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Abstract
Understanding the 3D world is a fundamental problem in computer vision. How-
ever, learning a good representation of 3D objects is still an open problem due
to the high dimensionality of the data and many factors of variation involved. In
this work, we investigate the task of single-view 3D object reconstruction from a
learning agent’s perspective. We formulate the learning process as an interaction
between 3D and 2D representations and propose an encoder-decoder network with
a novel projection loss defined by the perspective transformation. More importantly,
the projection loss enables the unsupervised learning using 2D observation without
explicit 3D supervision. We demonstrate the ability of the model in generating 3D
volume from a single 2D image with three sets of experiments: (1) learning from
single-class objects; (2) learning from multi-class objects and (3) testing on novel
object classes. Results show superior performance and better generalization ability
for 3D object reconstruction when the projection loss is involved.

1 Introduction
Understanding the 3D world is at the heart of successful computer vision applications in robotics, ren-
dering and modeling [19]. It is especially important to solve this problem using the most convenient
visual sensory data: 2D images. In this paper, we propose an end-to-end solution to the challenging
problem of predicting the underlying true shape of an object given an arbitrary single image obser-
vation of it. This problem definition embodies a fundamental challenge: Imagery observations of
3D shapes are interleaved representations of intrinsic properties of the shape itself (e.g., geometry,
material), as well as its extrinsic properties that depend on its interaction with the observer and the
environment (e.g., orientation, position, and illumination). Physically principled shape understanding
should be able to efficiently disentangle such interleaved factors.

This observation leads to insight that an end-to-end solution to this problem from the perspective
of learning agents (neural networks) should involve the following properties: 1) the agent should
understand the physical meaning of how a 2D observation is generated from the 3D shape, and 2) the
agent should be conscious about the outcome of its interaction with the object; more specifically, by
moving around the object, the agent should be able to correspond the observations to the viewpoint
change. If such properties are embodied in a learning agent, it will be able to disentangle the shape
from the extrinsic factors because these factors are trivial to understand in the 3D world. To enable the
agent with these capabilities, we introduce a built-in camera system that can transform the 3D object
into 2D images in-network. Additionally, we architect the network such that the latent representation
disentangles the shape from view changes. More specifically, our network takes as input an object
image and predicts its volumetric 3D shape so that the perspective transformations of predicted shape
match well with corresponding 2D observations.

We implement this neural network based on a combination of image encoder, volume decoder
and perspective transformer (similar to spatial transformer as introduced by Jaderberg et al. [6]).
During training, the volumetric 3D shape is gradually learned from single-view input and the
feedback of other views through back-propagation. Thus at test time, the 3D shape can be directly
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generated from a single image. We conduct experimental evaluations using a subset of 3D models
from ShapeNetCore [1]. Results from single-class and multi-class training demonstrate excellent
performance of our network for volumetric 3D reconstruction. Our main contributions are summarized
below.

• We show that neural networks are able to predict 3D shape from single-view without using
the ground truth 3D volumetric data for training. This is made possible by introducing a 2D
silhouette loss function based on perspective transformations.

• We train a single network for multi-class 3D object volumetric reconstruction and show its
generalization potential to unseen categories.

• Compared to training with full azimuth angles, we demonstrate comparatively similar results
when training with partial views.

2 Related Work
Representation learning for 3D objects. Recently, advances have been made in learning deep
neural networks for 3D objects using large-scale CAD databases [22, 1]. Wu et al. [22] proposed a
deep generative model that extends the convolutional deep belief network [11] to model volumetric
3D shapes. Different from [22] that uses volumetric 3D representation, Su et al. [18] proposed
a multi-view convolutional network for 3D shape categorization with a view-pooling mechanism.
These methods focus more on 3D shape recognition instead of 3D shape reconstruction. Recent
work [20, 14, 4, 2] attempt to learn a joint representation for both 2D images and 3D shapes.
Tatarchenko et al. [20] developed a convolutional network to synthesize unseen 3D views from a
single image and demonstrated the synthesized images can be used them to reconstruct 3D shape.
Qi et al. [14] introduced a joint embedding by combining volumetric representation and multi-view
representation together to improve 3D shape recognition performance. Girdhar et al. [4] proposed a
generative model for 3D volumetric data and combined it with a 2D image embedding network for
single-view 3D shape generation. Choy et al. [2] introduce a 3D recurrent neural network (3D-R2N2)
based on long-short term memory (LSTM) to predict the 3D shape of an object from a single view or
multiple views. Compared to these single-view methods, our 3D reconstruction network is learned
end-to-end and the network can be even trained without ground truth volumes.

