealing placement. In top-down coarse placement, partitioning involves
�xed or \propagated" terminals [17, 44], tight partition balance constraints
(and non-uniform vertex weights), and an estimated-wirelength objective
(e.g., sum of half-perimeters of net bounding boxes). By contrast, for logic
emulation the partitioning might have all terminals un�xed, loose balance
constraints (with uniform vertex weights), and a pure min-cut objective.
The partitioning can also be multi-way instead of 2-way [44, 43, 29], \multi-
dimensional" (e.g., simultaneous balancing of power dissipation and module
area among the partitions), timing-driven, etc. With this in mind, parti-
tioners are best viewed as \engines" that plug into many di�erent phases
of VLSI design. Any prospective advance in partitioning technology should
be evaluated in a range of contexts.
In recent VLSI CAD partitioning literature, comparisons to previous work
are made using as wide a selection of benchmark instances as practically pos-
sible; using uniform vs. non-uniform vertex weights; and using tight vs. loose
partition balance constraints (typically 49-51% and 45-55% constraints for
bipartitioning).11 Until recently, heuristics have typically been evaluated ac-
cording to solution quality and runtime. Even though the quality-runtime
tradeo� is unpredictable given widely varying problem sizes, constraints
and hypergraph topologies, most papers report average and best solution
quality obtained over some �xed number of independent runs (e.g., 20 or
100 runs). This reporting style can obscure the quality-runtime tradeo�,
notably for small runtimes, and is a failing of the VLSI CAD community
relative to the more mature metaheuristics/INFORMS communities.12 Sta-
tistical analyses (e.g., signi�cance tests) are not particularly popular yet,
but are recognized as necessary to evaluate the signi�cance of solution qual-
ity variation in diverse circumstances [8].

3.2 Need For \Canonical" Testbench

The components described in Section 2 yield a testbench, or \framework",
that can be recombined and reused in many ways to enable experiments
with
{ multiple objective functions, e.g., ratio cut [46],
absorption [45], the number of boundary vertices [28],
the \k � 1 objective" [13] etc.

11
VLSI CAD researchers also routinely document whether large nets were thresholded, the details of
hypergraph-to-graph conversions (e.g., when applying spectral methods), and other details necessary
for others to reproduce the experiments. The reader is referred to [5, 2] for discussions of reporting
methodology.

12
See, e.g., Barr et al. [6]. Separate work of ours has addressed this gap in reporting methodology
within the VLSI CAD community [10].



{ multiple constraint types ([35])
{ variant formulations, e.g., multi-way [43, 33, 15], replication-based [37]
etc.

{ new partitioning algorithms and variations

The component-based framework allows seamless replacement of old algo-
rithms by improved ones in containing applications. Even more important, a
solid testbench is absolutely essential to identify algorithmic improvements
\at the leading edge" of heuristic technology. I.e., it is critical to evaluate
proposed algorithm improvements not only against the best available im-
plementations, but also using a competent implementation. This is the main
point we wish to make.
In our experience, new \improvements" often look good if applied to weak
algorithms, but may actually worsen strong algorithms. Only after an im-
provement has been thoroughly analyzed, implemented and con�rmed em-
pirically, can it be turned on by default and be applied to all evaluations
of all subsequent proposed improvements. On the other hand, one often
encounters pairs of con
icting improvements of which one, if applied by
itself, dominates the other while the combination of the two is the worst.
Therefore, interacting improvements must be implemented as options, and
tested in all possible combinations.
In the following, we focus on the very pernicious danger of reporting \ex-
perimental results" that are irreproducible and possibly meaningless due
to a poorly implemented partitioning testbench. We demonstrate that a
fundamental cause of a poor testbench is failure to understand the \im-
plicit implementation decisions" that dominate quality/runtime tradeo�s.
A corollary is that researchers must clearly report such \implicit decisions"
in order for results to be reproducible.

3.3 Taxonomy of Algorithm and Implementation
Improvements

In this section we propose a general taxonomy of implementation deci-
sions for optimization metaheuristics, and illustrate it for the Fiduccia-
Mattheyses heuristic [20] and its improvements.
Modi�cations of the algorithm | important changes to steps or the

ow of the original algorithm as well as new steps and features.

{ \lookahead" tie-breaking [38] { among moves with the same gain, one
chooses those which increase gains of other moves

{ CLIP [18] { instead of actual gains of moves, maintains their \up-
dated" gain, i.e., the actual gain minus the gain in the beginning of
the pass. With updated gain used for move selection, CLIP tends to
move (clusters of) adjacent vertices together and achieves considerably
better quality.

