
Optimal End-Case Partitioners and Placers for Standard-Cell Layout

A. E. Caldwell, A. B. Kahng and I. L. Markov

UCLA Computer Science Dept., Los Angeles, CA 90095-1596 USA

Abstract

We develop new optimal partitioning and placement codes for end-case processing in top-down
standard-cell placement. Such codes are based on either enumeration or branch-and-bound, and
are invoked for instances below prescribed size thresholds (e.g., < 30 cells for partitioning, or < 10
cells for placement). Our optimal partitioners handle tight balance constraints and uneven cell sizes
transparently, while achieving substantial speedups over single FM starts. Optimal cutsizes for small
instances (between 10 and 35 movable nodes) are typically found to be at least 40% smaller than what
FM will achieve in several starts. Our optimal placers use branch-and-bound to achieve substantial
speedups over even Gray code based enumeration. In the context of a top-down global placer, the
right combination of optimal partitioners and placers can achieve up to an average of 10% wirelength
reduction and 50% CPU time savings for a set of industry testcases. The paper concludes with
directions for future research.

1 Introduction

In the placement phase of physical design for standard-cell VLSI circuits, the essential components

of a given placement problem are the placement region, possibly with discrete allowed locations, the

modules that are to be placed subject to various constraints, and the netlist topology that shapes the

objective function being minimized. Commercial standard-cell placers typically apply a top-down,

divide-and-conquer approach to de�ne an initial global placement. The top-down approach seeks to

decompose the given placement problem into smaller problems by subdividing the placement region,

assigning modules to subregions, reformulating constraints, and cutting the netlist { such that good

solutions to subproblems combine into good solutions of the original problem.

In practice, the problem decomposition is accomplished by hypergraph partitioning. Each hyper-

graph bipartitioning instance is induced from a rectangular region, or block, in the layout:1 nodes

correspond to cells inside the block as well as propagated external terminals [6], and hyperedges are

induced over the node set from the original netlist. The actual hypergraph partitioning is performed

using FM-type iterative partitioning heuristics with minimum net cut objective [12, 9]; the multilevel

paradigm can be applied for larger instances [3, 11]. After a global placement solution has been found

(a minimum requirement being that all cells are placed at legal sites in cell rows, with no overlaps),

1A block conceptually corresponds to (i) a placement region with allowed locations, (ii) a collection of modules to be
placed in this region, (iii) all nets incident to the modules, and (iv) locations of all modules beyond the given region that
are adjacent to the modules to be placed in the region (such external modules are considered to be terminals for the block,
and their locations are �xed).

1

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 2

Variables: A queue of blocks
Initialization: A single block represents the original placement problem
Algorithm: while (queue not empty)

dequeue a block
if (small enough) consider endcase
else

bipartition into smaller blocks
enqueue each block

Figure 1: High-level outline of the top-down partitioning-based placement process.

detailed placement re�nement can occur.2 A high-level pseudocode for top-down bipartitioning-based

global placement is shown in Figure 1.

Several unique characteristics of the bipartitioning instances are due to the placement process. In

particular, tight balance constraints are imposed, i.e., the sizes of partitions in the solution are not

allowed to deviate from target partition sizes (see [4] for a review of netlist partitioning formulations

and constraints). Such constraints arise because the proportion of free sites (\whitespace") in n-

layer metal deep-submicron designs is typically less than a few percent; hence, total total module

area assigned to a block must closely match the available layout area in the block. When blocks are

partitioned by horizontal cutlines, the discrete row structure of the layout also forces tight balance

tolerances. Although the location of vertical cutlines may enjoy slightly more
exibility, the di�culty

of managing terminal propagation, block de�nition, region-based wirelength estimation, etc. again

precludes the use of large balance tolerances. Essentially, relaxed balance tolerances can lead to

uneven area utilization and overlapping placements.

As shown in Figure 1, when the partitioning instance is su�ciently small or has su�ciently large

block aspect ratio (e.g., when the block has only one cell row), end-case processing is applied in

the form of an alternate partitioner or a placer. For example, an instance of four cells will not

be recursively bipartitioned. Rather, the four cells will be placed optimally, e.g., by exhaustive

enumeration of all 24 = 4! placements to �nd the best one. Of course, due to the combinatorial nature

of the problem, it is not feasible to apply optimal algorithms to even moderately large partitioning

and placement instances. Factors such as initialization overhead (e.g., building gain bucket structures

in the FM algorithm), solution quality, and runtime together determine the problem size at which

it is best to switch over from the default (FM-based) hypergraph bipartitioner to a given end-case

2The authors of [2] note that the \quadratic placement methodology" also �ts this model, in that quadratic placers still
employ hypergraph partitioning, but with initial partitioning solutions obtained from analytic placements (cf. PROUD [20]
or GORDIAN [13]).

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 3

algorithm.

1.1 Motivations for Optimal End-Case Processing

With each new deep-submicron process generation, there is a wider range of cell sizes in cell libraries.

For example, an 80x range of bu�er strengths is not uncommon today, and the number of complex

gates in the library also increases. This is due to the wider range of interconnect layer RC parameters,

and to new methodologies for achieving performance convergence via sizing-based optimizations [14,

15]. In the context of tight partitioning area balance constraints, the increased variation in cell sizes

leads to more di�cult instances for FM-based partitioners. Such partitioners are less likely to give

high-quality results because (i) the FM algorithm may never reach the feasible part of the solution

space (especially if it has trouble �nding an initial balance-feasible solution), and (ii) even a relative

scarcity of feasible moves (from any given feasible solution) can make the algorithm more susceptible

to being trapped in a bad local minimum (cf. the analysis of Dutt and Theny [8]).

Even if the partitioning instance does not have a \tight" balance constraint, it is not clear whether

traditional FM-based algorithms will yield good solution quality. As discussed in the Rent's rule based

wirelength estimation literature (e.g., [18] [5]), any suboptimality in cutsize for a given bipartitioning

instance will tend to increase both the number of terminals in later bipartitioning instances and the

total wirelength of the placement. Pathological examples for the FM algorithm are easy to construct,3

and the pitfalls of the recursive bisection approach are well-known [17]. Yet, to our knowledge there is

no work in the literature that quanti�es the suboptimality of the FM algorithm in practice, except for

large \self-scaled" instances [10].4 At the same time, many small bipartitioning instances are created

during the course of top-down placement, and their solutions contribute signi�cantly to the overall

wirelength of the global placement solution. Moreover, current implementations of global placement,

to our knowledge, still employ FM-based heuristics even for relatively small instances. It is natural

to ask whether there can be any bene�t from improved bipartitioning methods, if only for smaller

instances.

