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Abstract
Deep learning has been successfully applied to multimodal representation learn-
ing problems, with a common strategy of learning joint representations that are
shared across multiple modalities on top of layers of modality-specific networks.
Nonetheless, there still remains a question about how to effectively learn asso-
ciations between heterogeneous data modalities; in particular, a good generative
model of multimodal data should be able to reason about missing data modality
given the rest of data modalities. In this paper, we propose a novel multimodal
representation learning framework that explicitly aims at this goal by training the
model to minimize the variation of information rather than maximizing likelihood.
We provide a theoretical insight into why the proposed learning objective is suf-
ficient to estimate the data-generating joint distribution of multimodal data. We
apply our method to restricted Boltzmann machines and introduce learning algo-
rithms based on contrastive divergence and multi-prediction training. Further, we
extend our method to deep networks with recurrent encoding for finetuning. In ex-
periments, we demonstrate the state-of-the-art visual recognition performance on
MIR-Flickr and PASCAL VOC2007 database with and without text observations.

1 Introduction
Different types of multiple data modalities can be used to describe the same event. For example,
images, which are often represented with pixels or image descriptors, can also be described with
accompanying text (e.g., user tags or subtitles) or audio data (e.g., human voice or natural sound).
There have been several applications of multimodal learning from multiple domains such as emo-
tion and speech recognition with audio-visual data [16, 24, 13], robotics applications with visual and
depth data [18, 20, 34, 26], and medical applications with visual and temporal data [29]. For each
application, data from multiple sources are semantically correlated, and sometimes provide comple-
mentary information about each other. To facilitate information exchange, it is important to capture
a high-level association between data modalities with a compact set of latent variables. However,
learning associations between multiple heterogeneous data distributions is a challenging problem.

A naive approach is to concatenate the data descriptors from different input sources to construct a
single high-dimensional feature vector and use it to solve a unimodal representation learning prob-
lem. However, the correlation between features in each data modality is much stronger than that
between data modalities. As a result, the learning algorithms are easily tempted to learn dominant
patterns in each data modality separately while giving up learning patterns that occur simultaneously
in multiple data modalities, as suggested by [24]. To resolve this issue, deep learning methods, such
as deep autoencoders [11] or deep Boltzmann machines (DBM) [27], have been adapted [24, 30],
where the common strategy is to learn joint representations that are shared across multiple modali-
ties at the higher layer of the deep network, after learning layers of modality-specific networks. The
rationale is that the learned features may have less within-modality correlation than raw features, and
this makes it easier to capture patterns across data modalities. This has shown promise, but there
still remains the challenging question of how to learn associations between multiple heterogeneous
data modalities so that we can effectively deal with missing data modalities at testing time.

One necessary condition for a good generative model of multimodal data is the ability to predict
or reason about missing data modalities given partial observation. To this end, we propose a novel
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multimodal representation learning framework that explicitly aims at this goal. The key idea is
to minimize the information distance between data modalities through the shared latent represen-
tations. More concretely, we train the model to minimize the variation of information (VI), an
information theoretic measure that computes the distance between random variables, i.e., multiple
data modalities. Note that this is in contrast to previous approaches on multimodal deep learning,
which are based on maximum (joint) likelihood (ML) learning [24, 30]. We explain as to how our
method could be more effective in learning the joint representation of multimodal data than ML
learning, and show theoretical insights why the proposed learning objective is sufficient to esti-
mate the data-generating joint distribution of multimodal data. We apply the proposed framework
to multimodal restricted Boltzmann machine (MRBM) and propose two learning algorithms, based
on contrastive divergence [23] and multi-prediction training [7]. Finally, we extend to multimodal
deep recurrent neural network (MDRNN) for unsupervised finetuning of whole network. In experi-
ments, we demonstrate the state-of-the-art visual recognition performance on MIR-Flickr database
and PASCAL VOC2007 database with and without text observations at testing time.

2 Multimodal Learning with Variation of Information
In this section, we propose a novel training objective based on the VI. We make a comparison to the
ML objective, a typical learning objective for training generative models of multimodal data, to give
an insight as to how our proposed method can be better for multimodal data. Finally, we establish a
theorem showing that the proposed learning objective is sufficient to obtain a good generative model
that fully recovers the joint data-generating distribution of multimodal data.