{ cut line re�nement [27] { only vertices incident to nets with nonzero
cost are considered in move selection. If net changes its cost from 0
to 1 during a vertex move, all its vertices previously disregarded are
brought into consideration.

{ multiple unlocking [15] { allows vertices to move more than once during
a pass.



Implicit decisions { underspeci�ed features and ambiguities in the origi-
nal algorithm description that need to be resolved in any particular imple-
mentation. Examples for the Fiduccia-Mattheyses heuristic include:
{ tie-breaking in choosing highest gain bucket (see Section 3.4)
{ tie-breaking on where to attach new element in gain bucket, i.e., LIFO
versus FIFO versus random [26]13

{ whether to update, or skip the updating, when the delta gain of a move
is zero (see Section 3.4)

{ breaking ties when selecting the best solution during the pass | choose
the �rst or last one encountered, or the one that is furthest from vio-
lating constraints.

Tuning that can change the result | minor algorithm or implementa-
tion changes, typically to avoid particularly bad special cases or pursue only
\promissing computations". If bad cases are rare and criteria for promising
computations are good, the resulting quality may be a�ected minimally.
{ thresholding large nets from the input to reduce run time
{ skipping gain update for large nets to reduce run time
{ skipping zero delta gain updates changes the resolution of hash colli-
sions in the Gain Container.

{ loose net removal [12] performs gain updates only for [loose] nets that
are likely to be uncut, and skips gain updates for all other nets

{ stable net removal [12] performs special passes (\kick-moves") between
regular FM passes deliberately uncutting nets that have been cut during
the previous passes

{ allowing illegal solutions during a pass (to improve hill-climbing ability
of the algorithm) [19]

Tuning that can not change the result | minor algorithm or im-
plementation changes to simplify computations in critical or statistically
signi�cant special cases.

{ skipping nets which cannot have non-zero delta gains (updates)
{ netcut-speci�c optimizations
{ optimizations for nets of small degree
{ 2-way speci�c optimizations

3.4 An Empirical Illustration

We now illustrate how \implicit implementation decisions" can severely dis-
tort the experimental assessment of new algorithmic ideas. Uncertainties in
the description of the Fiduccia-Mattheyses algorithm have been previously
analyzed, notably in [26], where the authors show that inserting moves into
gain buckets in LIFO order is much preferable to doing so in FIFO order
(also a constant-time insertion) or at random. Since the work of [26], all
FM implementations that we are aware of use LIFO insertion.14 In our ex-
periments, we consider the following two implicit implementation decisions:

13
In other words, gain buckets can be implented as stacks, queues or random priority queues where the
chances of all elements to be selected are equal at all times. [26] demonstrated that stack-based gain
containers (i.e. LIFO) are superior.

14
A series of works in the mid-1990s retrospectively show that the LIFO order allows vertices in \natural
clusters" to move together across the cutline. The CLIP variant of [18] is a more direct way of moving
clusters.



{ Zero delta gain update. Recall that when a vertex x is moved,
the gains for all vertices y on nets incident to x must potentially be
updated. In all FM implementations, this is done by going through the
incident nets one at a time, and computing the changes in gain for
vertices y on these nets. A straightforward implementation computes
the change in gain (\delta gain") for y by adding and subtracting four
cut values for the net under consideration,15 and immediately updating
y's position in the gain container.

ALGORITHM TESTCASES with unit areas and 10% balance
Updates Bias primary1 primary2 biomed ibm01 ibm02 ibm03

Flat LIFO FM
All �gain Away 102(0.253) 472(1.6) 447(31) 1723(12.8) 1404(30.8) 4191(33.2)
All �gain Part0 96.2(0.26) 438(1.76) 386(36.4) 1226(16.3) 1468(43.2) 3854(37.8)
All �gain Toward 80.9(0.257) 294(1.58) 370(35.9) 577(12.6) 585(23.7) 3209(37.7)
Nonzero Away 72.4(0.248) 283(1.48) 149(29.7) 529(8.44) 471(18.9) 2327(28)
Nonzero Part0 76.7(0.237) 280(1.41) 127(26.8) 436(8.81) 444(18.4) 2087(29.1)
Nonzero Toward 75.4(0.228) 263(1.47) 133(26.7) 454(9.29) 453(17) 2093(26.9)