3A 12-node, 14-edge example has nodes Ai; Bi; Ci; Di for i = 1; 2; 3, and edges forming cliques over the A's, the B's,
the C's and the D's, along with an A1-C1 edge and a B1-D1 edge. The cliques over the B's and D's have weight 2 per
edge; all other edges have weight 1. All nodes have weight 1, and the balance constraint is for exact bisection. Suppose
the initial solution has all A's and B's in Partition 0, and all C's and D's in Partition 1 (i.e., cutsize = 2). Then, the �rst
FM pass will move A1; C2; A2; C3; A3; C1; B1; D2; B2; D3; B3; D1 in that order, and FM will then terminate. However, the
optimal cutsize is 0.

4We have found one public-domain code that provides an optimal partitioner, namely, the graph partitioning package
PARTY [16]. This code deals only with graphs, and thus cannot be used for VLSI instances. We have examined the source
code in detail, and have determined that it strongly exploits the fact that the input is a graph (i.e., \all nets have exactly
two pins"). Adapting PARTY code to the VLSI context is therefore not feasible.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 4

Given these motivations, our present work studies the potential bene�ts of \improved" bipar-

titioning methods, speci�cally focusing on optimal partitioners that are based on enumeration or

branch-and-bound. We also study linear placement for end-case processing, again focusing on opti-

mal methods. The goals of this research are to (i) to assess the cutsize suboptimality of traditional

FM-based approaches for small partitioning instances arising in top-down placement, (ii) assess the

runtime penalty that can also be incurred with traditional FM-based approaches, and (iii) determine

the overall e�ect of new \end-case placers and partitioners" in a generic top-down placer implemen-

tation.

1.2 Contributions and Organization of Paper

In this paper, we develop new, optimal \end-case partitioners" and \end-case placers" for end-case pro-

cessing in top-down layout. We explore the tradeo�s between (i) exhaustive enumeration approaches

(based on either Gray code or lexicographic orderings) and (ii) branch-and-bound approaches; we

also give insights to guide e�cient implementations. Section 2 and the Appendix describe the im-

plementation of optimal partitioning algorithms. We compare our implementations against LIFO-

and CLIP-FM [7] for suites of small partitioning instances that arise during the top-down placement

of industry standard-cell designs. The experimental data shows that our end-case partitioners enjoy

runtime advantages over both LIFO- and CLIP-FM for surprisingly large instance sizes, while also

yielding signi�cantly improved solution qualities. Section 3 and the Appendix describe the implemen-

tation of optimal linear placement algorithms. Section 4 evaluates the impact of optimal partitioning

and placement on a top-down global placer. We provide details of the top-down placer, followed by

experimental data showing that using the right combination of optimal partitioners and placers can

achieve up to an average of 10% wirelength reduction while producing up to a 50% CPU time savings

for a set of industry testcases, when compared against using traditional FM-based partitioners.

2 End-Case Partitioning

We have explored two optimal algorithms for small instances of hypergraph partitioning: Gray code

based enumeration, and branch-and-bound.

� A Gray code ordering traverses all partitioning solutions using single-node partition-to-partition

moves; this is attractive for exhaustive enumeration because updating cutsize between successive

solutions does not require much runtime. (Updating the cutsize of a new solution requires

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 5

updating only the cut of each net incident to the moved node.)

� Branch-and-bound performs depth-�rst traversal of a tree of partial partitioning solutions, i.e.,

assignments of some nodes to partitions. A root-leaf path in this tree will construct a partitioning

solution, one node assignment at a time. With each node assignment, a lower bound on the

cutsize can be updated, and will converge to the actual cutsize of a complete solution when the

leaf vertex is reached. If a solution with cutsize c0 has already been found, the algorithm will

not consider any extensions of a partial solution whose lower bound on cost is � c0. This is

because such extensions cannot lead to a better solution, and the subtree of such extensions

is bounded from consideration. We observe that without bounding, branch-and-bound would

simply perform lexicographic enumeration of solutions, which is likely to be less e�cient than

Gray code based enumeration. In the lexicographic ordering of complete partitioning solutions

of N nodes, �(N) partition reassignments are required on average between successive solutions.

Thus, e�ective bounding is necessary for branch-and-bound to be faster than Gray code based

enumeration.

2.1 Gray Codes

Gray code enumeration starts with the partitioning solution that assigns all nodes to partition zero,

and reassigns one node at a time with each reassignment producing a solution never seen before. The

sequence of solutions can be interpreted as a space-�lling curve in the space of partitioning solutions

(e.g., the space of 2-way partitionings of N nodes is the set of corners of N -cube).

We represent a Gray code for bipartitioning N nodes as a Gray sequence of 2N � 1 numbers taken

from the set f0; : : : ; N � 1g. These numbers are interpreted as instructions to reassign the respective

nodes to the \other" partition. For example, the Gray sequence for bipartitionings of 1 item is just

f 0 g, the sequence for bipartitionings of 2 items is f 0 1 0 g, and the sequence for 3 items is f

0 1 0 2 0 1 0g. A Gray sequence for k-way partitioning will have a sequence of kN � 1 numbers,

each interpreted as reassignment of the given node to the next higher partition index (modulo k).

The corresponding recursive construction is implemented by the following optimized C++ code, in

which numPart denotes the number of partitions, and size is the number of nodes in the partitioning

instance.

byte* begin=_tables[size]; // e.g., typedef byte char;

byte* ptr = begin;

for(unsigned p=numPart-1; p!=0; p--) *ptr++=0; // initialize recursion

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 6

for(unsigned i=1; i!=size; i++)

{

unsigned bytesToCopy=ptr-begin;

for(p=numPart-1; p!=0; p--)

{

*ptr++=i;

memcpy(ptr,begin,bytesToCopy);

ptr+=bytesToCopy;

}

}

Our Gray code based enumerative partitioner incrementally computes partition balances and cuts

for each solution it sees. If a solution is better than the best seen so far (e.g., satis�es balance

constraints and has smaller cut), it is recorded as best. A small speedup can result from having a

lower bound for solution cost (e.g., 0 is always a valid bound for the net cut objective), since the

partitioner can return once a solution with that cost is found. Also, straightforward extensions are

available in the case when a legal solution is not guaranteed, e.g., the best balanced solution can

be found with cut-based tiebreaking, or a quick check for legal solutions can be performed before a

full-
edged pass through the Gray sequence with incremental cut computation.

2.2 Branch-and-Bound

The key observation underlying branch-and-bound is that a lower bound for net cut, \cut so far", is

available given assignments of only some nodes. Namely, a hyperedge is considered \already cut" if

it has two nodes assigned to di�erent partitions, and \uncut so far" otherwise. A similar observation

applies to partition balances. All nodes are ordered from the start, with �xed nodes (i.e., terminals)

followed by movable (i.e., assignable) nodes. A given node i > 0 can be assigned to a partition only

after node i� 1 has been assigned. Our implementation sorts the movable nodes in ascending order

of degree, in order to promote more e�cient bounding.

