
TeSLA: Thermal Service Level Agreement
for Mobile Devices

HyunJong Joseph Lee, Minsung Jang*, William Agnew, Karsten Schwan, Ada Gavrilovska
{josephlee, wagnew, karsten, ada}@gatech.edu, minsung@research.att.com*

Proposed Solution(s)
● Thermal Engine by vendors, using Dynamic Voltage Frequency Scaling (DVFS) that can adapt

core frequencies to four levels.
○ DVFS is limited to stepwise frequencies at hardware support.

● Leveraging off-the-shelf Big.little core technology to migrate a CPU workload of Big to little ones.
○ Heat dissipation among cores in tiny dies weakens the impact of migration.

● Mobile offloading to cloud or nearby Cloudlet to offload compute-intensive workload from fanless
hot-device to spacious workstation.

Our Approach & Contributions
● Our approach: TeSLA, Thermal Service Level Agreement between underlying mobile system and apps, to guarantee sustained and predictable

performance for apps in mobile devices.
● Contributions:

○ Identifying thermal-related system performance issue & its magnitude: Our preliminary study shows that performance-need from even a single
app causes unfettered system-wide thermal problem, which results in performance drop affecting all apps in the device.

○ Providing a mechanism to relieve the thermal-oriented performance issue: TeSLA proposes a mechanism to stay the mobile processors in the
Goldilocks temperature for sustained and uniform performance by suppressing temperature under throttling threshold so that the apps run with
long-lasting good performance.

○ Implementing a TeSLA prototype: The prototype works on real Android devices and apps from the market as intended.
● Motivating example: TeSLA successfully manages temperature below the thermal threshold of the processors and guarantees the availability of

desirable performance for a compute-intensive Photoshop-like app.

● Rapid advances in mobile processors show promise in running compute-intensive applications
(apps) on resource-constrained mobile devices. The mobile applications, however, face challenges
in obtaining the full potential of those processors, especially when sustained performance is crucial
for the apps.

● The need of sustained performance sharply increases temperature on the processors. Then a
throttling mechanism kicks in to cool them off and consequently makes the apps seriously slow.

Motivation

● Processor's protection mechanism, thermal engine prohibits the applications from gaining the full
processing performance for the necessary duration of time.

● Degradation of core performance by thermal engine results in worsen user-experience.
● A new resource management abstraction, and argue for its importance in allowing mobile

applications to gain sustained and predictable performance.
● Thermal-state-aware resource management permits mobile devices to be maintained at the optimal

thermal level that avoids the thermal engine intrusion.

Problem Statement

Preliminary Results & Evaluation
● Result: thermal effect down to 45% and 6.07x performance improvement just by naively offloading without scheduler implementation
● More effective on newer devices (ex. HTC One M9, LG Nexus 5)

TeSLA Overview 85°C40°C
Weight: 50
FPS: 40

40°C
Weight: 50
FPS: 40

75°C
Weight: 95
FPS: 25

55°C
Weight: 75
FPS: 30

t = 15 minutes

45°C
Weight: 55
FPS: 37

Weight: 100
FPS: 15

t = 5 mins t = 5 mins t = 5 mins

Weight: 0
State:
 hanged

Weight: 50
State: no

buffering

Offload to
Cloud!

Schedule with
 Lower priority

Still too high?

Weight: 50
State: no
 buffering

Weight: 5
State:
 chunked

Weight: 25
State: a bit
 chunked

Weight: 45
State: no
 buffering