Flat CLIP FM
All �gain Away 63.4(0.356) 227(2.2) 140(54.8) 463(16.9) 662(50.7) 1705(49)
All �gain Part0 63.3(0.337) 216(2.34) 117(46.9) 395(15.9) 513(41) 1612(44.7)
All �gain Toward 63.5(0.319) 209(2.05) 116(43) 436(13.3) 446(40.3) 1515(40)
Nonzero Away 62.6(0.287) 219(1.76) 109(36.2) 415(13.6) 466(35.5) 1631(40.1)
Nonzero Part0 61.3(0.299) 207(1.86) 105(24.9) 371(13.7) 442(35) 1543(39.3)
Nonzero Toward 60.2(0.295) 216(1.81) 105(26.9) 397(13.2) 445(32.1) 1528(35.6)

ML LIFO FM
All �gain Away 59.3(0.838) 171(4.79) 142(36.3) 236(27) 285(62.2) 1023(156)
All �gain Part0 58.7(0.795) 170(4.98) 137(38.6) 238(25.8) 288(65.9) 992(133)
All �gain Toward 59.5(0.832) 166(4.52) 138(34.2) 236(27.6) 291(61.4) 995(121)
Nonzero Away 58.5(0.778) 168(4.69) 139(27.8) 234(26.3) 282(60.5) 1010(126)
Nonzero Part0 57.3(0.848) 166(4.71) 140(27) 232(25.9) 280(58.3) 1035(141)
Nonzero Toward 57.6(0.745) 164(4.62) 140(28.5) 245(26.9) 281(56.7) 988(126)

ML CLIP FM
All �gain Away 59.8(0.782) 171(4.77) 144(33.8) 239(25.7) 281(65.7) 994(133)
All �gain Part0 58.8(0.853) 169(4.78) 136(37.6) 235(27.4) 278(62) 1213(170)
All �gain Toward 58.5(0.836) 166(4.79) 136(36.3) 239(24.5) 281(60.1) 1023(136)
Nonzero Away 59.1(0.816) 170(4.37) 142(26.2) 239(25.8) 286(51) 1009(109)
Nonzero Part0 58.1(0.834) 166(4.78) 137(26.1) 240(26) 286(57.7) 1009(118)
Nonzero Toward 59.1(0.885) 164(4.49) 138(28.5) 237(24.6) 284(55.8) 1000(121)

Table 1. Average cuts in partitioning with unit areas and 10% balance tolerance, over 100
independent runs. Average CPU time per run in Sun Ultra-1 (140MHz) seconds is given in
parentheses.

Notice that sometimes the delta gain can be zero. An implicit imple-
mentation decision is whether to reinsert a vertex y when it experiences
a zero delta gain move (\All�gain"), or whether to skip the gain up-
date (\Nonzero"). The former will shift the position of y within the
same gain bucket; the latter will leave y's position unchanged. The
e�ect of zero delta gain updating is not immediately obvious.16

15
These four cut values correspond to: (a) x, y in their original partitions; (b) x in original partition,
y moved; (c) x moved, y in original partition; and (d) x and y both moved. (a) - (b) is the original
gain for y due to the net under consideration; (c) - (d) is the new gain for y due to the same net.
The di�erence ((a)-(b)) - ((c)-(d)) is the delta gain. See [29] for a discussion.

16
The gain update method presented in [20] has the side e�ect of skipping all zero delta gain up-
dates. However, this method is both netcut- and two-way speci�c; it is not certain that a �rst-time
experimenter with FM will �nd analogous solutions for k-way partitioning with a general objective.



{ Tie-breaking between two highest-gain buckets in move selec-
tion. When the gain container is implemented such that available
moves are segregated, typically by source or destination partition, there
can be more than one nonempty highest-gain bucket. Notice that when
the balance constraint is anything other than \exact bisection", it is
possible for all the moves at the heads of the highest-gain buckets to
be legal. The FM implementer must choose a method for dealing with
this situation. In our experiments, we contrast three approaches:17 (i)
choose the move that is not from the same partition as the last vertex
moved (\away"); (ii) choose the move in partition 0 (\part0"); and
(iii) choose the move from the same partition as the last vertex moved
(\toward").