Figures 3 and 4 in the Appendix give fairly detailed pseudocode for branch-and-bound partitioning,

accompanied by some implementation notes. The algorithm operates on a \main stack" that (i)

stores partition assignments for all nodes assigned so far, and (ii) allows nodes to be \unassigned"

in the reverse order of how they were assigned. Because of this structure, no hyperedges have to

be traversed: rather, when a node is assigned to a partition without violating balance constraints,

all incident \uncut so far" hyperedges are updated. If for a given hyperedge this node is the �rst

assigned node, the hyperedge is marked with the index of the partition to which the node is assigned.

Otherwise, the new assignment is compared to previous assignments of nodes on the hyperedge, to

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 7

check if the net becomes cut (if the net becomes newly cut, the total cut so far is incremented).

Branching is done by pushing a new partition assignment onto the main stack. Bounding is done by

popping partition assignments from main stack and is triggered by either partition balances violating

prescribed limits or by \cut so far" reaching the cutsize of a previously seen solution. Straightforward

extensions are available if the existence of legal balanced solutions is not guaranteed; these are similar

to those given for Gray code based enumerative partitioners.

2.3 Comparison of Optimal Partitioning Algorithms

We now assess the speed and solution quality improvements that can be obtained using Gray code

enumeration or branch-and-bound partitioners.

Provenance of Small Instances

Our testbed consists of small hypergraph bipartitioning problems saved from our top-down standard-

cell placer, which is described in Section 4 below. We have saved all instances with between 10 and

35 (movable) non-terminal nodes that arise during the top-down placement of Test Case 1 and Test

Case 3, out of the �ve industrial test cases described in Table 4 below. These small instances have

fairly uniform statistical properties across designs that we have seen; typical statistics (for the Test

Case 3 small instances) are given in Table 1. We give the number of instances of each size, and the

average number of hyperedges, average hyperedge degree, and average node degree for each instance

size. We also give the same statistics when only essential nets are counted: a net that is guaranteed

to be cut in any solution due to �xed terminals is inessential, and does not contribute to the runtime

of our optimal partitioners.

Runtime Comparisons vs. FM and CLIP

It turns out that Gray code enumeration is competitive with branch-and-bound only for very small

instances. We may compare the two optimal approaches using runtime ratio, i.e., the ratio of CPU

seconds spent on the same problem instances. Instances for which either of the CPU readings is less

than 0.0001 second5 are considered unreliable and are dropped from the test suite. We then compute

the geometric mean of the runtime ratios for the remaining \good" instances. Our two implementa-

tions perform comparably on instances with 9 modules, with Gray code enumeration being 1.9 times

slower on instances with 10 modules. The runtime ratio (Gray code runtime divided by branch-

5All of our CPU times are reported for a 300MHz Sun Ultra-10 with 128MB RAM.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 8

No. of No. of All Edges Essential Edges
NonTerms Problems Num Edges Edge Deg Node Deg Num Edges Edge Deg Node Deg

10 160 16.87 2.189 3.693 15.11 2.196 3.317
11 145 18.1 2.196 3.612 16.33 2.204 3.272
12 94 19.63 2.215 3.622 17.73 2.223 3.285
13 85 20.52 2.256 3.56 18.66 2.269 3.257
14 58 23.28 2.241 3.727 21.12 2.248 3.392
15 78 25.94 2.244 3.88 23.54 2.252 3.533
16 65 27.72 2.251 3.901 25.06 2.261 3.541
17 68 29.19 2.276 3.908 26.16 2.294 3.53
18 40 32.02 2.291 4.076 28.7 2.3 3.667
19 47 33.02 2.288 3.976 29.36 2.304 3.561
20 42 34.76 2.299 3.995 30.62 2.315 3.544
21 44 36.91 2.302 4.045 32.59 2.321 3.602
22 27 39.81 2.264 4.098 35.56 2.27 3.668
23 37 40.43 2.338 4.109 36.54 2.335 3.71
24 30 40.83 2.286 3.889 35.97 2.304 3.453
25 32 42.56 2.33 3.966 37.84 2.35 3.558
26 38 44.08 2.349 3.983 40 2.349 3.613
27 34 44.94 2.366 3.938 40.12 2.389 3.549
28 31 47.13 2.337 3.933 41.71 2.357 3.51
29 21 49.1 2.346 3.972 44.57 2.359 3.626
30 25 50 2.41 4.016 44.8 2.417 3.609
31 12 48.75 2.356 3.704 43.33 2.377 3.323
32 13 51.69 2.369 3.827 46.69 2.39 3.488
33 9 49.78 2.342 3.532 44 2.341 3.121
34 13 53.62 2.31 3.643 47.77 2.337 3.283
35 9 54 2.465 3.803 49.11 2.475 3.473

Table 1: Statistics of end-case problem instances for Test Case 3. We also

show the same statistics for essential edges only (i.e., omitting edges that

are guaranteed to be cut in any partitioning.

and-bound runtime) increases by a factor of between 1.5 and 1.9 for each additional module. Thus,

we have compared only our branch-and-bound code against the LIFO FM and CLIP [7] algorithms.

(While the Gray code enumeration is faster for instances of 8 modules or less, but such instances are

better handled by the end-case placers described in Section 3.)

To compare the FM heuristic to branch-and-bound, we must account for randomization and the

fact that FM does not always achieve optimal solutions. For each instance in our test suite, our

experiments record the average cutsize achieved by one start of FM, as well as the average best cutsize

achieved over 2, 3 and 100 starts. Then, after running branch-and-bound on the same instance, we can

calculate two �gures of merit: the runtime ratio (FM runtime divided by branch-and-bound runtime),

and the quality ratio (average FM cutsize divided by branch-and-bound (i.e., optimal) cutsize). We

also compute the analogous �gures of merit when 2, 3 or 100 starts of FM are used. All ratios are

averaged geometrically over all \good" instances of each size, where \good" excludes instances with

optimal cutsize equal to zero, as well as instances that are solved by branch-and-bound in less than

0.0001 second. Finally, we repeat the entire experiment using the CLIP algorithm of Dutt and Deng

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 9

[7], which is in general a stronger
at partitioner. We note that our FM implementation is faster, and

obtains as good or better solution quality on average, than the public-domain implementation of W.

Deng that is available from C. J. Alpert's web page [1]. Our CLIP implementation exhibits similar

quality relative to reported implementations.

Experimental results are shown in Tables 2 and 3 for Test Cases 1 and 3. We see that FM is

clearly slower than branch-and-bound on all instances of 23 modules or less. This is explained by the

relatively high overhead (notably the complicated gain update mechanism) of any FM implementation:

during each FM pass a hyperedge of degree p can be traversed p2 times, while branch-and-bound never

traverses hyperedges.

We also see that the solution quality achieved by several starts of FM is considerably worse than

the optimal cost. In fact, for many instances FM did not �nd the optimal cost in 100 starts. The

CLIP algorithm in general fared no better. As noted in Section 1, we may distinguish two potential

problems for FM on small balanced hypergraph partitioning instances: (i) poor reachability in the

solution space due to the balance constraint, and (ii) weakness of the FM neighborhood operator. The

former means that not all feasible solutions can be reached from a given solution by legal single-module

partition-to-partition moves, while the second problem is more fundamental and can be rephrased as

\FM simply makes wrong moves".