Notation. We use uppercase letters X,Y to denote random variables, lowercase letters x, y for
realizations. Let PD be the data-generating distribution and Pθ the model distribution parametrized
by θ. For presentation clarity, we slightly abuse the notation for Q to denote conditional
(Q(x|y), Q(y|x)), marginal (Q(x), Q(y)), as well as joint distributions (Q(x, y)). The type of dis-
tribution of Q should be clear from the context.

2.1 Minimum Variation of Information Learning
Motivated by the necessary condition for good generative models to reason about the missing data
modality, it seems natural to learn to maximize the amount of information that one data modality
has about the others. We quantify such an amount of information between data modalities using
variation of information. The VI is an information theoretic measure that computes the information
distance between two random variables (e.g., data modalities), and is written as follows:1

VIQ(X,Y ) = −EQ(X,Y )

[
logQ(X|Y ) + logQ(Y |X)

]
(1)

where Q(X,Y ) = Pθ(X,Y ) is any joint distribution on random variables (X,Y ) parametrized
by θ. Informally, VI is small when the conditional likelihoods Q(X|Y ) and Q(Y |X) are “peaked”,
meaning thatX has low entropy conditioned on Y and vice versa. Following the intuition, we define
new multimodal learning criteria, a minimum variation of information (MinVI) learning, as follows:

MinVI: minθ LVI(θ), LVI(θ) = −EPD(X,Y )

[
logPθ(X|Y ) + logPθ(Y |X)

]
(2)

Note the difference that we take the expectation over PD in LVI(θ). Furthermore, we observe that
the MinVI objective can be decomposed into a sum of two negative conditional LLs. This indeed
aligns well with our initial motivation of reasoning about missing data modality. In the following, we
provide more insight into our MinVI objective in relation to the ML objective, which is a standard
learning objective in generative models.

2.2 Relation to Maximum Likelihood Learning
The ML objective function can be written as a minimization of the negative LL (NLL) as follows:

ML: minθ LNLL(θ), LNLL(θ) = −EPD(X,Y )

[
logPθ(X,Y )

]
, (3)

and we can show that the NLL objective function is reformulated as follows:
2LNLL(θ) = KL (PD(X)‖Pθ(X)) +KL (PD(Y )‖Pθ(Y ))︸ ︷︷ ︸

(a)

+

EPD(X)

[
KL (PD(Y |X)‖Pθ(Y |X))

]
+ EPD(Y )

[
KL (PD(X|Y )‖Pθ(X|Y ))

]︸ ︷︷ ︸
(b)

+ C, (4)

1In practice, we use finite samples of the training data and use a regularizer (e.g., l2 regularizer) to avoid
overfitting to the finite sample distribution.
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where C is a constant which is irrelevant to θ. Note that (b) is equivalent to LVI(θ) in Equation (2)
up to a constant. We provide a full derivation of Equation (4) in Appendix A.

Ignoring the constant, the NLL objective has four KL divergence terms. Since KL divergence is
non-negative and is zero only when two distributions match, the ML learning in Equation (3) can
be viewed as a distribution matching problem involving (a) marginal likelihoods and (b) conditional
likelihoods. Here, we argue that (a) is more difficult to optimize than (b) because there are often
too many modes in the marginal distribution. Compared to the marginal distribution, the number of
modes can be dramatically reduced in the conditional distribution since the conditioning variables
may restrict the support of random variable effectively. Therefore, (a) may become a dominant factor
to be minimized during the optimization process and as a trade-off, (b) will be easily compromised,
which makes it difficult to learn a good association between data modalities. On the other hand, the
MinVI objective focuses on modeling the conditional distributions (Equation (4)), which is arguably
easier to optimize. Indeed, similar argument has been made for generalized denoising autoencoders
(DAEs) [3] and generative stochastic networks (GSNs) [2], which focus on learning the transition
operators (e.g., Pθ(X|X̃), where X̃ is a corrupted version of data X , or Pθ(X|H), where H can be
arbitrary latent variables) to bypass an intractable problem of learning density model Pθ(X).