Concurrent to our work, Renzede et al. [16] introduced a general framework to learn 3D structures
from 2D observations with 3D-2D projection mechanism. Their 3D-2D projection mechanism either
has learnable parameters or adopts non-differentiable component using MCMC, while our perspective
projection network is both differentiable and parameter-free.

Representation learning by transformations. Learning from transformed sensory data has gained
attention [12, 5, 15, 13, 23, 6, 24] in recent years. Memisevic and Hinton [12] introduced a gated
Boltzmann machine that models the transformations between image pairs using multiplicative
interaction. Reed et al. [15] showed that a disentangled hidden unit representations of Boltzmann
Machines (disBM) could be learned based on the transformations on data manifold. Yang et al. [23]
learned out-of-plane rotation of rendered images to obtain disentangled identity and viewpoint units
by curriculum learning. Kulkarni et al. [9] proposed to learn a semantically interpretable latent
representation from 3D rendered images using variational auto-encoders [8] by including specific
transformations in mini-batches. Complimentary to convolutional networks, Jaderberg et al. [6]
introduced a differentiable sampling layer that directly incorporates geometric transformations into
representation learning. Concurrent to our work, Wu et al. [21] proposed a 3D-2D projection layer
that enables the learning of 3D object structures using 2D keypoints as annotation.

3 Problem Formulation
In this section, we develop neural networks for reconstructing 3D objects. From the perspective of a
learning agent (e.g., neural network), a natural way to understand one 3D object X is from its 2D
views by transformations. By moving around the 3D object, the agent should be able to recognize its
unique features and eventually build a 3D mental model of it as illustrated in Figure 1(a). Assume that
I(k) is the 2D image from the k-th viewpoint α(k) by projection I(k) = P (X;α(k)), or rendering in
graphics. An object X in a certain scene is the entanglement of shape, color and texture (its intrinsic
properties) and the image I(k) is the further entanglement with viewpoint and illumination (extrinsic
parameters). The general goal of understanding 3D objects can be viewed as disentangling intrinsic
properties and extrinsic parameters from a single image.
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Figure 1: (a) Understanding 3D object from learning agent’s perspective; (b) Single-view 3D volume
reconstruction with perspective transformation. (c) Illustration of perspective projection. The
minimum and maximum disparity in the screen coordinates are denoted as dmin and dmax.

In this paper, we focus on the 3D shape learning by ignoring the color and texture factors, and
we further simplify the problem by making the following assumptions: 1) the scene is clean white
background; 2) the illumination is constant natural lighting. We use the volumetric representation of
3d shape V where each voxel Vi is a binary unit. In other words, the voxel equals to one, i.e., Vi = 1,
if the i-th voxel sapce is occupied by the shape; otherwise Vi = 0. Assuming the 2D silhouette S(k)

is obtained from the k-th image I(k), we can specify the 3D-2D projection S(k) = P (V;α(k)). Note
that 2D silhouette estimation is typically solved by object segmentation in real-world but it becomes
trivial in our case due to the white background.

In the following sub-sections, we propose a formulation for learning to predict the volumetric 3D
shape V from an image I(k) with and without the 3D volume supervision.

3.1 Learning to Reconstruct Volumetric 3D Shape from Single-View
We consider single-view volumetric 3D reconstruction as a dense prediction problem and develop a
convolutional encoder-decoder network for this learning task denoted by V̂ = f(I(k)). The encoder
network h(·) learns a viewpoint-invariant latent representation h(I(k)) which is then used by the
decoder g(·) to generate the volume V̂ = g(h(I(k))). In case the ground truth volumetric shapes V
are available, the problem can be easily considered as learning volumetric 3D shapes with a regular
reconstruction objective in 3D space: Lvol(I

(k)) = ||f(I(k))−V||22.