To ensure that our test instances are not overconstrained, and thus decrease the likelihood of

(i), we set the partitioning tolerance to the maximum of the average module area and either 2% or

10% of the total module area, for vertical and horizontal cutlines respectively. The harsher tolerance

for horizontal cutlines is dictated by area utilization considerations for neighboring rows; as noted

in Section 1, such a constraint is not easily relaxed without incurring module overlaps and uneven

resource utilization. However, our top-down algorithm for splitting blocks encourages more horizontal

cutlines at earlier stages (see Section 4.1), so that the smaller partitioning instances in our test suite

tend to have vertical cutlines and lax partitioning tolerances.

3 End-Case Placement

In the top-down partitioning based placement approach, the original placement problem (considered

as a \block") is partitioned into two subproblems (sub-blocks) and then recursively, into smaller and

smaller subproblems (see Figure 1). Eventually, blocks containing very few nodes are created for

which wirelength can be directly optimized, e.g., by exhaustive search.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 10

TEST CASE 1 / LIFO FM

Nodes Instances Sub 1 start 2 starts 3 start 100 starts
(good) opt time cut time cut time cut time cut

10 24(20) 7 23.235 2.035 46.470 1.796 69.704 1.670 2323.480 1.175
11 37(30) 6 16.631 2.018 33.262 1.730 49.893 1.591 1663.110 1.064
12 31(26) 1 17.246 2.291 34.491 1.961 51.737 1.799 1724.570 1.020
13 22(19) 2 22.650 2.199 45.300 1.867 67.950 1.711 2265.000 1.029
14 22(21) 7 14.292 2.037 28.585 1.766 42.877 1.639 1429.240 1.069
15 20(20) 4 11.461 2.001 22.921 1.734 34.382 1.617 1146.060 1.056
16 9(9) 4 10.133 1.690 20.267 1.493 30.400 1.404 1013.340 1.095
17 12(11) 4 7.066 1.887 14.132 1.677 21.198 1.579 706.615 1.077
18 6(6) 5 8.281 1.915 16.561 1.722 24.842 1.639 828.053 1.256
19 8(8) 5 9.344 2.315 18.687 2.007 28.031 1.857 934.355 1.173
20 11(11) 9 3.562 2.340 7.124 2.088 10.687 1.959 356.222 1.275
21 12(12) 10 3.361 2.258 6.723 2.027 10.084 1.916 336.142 1.257
22 10(10) 9 3.831 2.099 7.662 1.904 11.493 1.800 383.102 1.242
23 7(7) 7 1.312 2.166 2.624 1.979 3.936 1.884 131.201 1.371
24 8(8) 8 1.187 2.154 2.373 1.968 3.560 1.877 118.650 1.394
25 7(7) 7 1.325 2.342 2.651 2.114 3.976 2.003 132.543 1.403
26 11(11) 11 0.703 2.473 1.405 2.266 2.108 2.158 70.259 1.503
27 8(8) 8 0.662 2.405 1.324 2.183 1.986 2.083 66.189 1.482
28 10(10) 10 0.418 2.522 0.835 2.286 1.253 2.168 41.771 1.403
29 9(9) 9 0.746 2.316 1.492 2.118 2.238 2.019 74.595 1.434
30 2(2) 2 1.026 3.094 2.052 2.803 3.078 2.654 102.588 1.789
31 7(7) 4 0.596 1.958 1.192 1.811 1.788 1.743 59.599 1.474
32 4(4) 2 0.675 2.196 1.351 1.930 2.026 1.800 67.532 1.273
33 1(1) 1 0.213 3.046 0.427 2.801 0.640 2.700 21.333 2.143
34 3(3) 3 0.142 2.453 0.285 2.258 0.427 2.151 14.231 1.641
35 2(2) 2 0.007 2.062 0.014 1.932 0.021 1.854 0.707 1.401

TEST CASE 1 / CLIP FM
10 24(20) 9 24.083 1.938 48.166 1.710 72.248 1.600 2408.280 1.180
11 37(31) 7 22.605 1.992 45.209 1.692 67.814 1.552 2260.460 1.057
12 31(26) 3 18.949 2.134 37.899 1.839 56.848 1.700 1894.930 1.040
13 22(17) 6 18.002 2.248 36.005 1.910 54.007 1.762 1800.230 1.105
14 22(19) 4 15.056 2.085 30.113 1.802 45.169 1.667 1505.650 1.046
15 20(20) 7 14.950 2.018 29.899 1.749 44.849 1.628 1494.950 1.091
16 9(9) 2 10.092 1.709 20.184 1.507 30.276 1.420 1009.200 1.026
17 12(12) 4 6.797 1.851 13.595 1.648 20.392 1.549 679.742 1.072
18 6(5) 4 7.477 1.972 14.953 1.788 22.430 1.702 747.666 1.200
19 8(8) 5 8.437 2.335 16.875 2.014 25.312 1.862 843.726 1.218
20 11(9) 7 3.683 2.385 7.366 2.130 11.049 1.992 368.310 1.227
21 12(12) 11 3.882 2.270 7.764 2.038 11.646 1.922 388.190 1.269
22 10(10) 9 2.717 2.117 5.433 1.920 8.150 1.827 271.652 1.285
23 7(7) 7 1.316 2.158 2.633 1.964 3.949 1.867 131.645 1.354
24 8(8) 7 1.334 2.126 2.668 1.941 4.001 1.851 133.382 1.321
25 7(7) 6 1.387 2.359 2.775 2.114 4.162 1.997 138.750 1.283
26 11(11) 11 0.618 2.461 1.236 2.253 1.853 2.149 61.777 1.497
27 8(8) 7 0.544 2.406 1.089 2.171 1.633 2.062 54.444 1.370
28 10(10) 10 0.389 2.527 0.778 2.305 1.167 2.199 38.914 1.671
29 9(9) 9 0.792 2.320 1.583 2.116 2.375 2.018 79.153 1.394
30 2(2) 2 1.772 3.049 3.543 2.807 5.315 2.695 177.157 1.891
31 7(7) 4 0.624 1.930 1.247 1.788 1.871 1.734 62.363 1.393
32 4(4) 2 0.921 2.206 1.842 1.982 2.763 1.878 92.094 1.185
33 1(1) 1 0.217 3.021 0.433 2.778 0.650 2.672 21.667 2.000
34 3(3) 3 0.120 2.464 0.241 2.280 0.361 2.179 12.029 1.689
35 2(2) 2 0.007 2.074 0.015 1.932 0.022 1.866 0.731 1.477

Table 2: Comparison of LIFO FM and CLIP FM against Branch-and-Bound,

using runtime and solution quality ratios for average of 1 start, average best of

2 starts, average best of 3 starts, and best of 100 starts. Ratios greater than

1.0 indicate FM losses. Transition points for runtime are shown in bold.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 11