ALGORITHM TESTCASES with actual areas and 10% balance
Updates Bias primary1 primary2 biomed ibm01 ibm02 ibm03

Flat LIFO FM
All �gain Away 99.7(0.284) 470(2.09) 442(34.2) 1680(16.3) 2291(29.4) 4076(24.3)
All �gain Part0 93.7(0.294) 425(2.38) 384(43.8) 863(18) 1880(33.3) 3969(25.9)
All �gain Toward 80(0.301) 292(2.05) 365(38.8) 490(12.8) 734(21.6) 3262(22)
Nonzero Away 72.8(0.279) 286(1.67) 154(30.4) 574(10.1) 507(15.1) 2266(23.5)
Nonzero Part0 71(0.274) 273(1.73) 125(28.6) 503(9.85) 470(16.7) 2161(21.7)
Nonzero Toward 71.7(0.252) 259(1.88) 132(29.8) 481(9.1) 437(13.8) 2167(21.4)

Flat CLIP FM
All �gain Away 62.6(0.384) 233(2.62) 139(50.6) 493(21) 740(37.8) 2260(32.8)
All �gain Part0 58.9(0.392) 222(2.79) 128(43.1) 428(16.8) 573(36.2) 1826(44.6)
All �gain Toward 59.9(0.386) 223(2.37) 107(37.2) 417(16.1) 478(28.7) 1562(47.7)
Nonzero Away 57.7(0.361) 220(2.52) 112(33.9) 479(15.7) 432(25.6) 1689(33.9)
Nonzero Part0 56.6(0.339) 218(2.49) 105(23.5) 415(15.6) 421(29.3) 1585(32.6)
Nonzero Toward 56.8(0.344) 206(2.52) 104(22.4) 442(13.5) 404(25) 1526(28.7)

ML LIFO FM
All �gain Away 55(0.94) 140(4.09) 142(44.6) 264(25.3) 281(40.5) 829(55)
All �gain Part0 55.4(0.954) 140(4.4) 138(47.6) 263(25.6) 291(38.7) 823(55.1)
All �gain Toward 54.6(0.848) 141(4.42) 133(46.8) 263(25) 291(41.3) 822(54.4)
Nonzero Away 54.6(0.87) 139(4.19) 141(34.8) 267(23.6) 277(40.8) 819(46.8)
Nonzero Part0 54.1(0.837) 138(4.54) 136(32.5) 260(25.5) 281(41.1) 808(46)
Nonzero Toward 55.2(0.831) 136(4.44) 136(34.4) 262(22.6) 286(39.5) 809(42.6)

ML CLIP FM
All �gain Away 55.9(0.89) 141(4.86) 142(43.8) 263(27) 281(41) 822(51)
All �gain Part0 54.7(0.889) 142(4.84) 131(43) 265(24.3) 282(44.3) 829(54.4)
All �gain Toward 55.8(0.891) 140(4.99) 138(38.6) 259(25.6) 279(40.6) 807(54.3)
Nonzero Away 56.1(0.83) 141(4.1) 139(33.4) 266(26.2) 284(40.9) 826(47.9)
Nonzero Part0 53(0.895) 136(4.23) 139(31.3) 257(24.8) 274(41.4) 809(48)
Nonzero Toward 54.5(0.839) 143(4.31) 137(36.1) 261(24.6) 287(42.8) 833(44.9)

Table 2. Average cuts in partitioning with actual areas and 10% balance tolerance, over
100 independent runs. Average CPU time per run in Sun Ultra-1 (140MHz) seconds is given
in parentheses.

Our experimental testbench allows us to test an FM variant in the context
of 
at LIFO (as described in [26]), 
at CLIP (as described in [18]), and
multilevel LIFO and multilevel CLIP (as described in [4]). Our implemen-
tations are in C++ with heavy use of STL3.0; we currently run in the Sun
Solaris 2.6 and Sun CC4.2 environment. We use standard VLSI benchmark
instances available on the Web at [1] and several older benchmarks from

17
These approaches are described for the case of bipartitioning. Other approaches can be devised for
k-way partitioning.



http://www.cbl.ncsu.edu/benchmarks. Node and hyperedge statistics for
the benchmarks are presented in Tables 7, 8 and 9. Our tests are for bi-
partitioning only. We evaluate all partitioning variants using actual vertex
areas and unit vertex areas, incorporating the standard protocols for treat-
ing pad areas described in [2]. We also evaluate all partitioning variants
using a 10% balance constraint (i.e., each partition must have between 45%
and 55% of the total vertex area) as well as a 2% balance constraint. All
experiments were run on Sun Ultra workstations, with runtimes normalized
to Sun Ultra-1 (140MHz) CPU seconds. Each result represents a set of 100
independent runs with random initial starting solutions; Tables 1-4 report
triples of form \average cut (average CPU sec)". From the data, we make
the following observations.