In practice, however, the ground truth volumetric 3D shapes may not be available for training. For
example, the agent observes the 2D silhouette via its built-in camera without accessing the volumetric
3D shape. Inspired by the space carving theory [10], we propose a silhouette-based volumetric loss
function. In particular, we build on the premise that a 2D silhouette Ŝ(j) projected from the generated
volume V̂ under certain camera viewpoint α(j) should match the ground truth 2D silhouette S(j)

from image observations. In other words, if all the generated silhouettes Ŝ(j) match well with their
corresponding ground truth silhouettes S(j) for all j’s, then we hypothesize that the generated volume
V̂ should be as good as one instance of visual hull equivalent class of the ground truth volume V [10].
Therefore, we formulate the learning objective for the k-th image as

Lproj(I
(k)) =

n∑
j=1

L(j)
proj(I

(k);S(j), α(j)) =
1

n

n∑
j=1

||P (f(I(k));α(j))− S(j)||22, (1)

where j is the index of output 2D silhouettes, n is the number of silhouettes used for each input image
and P (·) is the 3D-2D projection function. Note that the above training objective Eq. (1) enables
training without using ground-truth volumes. The network diagram is illustrated in Figure 1(b). A
more general learning objective is given by a combination of both objectives:

Lcomb(I
(k)) = λprojLproj(I

(k)) + λvolLvol(I
(k)), (2)

where λproj and λvol are constants that control the tradeoff between the two losses.

3.2 Perspective Transformer Networks
As defined previously, 2D silhouette S(k) is obtained via perspective projection given input 3D
volume V and specific camera viewpoint α(k). In this work, we implement the perspective projection
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(see Figure 1(c)) with a 4-by-4 transformation matrix Θ4×4, where K is camera calibration matrix
and (R, t) is extrinsic parameters.

Θ4×4 =

[
K 0
0T 1

] [
R t
0T 1

]
(3)

For each point ps
i = (xsi , y

s
i , z

s
i , 1) in 3D world coordinates, we compute the corresponding point

pt
i = (xti, y

t
i , 1, d

t
i) in screen coordinates (plus disparity dti) using the perspective transformation:

ps
i ∼ Θ4×4p

t
i.

Similar to the spatial transformer network introduced in [6], we propose a 2-step procedure: (1)
performing dense sampling from input volume (in 3D world coordinates) to output volume (in screen
coordinates), and (2) flattening the 3D spatial output across disparity dimension. In the experiment,
we assume that transformation matrix is always given as input, parametrized by the viewpoint α.
Again, the 3D point (xsi , y

s
i , z

s
i ) in input volume V ∈ RH×W×D and corresponding point (xti, y

t
i , d

t
i)

in output volume U ∈ RH′×W ′×D′
is linked by perspective transformation matrix Θ4×4. Here,

(W,H,D) and (W ′, H ′, D′) are the width, height and depth of input and output volume, respectively.

We summarize the dense sampling step and channel-wise flattening step as follows.

Ui =

H∑
n

W∑
m

D∑
l

Vnml max(0, 1− |xsi −m|)max(0, 1− |ysi − n|)max(0, 1− |zsi − l|)

Sn′m′ = max
l′

Un′m′l′

(4)

Here, Ui is the i-th voxel value corresponding to the point (xti, y
t
i , d

t
i) (where i ∈ {1, ...,W ′ ×H ′ ×

D′}). Note that we use the max operator for projection instead of summation along one dimension
since the volume is represented as a binary cube where the solid voxels have value 1 and empty
voxels have value 0. Intuitively, we have the following two observations: (1) each empty voxel will
not contribute to the foreground pixel of S from any viewpoint; (2) each solid voxel can contribute to
the foreground pixel of S only if it is visible from a specific viewpoint.