TEST CASE 3 / LIFO FM

Nodes Instances Sub 1 start 2 starts 3 start 100 starts
(good) opt time cut time cut time cut time cut

10 160(134) 32 20.731 1.976 41.463 1.700 62.194 1.564 2073.140 1.080
11 145(130) 25 18.847 2.112 37.695 1.803 56.542 1.651 1884.730 1.069
12 94(83) 8 17.028 1.948 34.055 1.671 51.083 1.537 1702.760 1.029
13 85(81) 10 16.108 2.054 32.216 1.757 48.324 1.609 1610.810 1.030
14 58(55) 11 11.149 1.892 22.299 1.623 33.448 1.496 1114.930 1.042
15 78(76) 24 10.138 1.840 20.275 1.603 30.413 1.496 1013.770 1.059
16 65(62) 20 6.796 1.846 13.592 1.634 20.388 1.530 679.601 1.053
17 68(68) 32 5.422 1.933 10.844 1.713 16.266 1.611 542.201 1.118
18 40(40) 25 4.430 1.907 8.860 1.717 13.290 1.628 443.011 1.149
19 47(46) 38 3.577 1.967 7.154 1.775 10.731 1.681 357.716 1.214
20 42(40) 29 2.761 1.913 5.523 1.726 8.284 1.635 276.130 1.178
21 44(44) 39 2.191 2.000 4.382 1.806 6.573 1.711 219.106 1.228
22 27(27) 22 1.429 2.001 2.857 1.810 4.286 1.721 142.859 1.217
23 37(37) 36 1.134 1.969 2.268 1.806 3.402 1.721 113.410 1.275
24 30(30) 27 0.871 2.088 1.743 1.896 2.614 1.805 87.141 1.294
25 32(32) 32 0.826 2.159 1.652 1.993 2.478 1.905 82.607 1.415
26 38(38) 38 0.512 2.368 1.023 2.171 1.535 2.072 51.163 1.512
27 34(34) 31 0.495 2.198 0.990 2.010 1.484 1.913 49.476 1.354
28 31(31) 31 0.357 2.227 0.713 2.054 1.070 1.963 35.673 1.468
29 21(21) 19 0.261 2.201 0.523 2.031 0.784 1.939 26.134 1.434
30 25(25) 24 0.151 1.973 0.302 1.834 0.453 1.765 15.110 1.390
31 12(12) 10 0.251 2.000 0.502 1.868 0.753 1.805 25.102 1.465
32 13(13) 9 0.261 1.698 0.522 1.595 0.783 1.550 26.085 1.287
33 9(9) 7 0.106 1.903 0.211 1.782 0.317 1.720 10.560 1.397
34 13(13) 13 0.078 2.773 0.155 2.562 0.233 2.447 7.759 1.816
35 9(9) 9 0.052 2.326 0.104 2.183 0.157 2.111 5.218 1.678

TEST CASE 3 / CLIP FM

10 160(124) 27 24.238 1.971 48.477 1.688 72.715 1.552 2423.840 1.070
11 145(120) 20 21.667 2.129 43.334 1.819 65.000 1.666 2166.680 1.056
12 94(86) 9 17.968 1.985 35.937 1.698 53.905 1.563 1796.830 1.035
13 85(77) 7 15.763 2.005 31.526 1.712 47.290 1.572 1576.320 1.023
14 58(55) 9 10.479 1.867 20.959 1.601 31.438 1.473 1047.940 1.036
15 78(77) 24 10.686 1.867 21.372 1.625 32.059 1.508 1068.620 1.068
16 65(65) 26 7.488 1.890 14.975 1.670 22.463 1.564 748.765 1.099
17 68(68) 35 5.959 1.945 11.918 1.728 17.877 1.623 595.893 1.133
18 40(40) 26 3.926 1.908 7.851 1.720 11.777 1.623 392.572 1.157
19 47(47) 36 3.481 1.965 6.962 1.774 10.443 1.678 348.104 1.198
20 42(42) 29 3.150 1.922 6.301 1.736 9.451 1.645 315.043 1.177
21 44(43) 35 2.276 1.989 4.552 1.806 6.827 1.714 227.579 1.213
22 27(27) 21 1.422 1.999 2.843 1.817 4.265 1.720 142.166 1.245
23 37(37) 34 1.186 1.979 2.372 1.813 3.558 1.733 118.593 1.296
24 30(30) 29 0.923 2.100 1.846 1.912 2.769 1.818 92.294 1.300
25 32(32) 32 0.779 2.151 1.559 1.974 2.338 1.885 77.927 1.398
26 38(38) 37 0.519 2.380 1.037 2.185 1.556 2.086 51.867 1.541
27 34(34) 33 0.585 2.199 1.169 2.008 1.754 1.912 58.457 1.374
28 31(31) 31 0.361 2.219 0.723 2.038 1.084 1.947 36.133 1.421
29 21(21) 20 0.242 2.183 0.485 2.011 0.727 1.925 24.241 1.439
30 25(25) 24 0.155 1.988 0.311 1.849 0.466 1.781 15.534 1.369
31 12(12) 10 0.248 2.002 0.496 1.865 0.744 1.799 24.807 1.393
32 13(13) 9 0.289 1.691 0.578 1.593 0.867 1.554 28.888 1.305
33 9(9) 7 0.104 1.913 0.209 1.791 0.313 1.731 10.435 1.374
34 13(13) 13 0.080 2.747 0.161 2.540 0.241 2.427 8.049 1.816
35 9(9) 9 0.052 2.327 0.105 2.178 0.157 2.103 5.230 1.613

Table 3: Comparison of LIFO FM and CLIP FM against Branch-and-Bound, using

runtime and solution quality ratios for average of 1 start, average best of 2 starts,

average best of 3 starts, and best of 100 starts. Ratios greater than 1.0 indicate

FM losses. Transition points for runtime are shown in bold.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 12

In this section, we describe end-case placers that operate on such small problems and produce

solutions with minimum half-perimeter wirelength. Our implementation assumes only single-row

end-case instances, given by:6

� A hypergraph with all nodes (cells) having widths. The single-row instance implies that all cell

heights are assumed to be equal to the row height.

� Every hyperedge has a bounding box of locations of (�xed) terminal pins that the corresponding

net has in the original netlist.

� Each hyperedge-to-node connection has a pin o�set relative to the origin of the respective cell.

� A placement region, i.e., a subrow of a certain length.7

An additional requirement, critical for implementations, is that every hyperedge (net) can connect

to a node (cell) with at most one pin.

Given this formulation { in particular, the uniform distribution of whitespace { placement solutions

become permutations of hypergraph nodes. The end-case placement problem thus naturally lends

itself to (i) enumeration via Gray codes, and (ii) branch-and-bound based on lexicographical ordering.

3.1 Gray Code Based Small Placers

With the help of Gray codes, permutations can be enumerated so that each permutation di�ers from

the previous permutation by one transposition of neighboring items [19]. The use of Gray codes is

enabled by the fact that swapping two neighboring cells of di�erent widths does not change their sum

of widths and the white space between them, and hence does not a�ect the locations of other cells in

the instance.