ALGORITHM TESTCASES with unit areas and 2% balance
Updates Bias primary1 primary2 biomed ibm01 ibm02 ibm03

Flat LIFO FM
All �gain Away 102(0.247) 486(1.6) 459(29.3) 1778(16.4) 1810(36.5) 4175(34.1)
All �gain Part0 102(0.27) 465(2.06) 422(37.8) 1673(19.8) 1570(43.3) 4064(35)
All �gain Toward 102(0.264) 374(1.94) 316(36.5) 1030(15.4) 931(30) 3323(39.6)
Nonzero Away 80.5(0.222) 285(1.31) 166(22.8) 543(10.2) 549(18) 2304(29.2)
Nonzero Part0 80(0.236) 289(1.47) 150(26.3) 551(11.8) 549(18.6) 2383(31.1)
Nonzero Toward 78.8(0.219) 291(1.41) 143(24.8) 508(10.9) 551(19.3) 2285(33.1)

Flat CLIP FM
All �gain Away 69.8(0.351) 246(2.22) 149(53.9) 555(21.1) 707(46.2) 1747(45.5)
All �gain Part0 68(0.319) 242(2.3) 138(52) 562(21.3) 636(45.5) 1686(51.7)
All �gain Toward 68.4(0.35) 236(2.14) 121(44) 561(19.3) 619(44) 1664(43.2)
Nonzero Away 66.3(0.284) 231(2.02) 130(29.1) 488(17.5) 534(46.8) 1650(41.9)
Nonzero Part0 66.4(0.305) 226(2.2) 124(33.7) 467(17.1) 507(37.4) 1618(41.2)
Nonzero Toward 64.6(0.304) 223(2.13) 125(31.4) 474(15.8) 559(36.9) 1551(41.9)

ML LIFO FM
All �gain Away 64.2(0.818) 183(4.95) 147(36.8) 280(29.7) 399(70.6) 1043(138)
All �gain Part0 63.8(0.871) 182(5.21) 145(33.5) 282(31.6) 406(66.8) 999(113)
All �gain Toward 63.2(0.836) 180(4.74) 145(33.6) 272(30.8) 421(66.1) 1035(118)
Nonzero Away 62.9(0.807) 182(4.69) 142(28.1) 274(29.7) 396(60.4) 1037(123)
Nonzero Part0 61.8(0.849) 176(5.15) 144(26.8) 270(28.8) 403(60.2) 1048(121)
Nonzero Toward 61.4(0.879) 181(4.91) 143(24.8) 271(29.1) 415(56) 1015(119)

ML CLIP FM
All �gain Away 63.4(0.912) 180(5.27) 146(32.6) 276(30.2) 400(68.7) 1042(138)
All �gain Part0 62.8(0.849) 180(5.18) 145(39.1) 278(29.1) 408(67.8) 1022(129)
All �gain Toward 63.3(0.871) 178(5.36) 141(36.7) 270(29.4) 425(64.4) 1032(101)
Nonzero Away 61.2(0.887) 178(5.12) 142(26.8) 268(28.4) 392(57) 1037(116)
Nonzero Part0 62.8(0.878) 176(5.14) 142(29.3) 275(28.6) 409(55.6) 1026(111)
Nonzero Toward 63(0.924) 179(4.86) 142(28.5) 271(28.2) 409(52.9) 1034(115)

Table 3. Average cuts in partitioning with unit areas and 2% balance tolerance, over 100
independent runs. Average CPU time per run in Sun Ultra-1 (140MHz) seconds is given in
parentheses.

{ The average cutsize for a 
at partitioner can increase by rather stunning
percentages if the worst combination of choices is used instead of the
best combination. Such e�ects far outweigh the typical solution qual-
ity improvements reported for new algorithm ideas in the partitioning
literature.

{ Moreover, we see that one wrong implementation decision can lead to
misleading conclusions with respect to other implementation decisions.



For example, when zero delta gain updates are made (a wrong deci-
sion), the \part0" biasing choice appears signi�cantly worse than the
\toward" choice. However, when zero delta gain updates are skipped,
\part0" is as good as or even slightly better than \toward".18

{ Stronger optimization engines (order of strength: ML CLIP>ML LIFO
> 
at CLIP > 
at LIFO) can tend to decrease the \dynamic range"
for the e�ects of implementation choices. This is actually a danger:
e.g., developing a multilevel FM package may hide the fact that the
underlying 
at engines are badly implemented. At the same time, the
e�ects of a bad implementation choice are still apparent even when
that choice is wrapped within a strong optimization technique (e.g.,
ML CLIP).