2.3 Theoretical Results
Bengio et al. [3, 2] proved that learning transition operators of DAEs or GSNs is sufficient to learn
a good generative model that estimates a data-generating distribution. Under similar assumptions,
we establish a theoretical result that we can obtain a good density estimator for joint distribution
of multimodal data by learning the transition operators derived from the conditional distributions of
one data modality given the other. In the multimodal learning framework, we define the transition
operators TXn and TYn for Markov chains of data modalities X and Y , respectively. Specifically,
TXn (x[t]|x[t− 1]) =

∑
y∈Y Pθn (x[t]|y)Pθn (y|x[t− 1]), where Pθn (X|Y ) and Pθn (Y |X) are

model conditional distributions after learning from the training data of size n. TYn is defined in a
similar way. Note that we do not require that the model conditionals are derived from an analytically
defined joint distribution. Now, we formalize the theorem as follows:

Theorem 2.1. For finite state space X ,Y , if, ∀x ∈ X ,∀y ∈ Y , Pθn(·|y) and Pθn(·|x) converges in
probability to PD(·|y) and PD(·|x), respectively, and TXn and TYn are ergodic Markov chains, then,
as the number of examples n→∞, the asymptotic distribution πn(X) and πn(Y ) converge to data-
generating marginal distributions PD(X) and PD(Y ), respectively. Moreover, the joint probability
distribution Pθn (X,Y ) converges to PD (X,Y ) in probability.

The proof is provided in Appendix B. The theorem ensures that the MinVI objective can lead to
a good generative model estimating the joint data-generating distribution of multimodal data. The
theorem holds under two assumptions: consistency of density estimators and ergodicity of transition
operators. The ergodicity condition is satisfied for a wide variety of neural networks, such as RBM
or DBM.2 The consistency assumption is more difficult to satisfy, and the aforementioned deep
energy-based models or RNN may not satisfy the condition due to the model capacity limitation
or approximated posteriors (e.g., factorial distribution). However, deep architectures are arguably
among the most promising models for approximating the true conditionals from multimodal data.
We expect that more accurate approximation of the true conditional distributions would lead to better
performance in our multimodal learning framework, and we leave it for future work.

We note that our Theorem 2.1 is related to composite likelihood methods [21] and dependency
networks [9]. For composite likelihood, the consistency result is derived upon a well-defined graph-
ical model (e.g., Markov network) and the joint distribution converges in the sense that the maxi-
mum composite likelihood estimators are consistent for the parameters associated with the graphical
model. However, in Theorem 2.1, it is not necessary to design a full graphical model (e.g., of the
joint distribution) with analytical forms; for example, the two conditionals can be defined by neu-
ral networks with different parameters. In this case, the joint distribution is defined implicitly, and
the setting is similar to general dependency networks [9]. However, [9] uses ordered pseudo-Gibbs
samplers which may be unstable (i.e., inconsistencies between the local conditionals and the true
conditionals can be amplified to a large inconsistency between the model joint distribution and the
true joint distribution). In our case, we prove that the implicit model joint distribution will converge
to the true joint distribution under assumptions that can plausibly hold for deep architectures.

2For energy-based models like RBM and DBM, it is straightforward to see that every state has non-zero
probability and can be reached from any other state. However, the mixing of the chain might be slow in practice.
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3 Application to Multimodal Deep Learning
In this section, we describe the MinVI learning in multimodal deep learning framework. To overview
our pipeline, we use the commonly used network architecture that consists of layers of modality-
specific deep networks followed by a layer of neural network that jointly models the multiple modal-
ities [24, 30]. The network is trained in two steps: In layer-wise pretraining, each layer of modality-
specific deep network is trained using restricted Boltzmann machines (RBMs). For the top-layer
shared network, we train MRBM with MinVI objective (Section 3.2). Then, we finetune the whole
deep network by constructing multimodal deep recurrent neural network (MDRNN) (Section 3.3).

3.1 Restricted Boltzmann Machines for Multimodal Learning
The restricted Boltzmann machine (RBM) is an undirected graphical model that defines the distri-
bution of visible units using hidden units. For multimodal input, we define the joint distribution of
multimodal RBM (MRBM) [24, 30] as P (x, y, h) = 1

Z exp
(
−E(x, y, h)

)
with the energy function:

E(x, y, h) = −
Nx∑
i=1

K∑
k=1

xiW
x
ikhk −

Ny∑
j=1

K∑
k=1

yjW
y
jkhk −

K∑
k=1

bkhk −
Nx∑
i=1

cxi xi −
Ny∑
j=1

cyj yj , (5)

where Z is the normalizing constant, x ∈ {0, 1}Nx , y ∈ {0, 1}Ny are the binary visible units
of multimodal input (i.e., observations), and h ∈ {0, 1}K are the binary hidden units (i.e., latent
variables). W x ∈ RNx×K defines the weights between x and h, and W y ∈ RNy×K defines the
weights between y and h. cx ∈ RNx , cy ∈ RNy , and b ∈ RK are bias vectors corresponding to
x, y, and h, respectively. Note that the MRBM is equivalent to an RBM whose visible units are
constructed by concatenating the visible units of multiple input modalities, i.e., v = [x ; y].