To �nd optimal solutions, one needs to traverse all permutations of hypergraph nodes incremen-

tally, updating the total wirelength with every transposition and save the permutation with best-so-far

wirelength. The incremental wirelength update is the most critical part of the implementation, and

requires a complete traversal of all hyperedges incident to one or both nodes being swapped.8

6This assumption is warranted by the top-down placer implementation described in Section 4.1, which preferentially
splits multi-row blocks between rows as the blocks become small.

7It may happen that the subrow is too short to accommodate all cells without overlaps. While this is undesirable,
an end-case placer handles this by minimizing both wirelength and overlaps. If there is white space, our implementation
distributes it evenly.

8The necessary incidence information can be produced by a �(N2) precomputation and stored in �(N2) space; this is
reasonable given that an exponential number of solutions are to be enumerated.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 13

3.2 Branch-and-Bound Based Small Placers

In our branch-and-bound placer, nodes are added to the placement one at a time, and the bounding

boxes of incident edges are extended to include the new pin locations. The branch-and-bound ap-

proach relies on computing from a given partial placement a lower bound on the wirelength of any

completion of the placement. If this lower bound is greater than or equal to the best complete solution

cost yet found, no extensions of the current partial solution need be considered and the subtree can

be bounded away.

One di�culty in applying branch and bound to end-case placement is varying cell widths. Since

whitespace is distributed equally between the cells, cells are packed with a �xed-size space between

neighboring cells. Replacing the middle cell in a sequence of three with one of di�erent size will force

the location of at least one other cell to change; this in turn requires recomputing the bounding boxes

of nets attached to the shifted cell(s). To avoid such expense, we use a lexicographic ordering of the

permutations. Conceptually, the nodes are packed from left to right. Nodes are always added to or

removed from the right end of the (partially-speci�ed) permutation. The lexicographic order of the

permutations means that for a given pre�x, all placements beginning with that pre�x will be visited

before the pre�x is changed, and none of the cells in the pre�x will be shifted. This naturally leads to a

stack-driven implementation, where the states of incident nets are \pushed" onto stacks when a node is

appended on the right side of the ordering, and \popped' when the node is removed. Bounding entails

\popping" a node at the end of a partial solution before all lexicographically greater partial solutions

have been visited. Figure 4.2 in the Appendix provides pseudocode for our branch-and-bound placer.

4 Optimal End-Case Processing in Global Placement

4.1 Top-Down Placement Testbench

Recall from Figure 1 that, given the concept of placement blocks, top-down placement reduces to

only two nontrivial operations: (i) splitting a block, and (ii) solving an endcase. While this paper

deals with the latter, speci�c implementations of the former may have signi�cant e�ects on features

of endcase instances. Thus, we �rst describe our method of splitting blocks.

Conceptually, a placement block is responsible for the nets (hyperedges) incident to its modules.

However, e�cient implementations do not have to fully transcribe them from a block to its sub-blocks,

because incident nets can be deduced from the original netlist. Each external module of a block (i.e.,

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 14

Test Case Core Cells Pads Nets
1 2741 545 3286
2 8829 182 10715
3 11471 662 11673
4 12146 711 10880
5 20392 185 21987

Table 4: Core cell, pad and net counts for test cases used.

a module adjacent to some module in the block, but not itself in the block) is a terminal and is located

at the center of the placement region of the block to which it is assigned.

Given such an arrangement, splitting a block reduces to balanced hypergraph partitioning with

�xed terminals, as detailed in Figure 4.1. In particular, the possibly numerous terminals of a block

will be collapsed into at most two terminals in the corresponding hypergraph bipartitioning instance.

Moreover, nets incident to �xed terminals in both partitions become inessential (because they will be

cut in any partitioning solution) and are therefore removed from consideration.

Our implementation chooses a horizontal cutline to split a block with M modules if the block

contains M=15 or more rows. Since the blocks are split into sub-blocks as evenly as possible, blocks

of size less than 15 cells will typically contain only one row, simplifying endcase analysis.

To assess the impact of end-case partitioners and placers on top-down global placement, we have

run the top-down placer described above on 5 industry test cases whose attributes are given in Table

4. For each test case:

� We vary the instance size threshold below which branch-and-bound partitioning is invoked from

0 (i.e., always use FM for partitioning) to 40 (use FM for instances of size greater than 40,

and branch-and-bound for instances of size 40 or less). All applications of FM consist of four

independent starts; our experience indicates that any smaller number of starts will result in

substantial degradation of solution quality, making comparisons uninteresting.

� We vary the size threshold below which the end-case placer is called (i.e., instead of further

bipartitioning of the block) from 3 to 8. We report results only for the branch-and-bound

end-case placer, since our experiments show that the expense of generating Gray codes for

permutations is not justi�ed by the performance of the enumerative placer. In particular, even

lexicographic enumeration (i.e. branching without bounding) is typically cheaper than Gray

code based enumeration because no hyperedge traversals are required.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 15

Reduction of block splitting to balanced hypergraph partitioning

Input: Original hypergraph with all modules placed at the centers of the placement
regions of their blocks;
A collection of modules in the block to be split;
Placement region description for the block to be split (includes legal module
locations)

Output: Instance of balanced hypergraph bipartitioning with two partitions and at
most two �xed terminals

I. Split the placement region into two subregions (with indices 0 and 1) by vertical
or horizontal cutline. (This choice is based on the aspect ratio of the placement
region, routing considerations, etc. The subregions will correspond to partitions
of the output instance.)

II. Build hypergraph with �xed terminals

1. Create a hypergraph with two terminals vertices 0 and 1, �xed in respective
partitions, and a vertex for each movable module in the block

2. for each hyperedge of the original (netlist) hypergraph incident to at least
one of the modules in the block:

(a) clear temporary stack for modules
termPartition=< none >

(b) for each module on the hyperedge

� if (module in the block) /* non-terminal */
push the module onto a temporary stack
continue loop (b)

� otherwise /* terminal */

closestPartition =

(
index of the subregion closest
to the terminal location or <
both > for equidistant subregions

� if (closestPartition==< both >) continue the loop in (b)

� otherwise

{ if (termPartition=0)
termPartition =closestPartition
continue loop (b) /* skip terminal */

{ else if (termPartition6=closestPartition)
/* inessential hyperedge, ignored */
clear stack
break loop (b)

(c) if (size(stack) > 1) add hyperedge connecting the modules on the stack
and, if terminalPartition6= 0, the respective terminal

III. Allocate block area to partition capacities in proportion to legal module locations
contained in each subregion.

Assign partitioning balance tolerance on the basis of vertical/horizontal cut
direction, block size and module sizes.

Figure 2: Pseudocode for splitting a block during top-down placement.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 16

The results in Table 5 show that the best choice of thresholds yield total wirelength reductions of

up to 10%, while simultaneously reducing runtime by as much as 50Overall, we believe that invoking

end-case optimal bipartitioners for instance sizes of around 30-35 or less, and end-case optimal placers

for instance sizes of around 7 or less, leads to good results.

