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Abstract
Supervised deep learning has been successfully applied to many recognition prob-
lems. Although it can approximate a complex many-to-one function well when a
large amount of training data is provided, it is still challenging to model com-
plex structured output representations that effectively perform probabilistic infer-
ence and make diverse predictions. In this work, we develop a deep conditional
generative model for structured output prediction using Gaussian latent variables.
The model is trained efficiently in the framework of stochastic gradient varia-
tional Bayes, and allows for fast prediction using stochastic feed-forward infer-
ence. In addition, we provide novel strategies to build robust structured prediction
algorithms, such as input noise-injection and multi-scale prediction objective at
training. In experiments, we demonstrate the effectiveness of our proposed al-
gorithm in comparison to the deterministic deep neural network counterparts in
generating diverse but realistic structured output predictions using stochastic in-
ference. Furthermore, the proposed training methods are complimentary, which
leads to strong pixel-level object segmentation and semantic labeling performance
on Caltech-UCSD Birds 200 and the subset of Labeled Faces in the Wild dataset.

1 Introduction
In structured output prediction, it is important to learn a model that can perform probabilistic in-
ference and make diverse predictions. This is because we are not simply modeling a many-to-one
function as in classification tasks, but we may need to model a mapping from single input to many
possible outputs. Recently, the convolutional neural networks (CNNs) have been greatly successful
for large-scale image classification tasks [17, 30, 27] and have also demonstrated promising results
for structured prediction tasks (e.g., [4, 23, 22]). However, the CNNs are not suitable in modeling a
distribution with multiple modes [32].

To address this problem, we propose novel deep conditional generative models (CGMs) for output
representation learning and structured prediction. In other words, we model the distribution of high-
dimensional output space as a generative model conditioned on the input observation. Building
upon recent development in variational inference and learning of directed graphical models [16,
24, 15], we propose a conditional variational auto-encoder (CVAE). The CVAE is a conditional
directed graphical model whose input observations modulate the prior on Gaussian latent variables
that generate the outputs. It is trained to maximize the conditional log-likelihood, and we formulate
the variational learning objective of the CVAE in the framework of stochastic gradient variational
Bayes (SGVB) [16]. In addition, we introduce several strategies, such as input noise-injection and
multi-scale prediction training methods, to build a more robust prediction model.

In experiments, we demonstrate the effectiveness of our proposed algorithm in comparison to the
deterministic neural network counterparts in generating diverse but realistic output predictions using
stochastic inference. We demonstrate the importance of stochastic neurons in modeling the struc-
tured output when the input data is partially provided. Furthermore, we show that the proposed
training schemes are complimentary, leading to strong pixel-level object segmentation and labeling
performance on Caltech-UCSD Birds 200 and the subset of Labeled Faces in the Wild dataset.
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In summary, the contribution of the paper is as follows:

• We propose CVAE and its variants that are trainable efficiently in the SGVB framework,
and introduce novel strategies to enhance robustness of the models for structured prediction.

• We demonstrate the effectiveness of our proposed algorithm with Gaussian stochastic neu-
rons in modeling multi-modal distribution of structured output variables.

• We achieve strong semantic object segmentation performance on CUB and LFW datasets.

The paper is organized as follows. We first review related work in Section 2. We provide prelimi-
naries in Section 3 and develop our deep conditional generative model in Section 4. In Section 5,
we evaluate our proposed models and report experimental results. Section 6 concludes the paper.

2 Related work
Since the recent success of supervised deep learning on large-scale visual recognition [17, 30, 27],
there have been many approaches to tackle mid-level computer vision tasks, such as object de-
tection [6, 26, 31, 9] and semantic segmentation [4, 3, 23, 22], using supervised deep learning
techniques. Our work falls into this category of research in developing advanced algorithms for
structured output prediction, but we incorporate the stochastic neurons to model the conditional dis-
tributions of complex output representation whose distribution possibly has multiple modes. In this
sense, our work shares a similar motivation to the recent work on image segmentation tasks using
hybrid models of CRF and Boltzmann machine [13, 21, 37]. Compared to these, our proposed model
is an end-to-end system for segmentation using convolutional architecture and achieves significantly
improved performance on challenging benchmark tasks.