Due to bipartite structure, units in the same layer are conditionally independent given the units of
the other layer, and the conditional probabilities are written as follows:

P (hk = 1 | x, y) = σ
(∑

i

W x
ikxi +

∑
j

W y
jkyj + bk

)
, (6)

P (xi = 1 | h) = σ
(∑

k

W x
ikhk + cxi

)
, P (yj = 1 | h) = σ

(∑
k

W y
jkhk + cyj

)
, (7)

where σ(x) = 1
1+exp(−x) . Similar to the standard RBM, the MRBM can be trained to maximize the

joint LL (logP (x, y)) using stochastic gradient descent (SGD) while approximating the gradient
with contrastive divergence (CD) [10] or persistent CD (PCD) [32]. In our case, however, we train
the MRBM in MinVI criteria. We will discuss the inference and training algorithms in Section 3.2.

When we have access to all data modalities, we can use Equation (6) for exact posterior inference.
On the other hand, when some of the input modalities are missing, the inference is intractable,
and we resort to the variational method. For example, when we are given x but not y, the true
posterior can be approximated with a fully factorized distribution Q(y, h) =

∏
j

∏
kQ(yj)Q(hk)

by minimizing the KL
(
Q(y, h)‖Pθ(y, h|x)

)
. This leads to the following fixed-point equations:

ĥk = σ
(∑

i

W x
ikxi +

∑
j

W y
jkŷj + bk

)
, ŷj = σ

(∑
k

W y
jkĥk + cyj

)
, (8)

where ĥk = Q(hk) and ŷj = Q(yj). The variational inference proceeds by alternately updating the
mean-field parameters ĥ and ŷ that are initialized with all zeros.

3.2 Training Algorithms
CD-PercLoss. As in Equation (2), the objective function can be decomposed into two conditional
LLs, and the MRBM with MinVI objective can be trained equivalently by training the two con-
ditional RBMs (CRBMs) while sharing the weights. Since the objective functions are the sum of
two conditional LLs, we compute the (approximate) gradient of each CRBM separately using CD-
PercLoss [23] and accumulate them to update parameters.3

3In CD-PercLoss learning, we run separate Gibbs chains for different conditioning variables and select the
negative particles with the lowest free energy among sampled particles. We refer [23] for further details.
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Figure 1: An instance
of MDRNN with target y
given x. Multiple iterations
of bottom-up updates (y→
h(3); Eqs. (11) & (12)) and
top-down updates (h(3) →
y; Eq. (13)) are performed.
The arrow indicates encod-
ing direction.

Multi-Prediction. We found a few practical issues of CD-PercLoss training in our application. In
particular, there exists a difference between the encoding process of training and testing, especially
when the unimodal query (e.g., when one of the data modalities is missing) is considered for testing.
As an alternative objective, we propose multi-prediction (MP) training of MRBM in MinVI criteria.
The MP training was originally proposed to train deep Boltzmann machines [7] as an alternative to
the stochastic approximation learning [27]. The idea is to train the model to be good at predicting any
subset of input variables given the rest of them by constructing the recurrent network with encoding
function derived from the variational inference problem.

The MP training can be adapted to learn MRBM with MinVI objective with some modifications. For
example, the CRBM with an objective logP (y|x) can be trained by randomly selecting the subset of
variables to be predicted only from the target modality y, but the conditioning modality x is assumed
to be given in all cases. Specifically, given an arbitrary subset S ⊂ {1, · · · , Ny} drawn from the
independent Bernoulli distribution PS , the MP algorithm predicts yS = {yj : j ∈ S} given x and
y\S = {yj : j /∈ S} through the iterative encoding function derived from fixed-point equations:

ĥk = σ
(∑

i

W x
ikxi +

∑
j∈S

W y
jkŷj +

∑
j /∈S

W y
jkyj + bk

)
, ŷj = σ

(∑
k

W y
jkĥk + cyj

)
, j ∈ S, (9)

which is a solution to the variational inference problem minQKL
(
Q(yS , h)‖Pθ(yS , h|x, y\S)

)
with factorized distribution Q(yS , h) =

∏
j∈S

∏
kQ(yj)Q(hk). Note that Equation (9) is similar to

the Equation (8) except that only yj , j ∈ S are updated. Using an iterative encoding function, the
network parameters are trained using SGD while computing the gradient by backpropagating the
error between the prediction and the ground truth of yS through the derived recurrent network. The
MP formulation (e.g., encoding function) of the CRBM with logP (x|y) can be derived similarly,
and the gradients are simply the addition of two gradients that are computed individually.