4.2 Conclusions

We have shown the e�ectiveness of optimal partitioning and placement codes for end-case processing in

top-down standard-cell placement. Our most e�ective implementations use branch-and-bound, with

speedups due to stack-based implementation and other exploitation of the nature of the application

(e.g., net cut objective, bipartitioning context, etc.). Experimental data show a surprising level of

cutsize suboptimality for traditional FM partitioners, as well as a surprisingly large threshold below

which branch-and-bound is faster that a single FM start. Our ongoing research explores a number

of extensions of the present work, including more e�cient implementations, use of multi-way optimal

partitioners, and alternative partitioning and placement objectives.

References

[1] C. J. Alpert, \Partitioning Benchmarks for VLSI CAD Community", Web page,
http://vlsicad.cs.ucla.edu/~cheese/benchmarks.html (see also the parent home page for
partitioning codes).

[2] C. J. Alpert, T. Chan, D. J.-H. Huang, I. Markov and K. Yan, \Quadratic Placement Revisited",
Proc. ACM/IEEE Design Automation Conference, 1997, pp. 752-757.

[3] C. J. Alpert, J.-H. Huang and A. B. Kahng,\Multilevel Circuit Partitioning", ACM/IEEE Design
Automation Conference, pp. 530-533.

[4] C. J. Alpert and A. B. Kahng, \Recent Directions in Netlist Partitioning: A Survey", Integration,
19(1995) 1-81.

[5] J. A. Davis, V. K. De and J. D. Meindl, \A Stochastic Wire-Length Distribution for Gigascale
Integration (GSI) - Part I: Derivation and Validation", IEEE Transactions on Electron Devices,
45(3) (1998), pp. 580-589.

[6] A. E. Dunlop and B. W. Kernighan, \A Procedure for Placement of Standard Cell VLSI Circuits",
IEEE Transactions on Computer-Aided Design 4(1) (1985), pp. 92-98

[7] S. Dutt and W. Deng, \VLSI Circuit Partitioning by Cluster-Removal Using Iterative Improve-
ment Techniques", Proc. IEEE International Conference on Computer-Aided Design, 1996, pp.
194-200

[8] S. Dutt and H. Theny, \Partitioning Around Roadblocks: Tackling Constraints With Interme-
diate Relaxations", Proc. IEEE International Conference on Computer-Aided Design, 1997, pp.
350-355.

[9] C. M. Fiduccia and R. M. Mattheyses, \A Linear Time Heuristic for Improving Network Parti-
tions", Proc. ACM/IEEE Design Automation Conference, 1982, pp. 175-181.

[10] L. Hagen, J. H. Huang and A. B. Kahng, \Quanti�ed Suboptimality of VLSI Layout Heuristics",
Proc. ACM/IEEE Design Automation Conference, 1995, pp. 216-221.

[11] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, \Multilevel Hypergraph Partitioning:
Applications in VLSI Design", Proc. ACM/IEEE Design Automation Conference, 1997, pp. 526-
529.

[12] , B. W. Kernighan and S. Lin, \An E�cient Heuristic Procedure for Partitioning Graphs", Bell
System Tech. Journal 49 (1970), pp. 291-307.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 17

Small Small Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5
Partitioner Placer WL CPU WL CPU WL CPU WL CPU WL CPU

0 3 6.890 64 5.488 203 3.794 246 3.852 248 7.132 459

0 4 6.816 57 5.366 178 3.748 204 3.839 208 7.091 399

0 5 6.746 48 5.432 159 3.757 186 3.824 188 7.022 359

0 6 6.734 40 5.430 146 3.702 172 3.800 175 6.945 329

0 7 6.792 38 5.365 143 3.684 166 3.782 170 6.950 323

0 8 6.651 40 5.287 164 3.687 187 3.760 190 6.908 365

10 3 6.734 35 5.360 135 3.707 154 3.786 159 6.972 306

10 4 6.650 34 5.307 130 3.705 146 3.767 151 6.910 294

10 5 6.657 33 5.255 125 3.703 143 3.774 148 6.976 287

10 6 6.729 31 5.253 124 3.680 143 3.751 147 6.887 282

10 7 6.599 34 5.209 130 3.651 148 3.748 150 6.876 290

10 8 6.699 45 5.258 154 3.659 182 3.739 180 6.907 348

20 3 6.546 30 5.259 114 3.654 132 3.738 139 6.929 272

20 4 6.555 28 5.292 110 3.579 125 3.745 132 6.778 256

20 5 6.519 24 5.209 106 3.595 121 3.736 129 6.783 248

20 6 6.542 27 5.206 105 3.602 120 3.708 128 6.761 245

20 7 6.498 26 5.130 109 3.612 125 3.717 132 6.668 254

20 8 6.419 33 5.189 135 3.541 159 3.702 158 6.794 309

25 3 6.524 26 5.232 111 3.604 129 3.710 135 6.799 265

25 4 6.479 24 5.198 106 3.512 121 3.689 129 6.728 249

25 5 6.409 22 5.107 102 3.554 118 3.705 126 6.680 241

25 6 6.514 22 5.143 100 3.565 117 3.689 125 6.690 240

25 7 6.448 24 5.114 107 3.521 121 3.665 128 6.704 249

25 8 6.457 32 5.100 131 3.510 159 3.675 159 6.671 304

30 3 6.392 24 5.132 113 3.497 129 3.686 136 6.629 264

30 4 6.455 22 5.154 105 3.504 121 3.656 129 6.701 249

30 5 6.369 22 5.146 103 3.487 118 3.648 127 6.587 242

30 6 6.376 22 5.152 101 3.495 117 3.667 126 6.590 239

30 7 6.355 24 5.153 107 3.478 124 3.648 130 6.606 254

30 8 6.343 33 5.127 132 3.440 162 3.616 159 6.538 311

35 3 6.380 26 5.198 114 3.504 133 3.660 143 6.638 279

35 4 6.356 24 5.112 108 3.419 124 3.649 138 6.599 268

35 5 6.383 23 5.131 106 3.436 120 3.632 131 6.634 260

35 6 6.296 22 5.059 112 3.451 121 3.623 132 6.535 250

35 7 6.320 26 5.113 112 3.395 128 3.619 137 6.532 284

35 8 6.337 33 5.040 136 3.395 167 3.607 164 6.457 317

40 3 6.273 32 5.214 154 3.420 150 3.613 190 6.533 333

40 4 6.287 30 5.112 121 3.422 140 3.619 175 6.471 328

40 5 6.306 27 5.085 117 3.388 138 3.604 174 6.485 300

40 6 6.304 29 5.043 128 3.406 152 3.620 168 6.440 316

40 7 6.262 31 5.071 131 3.359 183 3.585 280 6.449 299

40 8 6.252 38 4.984 158 3.346 175 3.569 200 6.445 389

Table 5: Average wirelength and CPU for placements generated with various

small tools thresholds. CPU time was measure on a 200Mhz Sun Sparc

Ultra10.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 18

[13] J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, \GORDIAN: VLSI Placement by Quadratic
Programming and Slicing Optimization", IEEE Trans. on Computer Aided Design 10(3) (1991),
pp. 356-365.