ALGORITHM TESTCASES with actual areas and 2% balance
Updates Bias primary1 primary2 biomed ibm01 ibm02 ibm03

Flat LIFO FM
All �gain Away 105(0.283) 481(2.05) 446(27.8) 1885(11.1) 3256(34.8) 4389(25.4)
All �gain Part0 103(0.311) 467(2.4) 428(34.9) 1909(12.3) 2440(33.5) 4166(27.1)
All �gain Toward 96.8(0.285) 380(2.15) 408(30.7) 1023(11.6) 1274(22.7) 3939(22.3)
Nonzero Away 80.5(0.258) 291(1.78) 164(27.3) 639(8.86) 551(14.9) 2838(25.2)
Nonzero Part0 79(0.271) 294(1.74) 157(29.2) 660(7.87) 573(17) 2938(24)
Nonzero Toward 79.7(0.25) 280(1.79) 153(24.7) 607(7.62) 543(15.8) 2843(25.4)

Flat CLIP FM
All �gain Away 66.2(0.361) 244(2.71) 148(57) 842(15.3) 1841(27.5) 3623(23.4)
All �gain Part0 66.3(0.395) 242(2.81) 141(54.6) 772(14.9) 1499(32.4) 3543(29.3)
All �gain Toward 65.9(0.393) 237(2.7) 138(58) 615(13) 945(21.5) 3066(25.6)
Nonzero Away 64.5(0.351) 231(2.66) 130(33.3) 542(12.1) 574(18.5) 2689(22.8)
Nonzero Part0 62(0.371) 242(2.49) 123(35) 556(12.4) 582(17.8) 2732(23.1)
Nonzero Toward 63.9(0.377) 233(2.31) 124(34.9) 528(11.8) 562(15.3) 2504(23.2)

ML LIFO FM
All �gain Away 62.8(0.905) 163(5.27) 145(34.9) 289(27.9) 433(42.9) 958(59.4)
All �gain Part0 62.5(0.954) 166(5.03) 144(38.7) 289(27.2) 429(44.6) 957(56.3)
All �gain Toward 61.1(0.974) 161(5.28) 143(36.3) 289(27.7) 423(47) 971(58.7)
Nonzero Away 60.4(0.914) 158(4.52) 142(29.9) 287(22.7) 432(39.6) 969(52.2)
Nonzero Part0 59.9(0.882) 158(4.36) 142(29.3) 282(25.3) 421(44) 952(50.6)
Nonzero Toward 60.5(0.9) 159(4.5) 142(27.5) 276(25.4) 419(43.2) 959(52.5)

ML CLIP FM
All �gain Away 63.5(0.88) 163(5) 144(35.9) 283(24.5) 428(41.5) 960(59.3)
All �gain Part0 62.5(0.891) 161(4.24) 143(37.1) 289(25.3) 441(46.5) 969(63.6)
All �gain Toward 61.9(0.927) 162(4.83) 141(37.8) 284(24.9) 425(44.2) 953(62.1)
Nonzero Away 60.2(0.939) 160(4.66) 144(31.8) 283(23) 414(48.7) 957(50.4)
Nonzero Part0 61(0.895) 161(4.89) 144(28.1) 285(24.7) 447(41.8) 934(53)
Nonzero Toward 60.9(0.864) 155(4.7) 144(29.6) 282(22.4) 433(42.6) 959(50.6)

Table 4. Average cuts in partitioning with actual areas and 2% balance tolerance, over
100 independent runs. Average CPU time per run in Sun Ultra-1 (140MHz) seconds is given
in parentheses.

Another Illustration Further illustration of the pitfalls of a suboptimal
testbench is, we believe, to be found in the partitioning studies of Marks et
al. [42] reported at ALEX-98. The authors of this work note, very much as
we have, that \Unfortunately, empirical analysis of algorithm performance
is often done poorly, which sometimes leads to erroneous conclusions." The
authors of [42] propose two new heuristics, of which the better is called

18
We have observed other similar reversals, e.g., in our experience multiple unlocking is less valuable
than reported in [15].



PHC/SG+KL. The discussion observes, \In a series of time-equated com-
parisons with large-sample runs of pure Kernighan-Lin, the new algorithm
demonstrates signi�cant superiority in terms of the best bisections found."
Marks et al. run their PHC/SG+KL heuristic, then run the Kernighan-Lin
(KL) heuristic as many times as are needed to equate the CPU usage. This
is performed 25 separate times, with mean and standard deviation of the
best result over the multi-starts being reported. While the authors use a
number of benchmarks from the VLSI CAD domain, in their testbench no
comparisons with previous literature were possible. We have replicated the
experiment of [42] for three VLSI test cases for which the superiority of
PHC/SG+KL over KL is especially large. Our \heuristic" is simply taking
the best of 10 starts of 
at CLIP FM. The data shown in Table 5 indicate
that the KL implementation of [42] may have led to potentially misleading
conclusions.