Along with the recent breakthroughs in supervised deep learning methods, there has been a progress
in deep generative models, such as deep belief networks [10, 20] and deep Boltzmann machines [25].
Recently, the advances in inference and learning algorithms for various deep generative models
significantly enhanced this line of research [2, 7, 8, 18]. In particular, the variational learning
framework of deep directed graphical model with Gaussian latent variables (e.g., variational auto-
encoder [16, 15] and deep latent Gaussian models [24]) has been recently developed. Using the
variational lower bound of the log-likelihood as the training objective and the reparameterization
trick, these models can be easily trained via stochastic optimization. Our model builds upon this
framework, but we focus on modeling the conditional distribution of output variables for structured
prediction problems. Here, the main goal is not only to model the complex output representation but
also to make a discriminative prediction. In addition, our model can effectively handle large-sized
images by exploiting the convolutional architecture.

The stochastic feed-forward neural network (SFNN) [32] is a conditional directed graphical model
with a combination of real-valued deterministic neurons and the binary stochastic neurons. The
SFNN is trained using the Monte Carlo variant of generalized EM by drawing multiple samples
from the feed-forward proposal distribution and weighing them differently with importance weights.
Although our proposed Gaussian stochastic neural network (which will be described in Section 4.2)
looks similar on surface, there are practical advantages in optimization of using Gaussian latent
variables over the binary stochastic neurons. In addition, thanks to the recognition model used in
our framework, it is sufficient to draw only a few samples during training, which is critical in training
very deep convolutional networks.

3 Preliminary: Variational Auto-encoder
The variational auto-encoder (VAE) [16, 24] is a directed graphical model with certain types of
latent variables, such as Gaussian latent variables. A generative process of the VAE is as follows: a
set of latent variable z is generated from the prior distribution pθ(z) and the data x is generated by
the generative distribution pθ(x|z) conditioned on z: z ∼ pθ(z),x ∼ pθ(x|z).
In general, parameter estimation of directed graphical models is often challenging due to intractable
posterior inference. However, the parameters of the VAE can be estimated efficiently in the stochas-
tic gradient variational Bayes (SGVB) [16] framework, where the variational lower bound of the
log-likelihood is used as a surrogate objective function. The variational lower bound is written as:

log pθ(x) = KL (qφ(z|x)‖pθ(z|x)) + Eqφ(z|x)
[
− log qφ(z|x) + log pθ(x, z)

]
(1)

≥ −KL (qφ(z|x)‖pθ(z)) + Eqφ(z|x)
[
log pθ(x|z)

]
(2)
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In this framework, a proposal distribution qφ(z|x), which is also known as a “recognition” model, is
introduced to approximate the true posterior pθ(z|x). The multilayer perceptrons (MLPs) are used
to model the recognition and the generation models. Assuming Gaussian latent variables, the first
term of Equation (2) can be marginalized, while the second term is not. Instead, the second term can
be approximated by drawing samples z(l) (l = 1, ..., L) by the recognition distribution qφ(z|x), and
the empirical objective of the VAE with Gaussian latent variables is written as follows:

L̃VAE(x; θ, φ) = −KL (qφ(z|x)‖pθ(z)) +
1

L

L∑
l=1

log pθ(x|z(l)), (3)

where z(l) = gφ(x, ε
(l)), ε(l) ∼ N (0, I). Note that the recognition distribution qφ(z|x) is repa-

rameterized with a deterministic, differentiable function gφ(·, ·), whose arguments are data x and
the noise variable ε. This trick allows error backpropagation through the Gaussian latent variables,
which is essential in VAE training as it is composed of multiple MLPs for recognition and generation
models. As a result, the VAE can be trained efficiently using stochastic gradient descent (SGD).