3.3 Training
As the same volumetric 3D shape is expected to be generated from different images of the object, the
encoder network is required to learn a 3D view-invariant latent representation

h(I(1)) = h(I(2)) = · · · = h(I(k)) (5)

This sub-problem itself is a challenging task in computer vision [23, 9]. Thus, we adopt a two-stage
training procedure: first, we learn the encoder network for a 3D view-invariant latent representation
h(I) and then train the volumetric decoder with perspective transformer networks. As shown in [23],
a disentangled representation of 2D synthetic images can be learned from consecutive rotations with
a recurrent network, we pre-train the encoder of our network using a similar curriculum strategy so
that the latent representation only contains 3D view-invariant identity information of the object. Once
we obtain an encoder network that recognizes the identity of single-view images, we next learn the
volume generator regularized by the perspective transformer networks. To encourage the volume
decoder to learn a consistent 3D volume from different viewpoints, we include the projections from
neighboring viewpoints in each mini-batch so that the network has relatively sufficient information to
reconstruct the 3D shape.

4 Experiments
ShapeNetCore. This dataset contains about 51,300 unique 3D models from 55 common object
categories [1]. Each 3D model is rendered from 24 azimuth angles (with steps of 15◦) with fixed
elevation angles (30◦) under the same camera and lighting setup. We then crop and rescale the
centering region of each image to 64× 64× 3 pixels. For each ground truth 3D shape, we create a
volume of 32× 32× 32 voxels from its canonical orientation (0◦).

Network Architecture. As shown in Figure 2, our encoder-decoder network has three components:
a 2D convolutional encoder, a 3D up-convolutional decoder and a perspective transformer networks.
The 2D convolutional encoder consists of 3 convolution layers, followed by 3 fully-connected layers
(convolution layers have 64, 128 and 256 channels with fixed filter size of 5 × 5; the three fully-
connected layers have 1024, 1024 and 512 neurons, respectively). The 3D convolutional decoder
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Figure 2: Illustration of network architecture.

consists of one fully-connected layer, followed by 3 convolution layers (the fully-connected layer
have 3 × 3 × 3 × 512 neurons; convolution layers have 256, 96 and 1 channels with filter size of
4 × 4 × 4, 5 × 5 × 5 and 6 × 6 × 6). For perspective transformer networks, we used perspective
transformation to project 3D volume to 2D silhouette where the transformation matrix is parametrized
by 16 variables and sampling grid is set to 32× 32× 32. We use the same network architecture for
all the experiments.

Implementation Details. We used the ADAM [7] solver for stochastic optimization in all the
experiments. During the pre-training stage (for encoder), we used mini-batch of size 32, 32, 8, 4,
3 and 2 for training the RNN-1, RNN-2, RNN-4, RNN-8, RNN-12 and RNN-16 as used in Yang
et al. [23]. We used the learning rate 10−4 for RNN-1, and 10−5 for the rest of recurrent neural
networks. During the fine-tuning stage (for volume decoder), we used mini-batch of size 6 and
learning rate 10−4. For each object in a mini-batch, we include projections from all 24 views as
supervision. The models including the perspective transformer nets are implemented using Torch [3].
To download the code, please refer to the project webpage: http://goo.gl/YEJ2H6.

Experimental Design. As mentioned in the formulation, there are several variants of the model
depending on the hyper-parameters of learning objectives λproj and λvol. In the experimental section,
we denote the model trained with projection loss only, volume loss only, and combined loss as
PTN-Proj (PR), CNN-Vol (VO), and PTN-Comb (CO), respectively.

In the experiments, we address the following questions: (1) Will the model trained with combined
loss achieve better single-view 3D reconstruction performance over model trained on volume loss
only (PTN-Comb vs. CNN-Vol)? (2) What is the performance gap between the models with and
without ground-truth volumes (PTN-Comb vs. PTN-Proj)? (3) How do the three models generalize
to instances from unseen categories which are not present in the training set? To answer the questions,
we trained the three models under two experimental settings: single category and multiple categories.