Graph KL PHC/SG+KL CLIP-FM

Name jV j avg deg Time Runs Mean � Mean � Runs Mean � Time'

primary1 833 15.0 15.1 430.6 281.4 17.3 218.0 1.4 10 226.1 9.49 2.04

primary2 3014 24.7 79.6 490.8 1322.9 81.7 585.4 27.0 10 606.2 13.02 15.72

industry3 15406 23.3 408.7 295.6 6827.2 294.8 990.0 132.2 10 797.0 47.8 115.9
Table 5. Comparison against results of [42]. All vertices are assigned equal (unit) area. All hyperedges
are converted to cliques with unit-weight edges. An exact bisection constraint is enforced. We run 10
starts of our 
at CLIP-FM partitioning engine. This trial is repeated 25 times; we report average best
result over the 10 starts, the standard deviation of this average best result, and the average total CPU
time for the 10 starts. Data for KL and PHC/SG+KL are quoted from [42]. CPU times (Time) from
[42] are for a DEC AlphaStation 500/500. CPU times for our experiments (Time') are for a 300 MHz
Sun Ultra-10. Apparently, our workstation had a considerably slower CPU clock and smaller processor
cache.

4 Conclusions

The results reported in the previous section are for a \detuned" or \gen-
eralized" version of our testbench, where we deliberately re-enabled the
zero delta gain update and gain bucket choice as options. In our current
testbench, these are not options, i.e., our FM-based engines always skip
zero delta gain updates and always choose the \toward" gain bucket in
case of ties. Our current testbench is also able to invoke several speedups
that exploit the nature of the netcut objective and the two-way partition-
ing context. Comparison of the results in 6 against the best netcut values
ever recorded in the literature [2] shows that our testbench is indeed at
the leading edge of solution quality.) We emphasize that our testbench is
general: we 
exibly address new objectives, neighborhood structures, and
constraint types. We therefore incur some runtime overhead due to tem-
plating, object-oriented code structure, conditional tests, etc. At the same
time, our testbench is su�ciently fast that we can accurately assess quality-
runtime tradeo� implications of new algorithm ideas.
In conclusion, we have noted that replicating reported results is a well-
known problem in the VLSI partitioning community [5]. Disregarding the
issues of experimental protocols, statistical signi�cance tests, data reporting
methodology, need to compare with previous results, and so on [6, 8], we



Con�guration primary1 primary2 biomed ibm01 ibm02 ibm03

2% unit area 57.1(0.418) 164.7(1.3 ) 132.8(2.24) 275.0(5.7 ) 372.1(10.6) 1031.4(11.6)

10% unit area 52.1(0.412) 143.6(1.3 ) 117.0(2.16) 247.9(5.82) 268.8(10.3) 820.9(11.8)

2% actual area 61.3(0.389) 193.1(1.41) 137.2(2.07) 284.5(6.63) 421.3(14.6) 1079.8(15.8)

10% actual area 54.1(0.421) 177.8(1.07) 125.0(2.23) 244.4(5.36) 275.7(14.7) 1062.1(16.4)
Table 6. Results of applying our optimized multi-level partitioner on 6 test-cases. Solutions are con-
strained to be within 2% or 10% of bisection. Data expressed as (average cut / average CPU time) over
100 runs, with the latter normalized to CPU seconds on a 140MHz Sun Ultra-1.

still �nd that implementations reported in the literature are almost never
described in su�cient detail for others to reproduce results. In this paper,
we have illustrated the level of detail necessary in reporting; our illustration
also shows how even expert programmers may fail to write a useful testbench
for research \at the leading edge". Our main contributions have been the
description of a software architecture for partitioning research, a review
of the modern context for such research in the VLSI CAD domain, and a
detailed list of hidden implementation decisions that are crucial to obtaining
a useful testbench.
We thank Max Moroz for design, implementation and support of an e�-
cient STL-based hypergraph package used in the paper in lieu of the LEDA
library.