4 Deep Conditional Generative Models for Structured Output Prediction
As illustrated in Figure 1, there are three types of variables in a deep conditional generative model
(CGM): input variables x, output variables y, and latent variables z. The conditional generative
process of the model is given in Figure 1(b) as follows: for given observation x, z is drawn from the
prior distribution pθ(z|x), and the output y is generated from the distribution pθ(y|x, z). Compared
to the baseline CNN (Figure 1(a)), the latent variables z allow for modeling multiple modes in
conditional distribution of output variables y given input x, making the proposed CGM suitable
for modeling one-to-many mapping. The prior of the latent variables z is modulated by the input
x in our formulation; however, the constraint can be easily relaxed to make the latent variables
statistically independent of input variables, i.e., pθ(z|x) = pθ(z) [15].

Deep CGMs are trained to maximize the conditional log-likelihood. Often the objective function is
intractable, and we apply the SGVB framework to train the model. The variational lower bound of
the model is written as follows (complete derivation can be found in the supplementary material):

log pθ(y|x) ≥ −KL (qφ(z|x,y)‖pθ(z|x)) + Eqφ(z|x,y)
[
log pθ(y|x, z)

]
(4)

and the empirical lower bound is written as:

L̃CVAE(x,y; θ, φ) = −KL (qφ(z|x,y)‖pθ(z|x)) +
1

L

L∑
l=1

log pθ(y|x, z(l)), (5)

where z(l) = gφ(x,y, ε
(l)), ε(l) ∼ N (0, I) and L is the number of samples. We call this model

conditional variational auto-encoder1 (CVAE). The CVAE is composed of multiple MLPs, such
as recognition network qφ(z|x,y), (conditional) prior network pθ(z|x), and generation network
pθ(y|x, z). In designing the network architecture, we build the network components of the CVAE
on top of the baseline CNN. Specifically, as shown in Figure 1(d), not only the direct input x, but also
the initial guess ŷ made by the CNN are fed into the prior network. Such a recurrent connection has
been applied for structured output prediction problems [23, 13, 28] to sequentially update the predic-
tion by revising the previous guess while effectively deepening the convolutional network. We also
found that a recurrent connection, even one iteration, showed significant performance improvement.
Details about network architectures can be found in the supplementary material.

4.1 Output inference and estimation of the conditional likelihood
Once the model parameters are learned, we can make a prediction of an output y from an input x by
following the generative process of the CGM. To evaluate the model on structured output prediction
tasks (i.e., in testing time), we can measure a prediction accuracy by performing a deterministic
inference without sampling z, i.e., y∗ = argmaxy pθ(y|x, z∗), z∗ = E

[
z|x
]
.2

1Although the model is not trained to reconstruct the input x, our model can be viewed as a type of VAE
that performs auto-encoding of the output variables y conditioned on the input x at training time.

2Alternatively, we can draw multiple z’s from the prior distribution and use the average of the posteriors to
make a prediction, i.e., y∗ = argmaxy

1
L

∑L
l=1 pθ(y|x, z

(l)), z(l) ∼ pθ(z|x).
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Figure 1: Illustration of the conditional graphical models (CGMs). (a) the predictive process of
output Y for the baseline CNN; (b) the generative process of CGMs; (c) an approximate inference
of Z (also known as recognition process [16]); (d) the generative process with recurrent connection.

Another way to evaluate the CGMs is to compare the conditional likelihoods of the test data. A
straightforward approach is to draw samples z’s using the prior network and take the average of the
likelihoods. We call this method the Monte Carlo (MC) sampling:

pθ(y|x) ≈
1

S

S∑
s=1

pθ(y|x, z(s)), z(s) ∼ pθ(z|x) (6)

It usually requires a large number of samples for the Monte Carlo log-likelihood estimation to be
accurate. Alternatively, we use the importance sampling to estimate the conditional likelihoods [24]:

pθ(y|x) ≈
1

S

S∑
s=1

pθ(y|x, z(s))pθ(z(s)|x)
qφ(z(s)|x,y)

, z(s) ∼ qφ(z|x,y) (7)

4.2 Learning to predict structured output
Although the SGVB learning framework has shown to be effective in training deep generative mod-
els [16, 24], the conditional auto-encoding of output variables at training may not be optimal to
make a prediction at testing in deep CGMs. In other words, the CVAE uses the recognition network
qφ(z|x,y) at training, but it uses the prior network pθ(z|x) at testing to draw samples z’s and make
an output prediction. Since y is given as an input for the recognition network, the objective at train-
ing can be viewed as a reconstruction of y, which is an easier task than prediction. The negative KL
divergence term in Equation (5) tries to close the gap between two pipelines, and one could consider
allocating more weights on the negative KL term of an objective function to mitigate the discrepancy
in encoding of latent variables at training and testing, i.e., −(1 + β)KL (qφ(z|x,y)‖pθ(z|x)) with
β ≥ 0. However, we found this approach ineffective in our experiments.