[14] R. H. J. M. Otten, \Global Wires Harmful?", Proc. ACM/IEEE Intl. Symp. on Physical Design,
1998, pp. 104-109.

[15] R. H. J. M. Otten and R. K. Brayton, \Planning for Performance", Proc. ACM/IEEE Design
Automation Conference, 1998, pp. 122-127.

[16] R. Preis and R. Diekmann, The PARTY Partitioning-Library User Guide, Version 1.1, Univer-
sity of Paderborn, September 1996.

[17] H. D. Simon and S.-H. Teng, \How Good is Recursive Bisection?", SIAM J. Scienti�c Computing
18(5) (1997), pp. 1436-1445.

[18] D. Stroobandt, \Improving Donath's Technique for Estimating the Average Interconnection
Length in Computer logic", ELIS technical report, Royal University of Ghent, June 1996.

[19] L. Trotter, \PERM (Algorithm 115)", Communications of the ACM 5 (1962).

[20] R. S. Tsay and E. Kuh, \A Uni�ed Approach to Partitioning and Placement", IEEE Trans. on
Circuits and Systems, 38(5) (1991), pp. 521-633.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 19

Appendix: Branch-and-Bound Pseudocodes

The input and global variables for branch-and-bound are shown in Figure 3.

Branch-and-Bound for Balanced Bipartitioning :
Input and Global Variables

areaMax[0..1] upper bounds for partition area
Input upperBound search for cheaper solutions

hypergraph node weights, #nodes, #edges
nodeStack =< empty > node-to-partition assignments
cutStack=< empty > \cut so far"

Global netStacks[0..numEdges]=f0g stacks of net states
variables areaStacks[0..1]=< empty > \area so far" in partitions
and nodeIdx=0 #nodes already assigned

initialization bestPartSolution=< invalid >
bestCutFound=upperBound
foundLegalSolution=false

Figure 3: Input and global variables for branch-and-bound bipartitioning. A nontrivial upperBound implies a
known legal solution of given cost. Each netStack contains net states, which can represent a net with no nodes
assigned to partitions, a net with nodes assigned to one partition, or a cut net.

The actual branch-and-bound algorithm is detailed in Figure 4. We note that the pseudocode

shown does not work with �xed terminals, does not do anything reasonable if there are no legal

solutions, and works with exactly two partitions. (Extensions to address such limitations are obvious.)

We also note that e�ciency requirements entail a monolithic implementation without any function

calls in the critical section { in particular, we use no recursion in our implementation. However, to

simplify the exposition of our algorithm, we present equivalent pseudocode that uses recursion. In a

recursion-free implementation our global variables will be local variables of the monolithic function.

This is why our recursion-based description is not the simplest: the recursive function has minimum

local variables and does not return a value.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 20

Balanced Bisection with Branch-and-Bound : Algorithm
1 assignNextNode(toPart)
2 // Assigns node with nodeIdx to a given partition
3 // in addition to previously assigned nodes with indices 0..nodeIdx.
5 f
6 if (idx<numNodes) // the solution is partial, need to branch or bound
7 f
8 weight=hypergraph.getNodeWeight(idx)
9 if (areaStack[toPart]+weight>areaMax[toPart]) goto bound
10 cutIncrease=0
11 for each net (netIdx) incident to curr node (idx)
12 f
13 if (netStack[netIdx].top() == 1-toPart)
14 f
15 cutIncrease = curIncrease + 1
16 netStacks[netIdx].push(< both >)
17 g
18 else if (the net does not stradde any partitions)
19 netStacks[netIdx].push(toPart)
20 g
21
22 if (cutStack.top()+cutIncrease � bestCutFound)
23 f // undo the net stacks
25 for each net (netIdx) incident to curr node (idx)
26 netStacks[netIdx].pop()
27 goto bound
28 g
30 branch: nodeStack.push(toPartition)
31 idx = idx + 1
32 areaStack[toPart].push(areaStack[toPart].top()+weight)
33 areaStack[1-toPart].push(areaStack[1-toPart].top())
34 cutStack.push(cutStack.top()+cutIncrease)
35 assignNextNode(0)
36 assignNextNode(1)
37 bound: nodeStack.pop()
38 idx = idx - 1
39 areaStack[0].pop()
40 areaStack[1].pop()
41 cutStack.pop()
42 return
43 g
44 else // have complete solution with cut < bestCutSeen
45 f
46 bestCutFound=cutStack.top()
47 copy complete solution from nodeStack to bestPartSolution
48 foundLegalSolution=true
49 g
50 g

Figure 4: Branch-and-bound algorithm for balanced bipartitioning is produced from a
lexicographic enumeration of partitioning solutions by adding code for bounding in lines
9, 22-27 (shown in bold). The recursive implementation is not necessary and is used here
for clarity.

UCLA/CS TR-990013 | Caldwell, Kahng and Markov 21

Single Row Placement Branch-and-Bound
Input and Data Structures

cellWidth[0..N] width of each cell
Input pinO�sets[cellId][netId] pin-o�sets (if connected) for each cell-pin pair

terminalBoxes[netId] bounding box of each net's terminals
RowBox bounding box of the row
nodeQueue =[0....N-1] inverse initial ordering

Data nodeStack=< empty > placement ordering
Structures counterArray=< empty > loop counter array

idx=N � 1 index
costSoFar= 0 cost of the current placement
bestYetSeen = In�nite cost of best placement yet found
nextLoc = row's left edge location to place next cell at

Single-Row Placement with Branch-and-Bound : Algorithm
1 while(idx < numCells)
2 f
3 s.push(q.deque()) // add a cell at nextLoc (the right end)
4 c[idx] = idx
5 costSoFar = costSoFar + cost of placing cell s.top()
6 nextLoc.x = nextLoc.x + cellWidth[s.top()]
7
8 if(costSoFar � bestCostSeen) bound
9 c[idx] = 0
10
11 if(c[idx] == 0) // the ordering is complete or has been bounded
12 f
13 if(idx == 0 and costSoFar < bestCostSeen)
14 f
15 bestCostSeen = costSoFar
16 save current placement
17 g
18 while(c[idx] == 0)
19 f
20 costSoFar = costSoFar - cost of placing cell s.top()
21 nextLoc.x = nextLoc.x - cellWidth[s.top()]
22 q.enque(s.pop()) // remove the right-most cell
23 idx++
24 c[idx]{
25 g
26 g
27 idx{
28 g

Figure 5: Branch-and-Bound algorithm for single-row placement is produced from a
lexicographic enumeration of placement orderings by adding code for bounding in lines 8
and 9 (in bold).