4.1 Training on a single category
We select chair category as the training set for single category experiment. For model comparisons,
we first conduct quantitative evaluations on the generated 3D volumes from the test set single-view
images. For each instance in the test set, we generate one volume per view image (24 volumes
generated in total). Given a pair of ground-truth volume and our generated volume (threshold is 0.5),
we computed its intersection-over-union (IU) score and the average IU score is calculated over 24
volumes of all the instances in the test set. In addition, we provide a baseline method based on nearest
neighbor (NN) search. Specifically, for each of the test image, we extract VGG feature from fc6
layer (4096-dim vector) [17] and retrieve the nearest training example using Euclidean distance in the
feature space. The ground-truth 3D volume corresponds to the nearest training example is naturally
regarded as the retrieval result.

Table 1: Prediction IU using the models trained on chair category. Below, “chair" corresponds to
the setting where each object is observable with full azimuth angles, while “chair-N" corresponds
to the setting where each object is only observable with a narrow range (subset) of azimuth angles.

Method / Evaluation Set chair chair-N
training test training test

PTN-Proj:single (no vol. supervision) 0.5712 0.5027 0.4882 0.4583
PTN-Comb:single (vol. supervision) 0.6435 0.5067 0.5564 0.4429
CNN-Vol:single (vol. supervision) 0.6390 0.4983 0.5518 0.4380
NN search (vol. supervision) — 0.3557 — 0.3073

5

http://goo.gl/YEJ2H6


Input GT (310) GT (130) PR (310) PR (130) CO (310) CO (130) VO (310) VO (130)

Figure 3: Single-class results. GT: ground truth, PR: PTN-Proj, CO: PTN-Comb, VO: CNN-Vol
(Best viewed in digital version. Zoom in for the 3D shape details). The angles are shown in the
parenthesis. Please also see more examples and video animations on the project webpage.

As shown in Table 1, the model trained without volume supervision (projection loss) performs as
good as model trained with volume supervision (volume loss) on the chair category (testing set). In
addition to the comparisons of overall IU, we measured the view-dependent IU for each model. As
shown in Figure 4, the average prediction error (mean IU) changes as we gradually move from the
first view to the last view (15◦ to 360◦). For visual comparisons, we provide a side-by-side analysis
for each of the three models we trained. As shown in Figure 3, each row shows an independent
comparison. The first column is the 2D image we used as input of the model. The second and
third column show the ground-truth 3D volume (same volume rendered from two views for better
visualization purpose). Similarly, we list the model trained with projection loss only (PTN-Proj),
combined loss (PTN-Comb) and volume loss only (CNN-Vol) from the fourth column up to the
ninth column. The volumes predicted by PTN-Proj and PTN-Comb faithfully represent the shape.
However, the volumes predicted by CNN-Vol do not form a solid chair shape in some cases.
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Figure 4: View-dependent IU. For illustration, images of a sample chair with corresponding azimuth
angles are shown below the curves. For example, 3D reconstruction from 0◦ is more difficult than
from 30◦ due to self-occlusion.
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Table 2: Prediction IU using the models trained on large-scale datasets.

Test Category airplane bench dresser car chair display lamp
PTN-Proj:multi 0.5556 0.4924 0.6823 0.7123 0.4494 0.5395 0.4223
PTN-Comb:multi 0.5836 0.5079 0.7109 0.7381 0.4702 0.5473 0.4158
CNN-Vol:multi 0.5747 0.5142 0.6975 0.7348 0.4451 0.5390 0.3865
NN search 0.5564 0.4875 0.5713 0.6519 0.3512 0.3958 0.2905
Test Category loudspeaker rifle sofa table telephone vessel
PTN-Proj:multi 0.5868 0.5987 0.6221 0.4938 0.7504 0.5507
PTN-Comb:multi 0.5675 0.6097 0.6534 0.5146 0.7728 0.5399
CNN-Vol:multi 0.5478 0.6031 0.6467 0.5136 0.7692 0.5445
NN search 0.4600 0.5133 0.5314 0.3097 0.6696 0.4078

Input GT (310) GT (130) PR (310) PR (130) CO (310) CO (130) VO (310) VO (130)

Figure 5: Multiclass results. GT: ground truth, PR: PTN-Proj, CO: PTN-Comb, VO: CNN-Vol (Best
viewed in digital version. Zoom in for the 3D shape details). The angles are shown in the parenthesis.
Please also see more examples and video animations on the project webpage.