Instead, we propose to train the networks in a way that the prediction pipelines at training and testing
are consistent. This can be done by setting the recognition network the same as the prior network,
i.e., qφ(z|x,y) = pθ(z|x), and we get the following objective function:

L̃GSNN(x,y; θ, φ) =
1

L

L∑
l=1

log pθ(y|x, z(l)) , where z(l) = gθ(x, ε
(l)), ε(l) ∼ N (0, I) (8)

We call this model Gaussian stochastic neural network (GSNN).3 Note that the GSNN can be de-
rived from the CVAE by setting the recognition network and the prior network equal. Therefore,
the learning tricks, such as reparameterization trick, of the CVAE can be used to train the GSNN.
Similarly, the inference (at testing) and the conditional likelihood estimation are the same as those
of CVAE. Finally, we combine the objective functions of two models to obtain a hybrid objective:

L̃hybrid = αL̃CVAE + (1− α)L̃GSNN, (9)
where α balances the two objectives. Note that when α = 1, we recover the CVAE objective; when
α = 0, the trained model will be simply a GSNN without the recognition network.

4.3 CVAE for image segmentation and labeling
Semantic segmentation [5, 23, 6] is an important structured output prediction task. In this sec-
tion, we provide strategies to train a robust prediction model for semantic segmentation problems.
Specifically, to learn a high-capacity neural network that can be generalized well to unseen data, we
propose to train the network with 1) multi-scale prediction objective and 2) structured input noise.

3If we assume a covariance matrix of auxiliary Gaussian latent variables ε to 0, we have a deterministic
counterpart of GSNN, which we call a Gaussian deterministic neural network (GDNN).
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4.3.1 Training with multi-scale prediction objective
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Figure 2: Multi-scale prediction.

As the image size gets larger (e.g., 128 × 128), it becomes
more challenging to make a fine-grained pixel-level predic-
tion (e.g., image reconstruction, semantic label prediction).
The multi-scale approaches have been used in the sense of
forming a multi-scale image pyramid for an input [5], but not
much for multi-scale output prediction. Here, we propose to
train the network to predict outputs at different scales. By do-
ing so, we can make a global-to-local, coarse-to-fine-grained
prediction of pixel-level semantic labels. Figure 2 describes

the multi-scale prediction at 3 different scales (1/4, 1/2, and original) for the training.

4.3.2 Training with input omission noise
Adding noise to neurons is a widely used technique to regularize deep neural networks during the
training [17, 29]. Similarly, we propose a simple regularization technique for semantic segmenta-
tion: corrupt the input data x into x̃ according to noise process and optimize the network with the
following objective: L̃(x̃,y). The noise process could be arbitrary, but for semantic image segmen-
tation, we consider random block omission noise. Specifically, we randomly generate a squared
mask of width and height less than 40% of the image width and height, respectively, at random po-
sition and set pixel values of the input image inside the mask to 0. This can be viewed as providing
more challenging output prediction task during training that simulates block occlusion or missing
input. The proposed training strategy also is related to the denoising training methods [34], but in
our case, we inject noise to the input data only and do not reconstruct the missing input.

5 Experiments
We demonstrate the effectiveness of our approach in modeling the distribution of the structured
output variables. For the proof of concept, we create an artificial experimental setting for struc-
tured output prediction using MNIST database [19]. Then, we evaluate the proposed CVAE models
on several benchmark datasets for visual object segmentation and labeling, such as Caltech-UCSD
Birds (CUB) [36] and Labeled Faces in the Wild (LFW) [12]. Our implementation is based on Mat-
ConvNet [33], a MATLAB toolbox for convolutional neural networks, and Adam [14] for adaptive
learning rate scheduling algorithm of SGD optimization.