Node degree statistics for testcases
primary1(833) primary2(3014) biomed(6514) ibm01(12752) ibm02(19601) ibm03(23136)
deg: # deg: # deg: # deg: # deg: # deg: #
Avg: 3.49 Avg: 3.72 Avg: 3.230 Avg: 3.965 Avg: 4.143 Avg: 4.044

1: 48 1: 43 1: 97 1: 781 1: 1591 1: 363
2: 145 2: 453 2: 792 2: 3722 2: 4448 2: 7093
3: 205 3: 1266 3: 4492 3: 2016 3: 2318 3: 4984
4: 273 4: 519 4: 440 4: 1430 4: 1714 4: 4357
5: 234 5: 402 5: 35 5: 1664 5: 3406 5: 2778
6: 5 6: 23 6: 658 6: 1761 6: 4435 6: 1252
7: 22 7: 260 7: 542 7: 1055 7: 300
9: 1 8: 4 8: 194 8: 303 8: 689

9: 44 9: 368 9: 319 9: 708
10: 3 29: 2 10: 50
13: 220 32: 1 11: 25
39: 1 51: 4 12: 192

53: 3 13: 47
60: 1 14: 7
69: 1 16: 10

17: 7
18-19: 4

20: 16
21-23: 8

24: 136
25: 101

84-100: 9
Table 7. Hypergraph node degree statistics. The numbers of nodes in degree ranges
are given for each testcase together with the total nodes and average node degree.



Node weights statistics for testcases
weight range # nodes

primary1 primary2 biomed ibm01 ibm02 ibm03
1 81 107 97 12749 19589 23126
2 2 3
3 3
4 89 367
5 723 7
6 142 715 1
7 151 494 2818 1
8 73 398
9 1323 1
10
11 27 278 11
12 35
13
14 3
15 7 550
16
17 1 52
18 860
19
20 262 53 655 1 1 2

Table 8. Hypergraph node weight statistics The interval between the smallest and
largest node weight has been divided into 20 equal ranges for each testcase. For
each such range we report the number of nodes with weight in this range.

Hyperedge statistics for testcases
primary1(902) primary2(3029) biomed(5742) ibm01(14111) ibm02(19568) ibm03(27401)
deg: # deg: # deg: # deg: # deg: # deg: #
Avg: 3.22 Avg: 3.70 Avg: 3.664 Avg: 3.583 Avg: 4.146 Avg: 3.415

2: 494 2: 1835 2: 3998 2: 8341 2: 10692 2: 17619
3: 236 3: 365 3: 870 3: 2082 3: 1934 3: 3084
4: 62 4: 203 4: 427 4: 1044 4: 1951 4: 2155
5: 26 5: 192 5: 184 5: 737 5: 1946 5: 1050
6: 25 6: 120 6: 13 6: 407 6: 376 6: 790
7: 13 7: 52 7: 11 7: 235 7: 332 7: 436
8: 2 8: 14 8: 28 8: 188 8: 256 8: 342
9: 9 9: 83 9: 7 9: 192 9: 424 9: 501
10: 1 10: 14 10: 4 10: 194 10: 431 10: 235
11: 6 11: 35 11: 5 11: 147 11: 498 11: 198
12: 9 12: 5 12: 5 12: 91 12: 46 12: 162
13: 1 13: 3 13: 1 13: 133 13: 52 13: 195
14: 3 14: 10 14: 2 14: 54 14: 52 14: 112
16: 1 15: 3 15: 41 15: 34 15: 85 15: 79
17: 11 16: 1 17: 21 16: 54 16: 94 16: 100
18: 3 17: 72 18: 1 17: 31 17: 143 17: 119

18: 1 20: 2 18: 17 18: 100 18: 81
23: 1 21: 65 19: 12 19: 44 19: 41
26: 1 22: 34 20: 21 20: 15 20: 24
29: 1 23: 6 21: 18 21: 11 21: 12
30: 1 24: 6 22: 31 22: 5 22: 16
31: 1 43: 6 23: 18 24-29: 10 23: 9
33: 14 656: 4 25: 2 30: 4 24: 3
34: 1 861: 1 28: 1 31: 11 25: 6
37: 1 30: 2 32: 4 26: 3

31: 2 33: 2 27: 2
32: 5 34: 1 28: 2
33: 6 35: 5 29: 6
34: 1 36: 3 30: 1
35: 7 37: 2 31: 2
38: 1 38: 2 31: 3
39: 2 39: 1 32: 3
42: 1 40-97: 51 33: 5

107: 1 34: 3
134: 1 37-55: 5

Table 9. Hyperedge statistics. The numbers of hyperedges in ranges are given for
each testcase together with total hyperedges and average hyperedge degree.
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