Training with partial views. We also conduct control experiments where each object is only
observable from a narrow range of azimuth angles (e.g., 8 out of 24 views such as 0◦, 15◦, · · · , 105◦).
We include the detailed description in the supplementary materials. As shown in Table 1 (last two
columns), performances of all three models drop a little bit but the conclusion is similar: the proposed
network (1) learns better 3D shape with projection regularization and (2) is capable of learning the
3D shape by providing 2D observations only.

4.2 Training on multiple categories
We conducted multiclass experiment using the same setup in the single-class experiment. For multi-
category experiment, the training set includes 13 major categories: airplane, bench, dresser,
car, chair, display, lamp, loudspeaker, rifle, sofa, table, telephone and vessel. We
preserved 20% of instances from each category as testing data. As shown in Table 2, the quantitative
results demonstrate (1) model trained with combined loss is superior to volume loss in most cases
and (2) model trained with projection loss perform as good as volume/combined loss. From the
visualization results shown in Figure 5, all three models predict volumes reasonably well. There is
only subtle performance difference in object part such as the wing of airplane.
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Table 3: Prediction IU in out-of-category tests.

Method / Test Category bed bookshelf cabinet motorbike train
PTN-Proj:single (no vol. supervision) 0.1801 0.1707 0.3937 0.1189 0.1550
PTN-Comb:single (vol. supervision) 0.1507 0.1186 0.2626 0.0643 0.1044
CNN-Vol:single (vol. supervision) 0.1558 0.1183 0.2588 0.0580 0.0956
PTN-Proj:multi (no vol. supervision) 0.1944 0.3448 0.6484 0.3216 0.3670
PTN-Comb:multi (vol. supervision) 0.1647 0.3195 0.5257 0.1914 0.3744
CNN-Vol:multi (vol. supervision) 0.1586 0.3037 0.4977 0.2253 0.3740

Input GT (310) GT (130) PR (310) PR (130) CO (310) CO (310) VO (130) VO (310)

Figure 6: Out-of-category results. GT: ground truth, PR: PTN-Proj, CO: PTN-Comb, VO: CNN-Vol
(Best viewed in digital version. Zoom in for the 3D shape details). The angles are shown in the
parenthesis. Please also see more examples and video animations on the project webpage.

4.3 Out-of-Category Tests
Ideally, an intelligent agent should have the ability to generalize the knowledge learned from pre-
viously seen categories to unseen categories. To this end, we design out-of-category tests for both
models trained on a single category and multiple categories, as described in Section 4.1 and Sec-
tion 4.2, respectively. We select 5 unseen categories from ShapeNetCore: bed, bookshelf, cabinet,
motorbike and train for out-of-category tests. Here, the two categories cabinet and train are
relatively easier than other categories since there might be instances in the training set with similar
shapes (e.g., dresser, vessel, and airplane). But the bed,bookshelf and motorbike can be
considered as completely novel categories in terms of shape.

We summarized the quantitative results in Table 3. Surprisingly, the model trained on multiple
categories still achieves reasonably good overall IU. As shown in Figure 6, the proposed projection
loss generalizes better than model trained using combined loss or volume loss on train, motorbike
and cabinet. The observations from the out-of-category tests suggest that (1) generalization from a
single category is very challenging, but training from multiple categories can significantly improve
generalization, and (2) the projection regularization can help learning a robust representation for
better generalization on unseen categories.

5 Conclusions
In this paper, we investigate the problem of single-view 3D shape reconstruction from a learning
agent’s perspective. By formulating the learning procedure as the interaction between 3D shape
and 2D observation, we propose to learn an encoder-decoder network which takes advantage of
the projection transformation as regularization. Experimental results demonstrate (1) excellent
performance of the proposed model in reconstructing the object even without ground-truth 3D volume
as supervision and (2) the generalization potential of the proposed model to unseen categories.
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