5.1 Toy example: MNIST
To highlight the importance of probabilistic inference through stochastic neurons for structured out-
put variables, we perform an experiment using MNIST database. Specifically, we divide each digit
image into four quadrants, and take one, two, or three quadrant(s) as an input and the remaining
quadrants as an output.4 As we increase the number of quadrants for an output, the input to output
mapping becomes more diverse (in terms of one-to-many mapping).

We trained the proposed models (CVAE, GSNN) and the baseline deep neural network and compare
their performance. The same network architecture, the MLP with two-layers of 1, 000 ReLUs for
recognition, conditional prior, or generation networks, followed by 200 Gaussian latent variables,
was used for all the models in various experimental settings. The early stopping is used during the
training based on the estimation of the conditional likelihoods on the validation set.

negative CLL 1 quadrant 2 quadrants 3 quadrants
validation test validation test validation test

NN (baseline) 100.03 99.75 62.14 62.18 26.01 25.99
GSNN (Monte Carlo) 100.03 99.82 62.48 62.41 26.20 26.29
CVAE (Monte Carlo) 68.62 68.39 45.57 45.34 20.97 20.96
CVAE (Importance Sampling) 64.05 63.91 44.96 44.73 20.97 20.95
Performance gap 35.98 35.91 17.51 17.68 5.23 5.33

- per pixel 0.061 0.061 0.045 0.045 0.027 0.027

Table 1: The negative CLL on MNIST database. We increase the number of quadrants for an input
from 1 to 3. The performance gap between CVAE (importance sampling) and NN is reported.

4Similar experimental setting has been used in the multimodal learning framework, where the left- and right
halves of the digit images are used as two data modalities [1, 28].
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Figure 3: Visualization of generated samples with (left) 1 quadrant and (right) 2 quadrants for an
input. We show in each row the input and the ground truth output overlaid with gray color (first),
samples generated by the baseline NNs (second), and samples drawn from the CVAEs (rest).

For qualitative analysis, we visualize the generated output samples in Figure 3. As we can see, the
baseline NNs can only make a single deterministic prediction, and as a result the output looks blurry
and doesn’t look realistic in many cases. In contrast, the samples generated by the CVAE models
are more realistic and diverse in shape; sometimes they can even change their identity (digit labels),
such as from 3 to 5 or from 4 to 9, and vice versa.

We also provide a quantitative evidence by estimating the conditional log-likelihoods (CLLs) in Ta-
ble 1. The CLLs of the proposed models are estimated in two ways as described in Section 4.1. For
the MC estimation, we draw 10, 000 samples per example to get an accurate estimate. For the im-
portance sampling, however, 100 samples per example were enough to obtain an accurate estimation
of the CLL. We observed that the estimated CLLs of the CVAE significantly outperforms the base-
line NN. Moreover, as measured by the per pixel performance gap, the performance improvement
becomes more significant as we use smaller number of quadrants for an input, which is expected as
the input-output mapping becomes more diverse.

5.2 Visual Object Segmentation and Labeling
Caltech-UCSD Birds (CUB) database [36] includes 6, 033 images of birds from 200 species with
annotations such as a bounding box of birds and a segmentation mask. Later, Yang et al. [37]
annotated these images with more fine-grained segmentation masks by cropping the bird patches
using the bounding boxes and resized them into 128 × 128 pixels. The training/test split proposed
in [36] was used in our experiment, and for validation purpose, we partition the training set into 10
folds and cross-validated with the mean intersection over union (IoU) score over the folds. The final
prediction on the test set was made by averaging the posterior from ensemble of 10 networks that are
trained on each of the 10 folds separately. We increase the number of training examples via “data
augmentation” by horizontally flipping the input and output images.

We extensively evaluate the variations of our proposed methods, such as CVAE, GSNN, and the
hybrid model, and provide a summary results on segmentation mask prediction task in Table 2.
Specifically, we report the performance of the models with different network architectures and train-
ing methods (e.g., multi-scale prediction or noise-injection training).

First, we note that the baseline CNN already beat the previous state-of-the-art that is obtained by
the max-margin Boltzmann machine (MMBM; pixel accuracy: 90.42, IoU: 75.92 with GraphCut
for post-processing) [37] even without post-processing. On top of that, we observed significant per-
formance improvement with our proposed deep CGMs.5 In terms of prediction accuracy, the GSNN
performed the best among our proposed models, and performed even better when it is trained with
hybrid objective function. In addition, the noise-injection training (Section 4.3) further improves
the performance. Compared to the baseline CNN, the proposed deep CGMs significantly reduce the
prediction error, e.g., 21% reduction in test pixel-level accuracy at the expense of 60% more time
for inference.6 Finally, the performance of our two winning entries (GSNN and hybrid) on the vali-
dation sets are both significantly better than their deterministic counterparts (GDNN) with p-values
less than 0.05, which suggests the benefit of stochastic latent variables.

5As in the case of baseline CNNs, we found that using the multi-scale prediction was consistently better
than the single-scale counterpart for all our models. So, we used the multi-scale prediction by default.

6Mean inference time per image: 2.32 (ms) for CNN and 3.69 (ms) for deep CGMs, measured using
GeForce GTX TITAN X card with MatConvNet; we provide more information in the supplementary material.
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Model (training) CUB (val) CUB (test) LFW
pixel IoU pixel IoU pixel (val) pixel (test)

MMBM [37] – – 90.42 75.92 – –
GLOC [13] – – – – – 90.70
CNN (baseline) 91.17 ±0.09 79.64 ±0.24 92.30 81.90 92.09 ±0.13 91.90 ±0.08

CNN (msc) 91.37 ±0.09 80.09 ±0.25 92.52 82.43 92.19 ±0.10 92.05 ±0.06

GDNN (msc) 92.25 ±0.09 81.89 ±0.21 93.24 83.96 92.72 ±0.12 92.54 ±0.04

GSNN (msc) 92.46 ±0.07 82.31 ±0.19 93.39 84.26 92.88 ±0.08 92.61 ±0.09

CVAE (msc) 92.24 ±0.09 81.86 ±0.23 93.03 83.53 92.80 ±0.30 92.62 ±0.06

hybrid (msc) 92.60 ±0.08 82.57 ±0.26 93.35 84.16 92.95 ±0.21 92.77 ±0.06

GDNN (msc, NI) 92.92 ±0.07 83.20 ±0.19 93.78 85.07 93.59 ±0.12 93.25 ±0.06

GSNN (msc, NI) 93.09 ±0.09 83.62 ±0.21 93.91 85.39 93.71 ±0.09 93.51 ±0.07

CVAE (msc, NI) 92.72 ±0.08 82.90 ±0.22 93.48 84.47 93.29 ±0.17 93.22 ±0.08

hybrid (msc, NI) 93.05 ±0.07 83.49 ±0.19 93.78 85.07 93.69 ±0.12 93.42 ±0.07

Table 2: Mean and standard error of labeling accuracy on CUB and LFW database. The performance
of the best or statistically similar (i.e., p-value ≥ 0.05 to the best performing model) models are
bold-faced. “msc” refers multi-scale prediction training and “NI” refers the noise-injection training.

Models CUB (val) CUB (test) LFW (val) LFW (test)
CNN (baseline) 4269.43 ±130.90 4329.94 ±91.71 6370.63 ±790.53 6434.09 ±756.57

GDNN (msc, NI) 3386.19 ±44.11 3450.41 ±33.36 4710.46 ±192.77 5170.26 ±166.81

GSNN (msc, NI) 3400.24 ±59.42 3461.87 ±25.57 4582.96 ±225.62 4829.45 ±96.98

CVAE (msc, NI) 801.48 ±4.34 801.31 ±1.86 1262.98 ±64.43 1267.58 ±57.92

hybrid (msc, NI) 1019.93 ±8.46 1021.44 ±4.81 1836.98 ±127.53 1867.47 ±111.26

Table 3: Mean and standard error of negative CLL on CUB and LFW database. The performance of
the best and statistically similar models are bold-faced.

We also evaluate the negative CLL and summarize the results in Table 3. As expected, the proposed
CGMs significantly outperform the baseline CNN while the CVAE showed the highest CLL.

Labeled Faces in the Wild (LFW) database [12] has been widely used for face recognition and
verification benchmark. As mentioned in [11], the face images that are segmented and labeled into
semantically meaningful region labels (e.g., hair, skin, clothes) can greatly help understanding of
the image through the visual attributes, which can be easily obtained from the face shape.

Following region labeling protocols [35, 13], we evaluate the performance of face parts labeling
on the subset of LFW database [35], which contains 1, 046 images that are labeled into 4 semantic
categories, such as hair, skin, clothes, and background. We resized images into 128× 128 and used
the same network architecture to the one used in the CUB experiment.

We provide summary results of pixel-level segmentation accuracy in Table 2 and the negative CLL
in Table 3. We observe a similar trend as previously shown for the CUB database; the proposed deep
CGMs outperform the baseline CNN in terms of segmentation accuracy as well as CLL. However,
although the accuracies of the CGM variants are higher, the performance of GDNN was not signifi-
cantly behind than those of GSNN and hybrid models. This may be because the level of variations in
the output space of LFW database is less than that of CUB database as the face shapes are more sim-
ilar and better aligned across examples. Finally, our methods significantly outperform other existing
methods, which report 90.0% in [35] or 90.7% in [13], setting the state-of-the-art performance on
the LFW segmentation benchmark.

5.3 Object Segmentation with Partial Observations
We experimented on object segmentation under uncertainties (e.g., partial input and output obser-
vations) to highlight the importance of recognition network in CVAE and the stochastic neurons for
missing value imputation. We randomly omit the input pixels at different levels of omission noise
(25%, 50%, 70%) and different block sizes (1, 4, 8), and the task is to predict the output segmenta-
tion labels for the omitted pixel locations while given the partial labels for the observed input pixels.
This can also be viewed as a segmentation task with noisy or partial observations (e.g., occlusions).

To make a prediction for CVAE with partial output observation (yo), we perform iterative inference
of unobserved output (yu) and the latent variables (z) (in a similar fashion to [24]), i.e.,

yu ∼ pθ(yu|x, z)↔ z ∼ qφ(z|x,yo,yu). (10)
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Figure 4: Visualization of the conditionally generated samples: (first row) input image with omission
noise (noise level: 50%, block size: 8), (second row) ground truth segmentation, (third) prediction
by GDNN, and (fourth to sixth) the generated samples by CVAE on CUB (left) and LFW (right).

Dataset CUB (IoU) LFW (pixel)
noise block GDNN CVAE GDNN CVAElevel size

25%
1 89.37 98.52 96.93 99.22
4 88.74 98.07 96.55 99.09
8 90.72 96.78 97.14 98.73

50%
1 74.95 95.95 91.84 97.29
4 70.48 94.25 90.87 97.08
8 76.07 89.10 92.68 96.15

70%
1 62.11 89.44 85.27 89.71
4 57.68 84.36 85.70 93.16
8 63.59 76.87 87.83 92.06

Table 4: Segmentation results with omission noise on
CUB and LFW database. We report the pixel-level ac-
curacy on the first validation set.

We report the summary results in Table 4.
The CVAE performs well even when the
noise level is high (e.g., 50%), where the
GDNN significantly fails. This is because
the CVAE utilizes the partial segmentation
information to iteratively refine the predic-
tion of the rest. We visualize the gener-
ated samples at noise level of 50% in Fig-
ure 4. The prediction made by the GDNN
is blurry, but the samples generated by
the CVAE are sharper while maintaining
reasonable shapes. This suggests that the
CVAE can also be potentially useful for in-
teractive segmentation (i.e., by iteratively
incorporating partial output labels).

6 Conclusion
Modeling multi-modal distribution of the structured output variables is an important research ques-
tion to achieve good performance on structured output prediction problems. In this work, we pro-
posed stochastic neural networks for structured output prediction based on the conditional deep
generative model with Gaussian latent variables. The proposed model is scalable and efficient in
inference and learning. We demonstrated the importance of probabilistic inference when the distri-
bution of output space has multiple modes, and showed strong performance in terms of segmentation
accuracy, estimation of conditional log-likelihood, and visualization of generated samples.
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