We have two additional hyper parameters, the number of mean-field updates and the sampling ratio
of a subset S to be predicted from the target data modality. In our experiments, it was sufficient to
use 10 ∼ 20 iterations until convergence. We used a sampling ratio of 1 (i.e., all the variables in
the target data modality are to be predicted) since we are already conditioned on one data modality,
which is sufficient to make a good prediction of variables in the target data modality.

3.3 Finetuning Multimodal Deep Network with Recurrent Neural Network
Motivated from the MP training of MRBM, we propose a multimodal deep recurrent neural network
(MDRNN) that tries to predict the target modality given the input modality through the recurrent en-
coding function. The MDRNN iteratively performs a full pass of bottom-up and top-down encoding
from bottom-layer visible variables to top-layer joint representation back to bottom-layer through
the modality-specific deep network corresponding to the target. We show an instance of L = 3 layer
MDRNN in Figure 1, and the encoding functions are written as follows:4

x→ h(L−1)x : h
(l)
x = σ

(
W x,(l)>h(l−1)x + bx,(l)

)
, l = 1, · · · , L− 1 (10)

y → h(L−1)y : h
(l)
y = σ

(
W y,(l)>h(l−1)y + by,(l)

)
, l = 1, · · · , L− 1 (11)

h(L−1)x , h(L−1)y → h(L) : h(L) = σ
(
W x,(L)>h(L−1)x +W y,(L)>h(L−1)y + b(L)

)
(12)

h(L) → y : h
(l−1)
y = σ

(
W y,(l)h(l)y + by,(l−1)

)
, l = L, · · · , 1. (13)

4There could be different ways of constructing MDRNN; for instance, one can construct the RNN with
DBM-style mean-field updates. In our empirical evaluation, however, running full pass of bottom-up and top-
down updates performed the best, and DBM-style updates didn’t give competitive results.
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MinVI (CD-
PercLoss)

MinVI (MP)

Figure 2: Visualization of samples with inferred missing modality. From top to bottom, we visualize ground
truth, left or right halves of digits, generated samples with inferred missing modality using MRBM with ML
objective, MinVI objective using CD-PercLoss and MP training methods.

Input modalities at test time Left+Right Left Right
ML (PCD) 1.57% 14.98% 18.88%

MinVI (CD-PercLoss) 1.71% 9.42% 11.02%
MinVI (MP) 1.73% 6.58% 7.27%

Table 1: Test set errors on handwritten digit recognition dataset using MRBMs with different training objectives
and learning methods. The joint representation was fed into linear SVM for classification.

Here, we define h(0)x = x and h(0)y = y, and the visible variables of the target modality are initialized
with zeros. In other words, in the initial bottom-up update, we compute h(L) only from x while
setting y = 0 using Equations (10), (11), & (12). Then, we run multiple iterations of top-down
(Equation (13)) and bottom-up updates (Equations (11) & (12)). Finally, we compute the gradient
by backpropagating the reconstruction error of target modality through the network.

4 Experiments
4.1 Toy Example on MNIST
In our first experiment, we evaluate the proposed learning algorithm on the MNIST handwritten
digit recognition dataset [19]. We consider left and right halves of the digit images as two input
modalities and report the recognition performance with different combinations of input modalities
at the test time, such as full (left + right) or missing (left or right) data modalities. We compare
the performance of the MRBM trained with 1) ML objective using PCD [32], or MinVI objectives
with 2) CD-PercLoss or 3) MP training. The recognition errors are provided in Table 1. Compared
to ML training, the recognition errors for unimodal queries are reduced by more than a half with
MP training of MinVI objective. For multimodal queries, the model trained with ML objective
performed the best, although the performance gain was incremental. CD-PercLoss training of MinVI
objective also showed significant improvement over ML training, but the errors were not as low as
those obtained with MP training. We hypothesize that, although it is an approximation of MinVI
objective, the exact gradient for MP algorithm makes learning more efficient than CD-PercLoss. For
the rest of the paper, we focus on MP training method.

In Figure 2, we visualize the generated samples conditioned on one input modality (e.g., left or right
halves of digits). There are many samples generated by the models with MinVI objective that look
clearly better than those generated by the model with ML objective.

4.2 MIR-Flickr Database
In this section, we evaluate our methods on MIR-Flickr database [14], which is composed of 1
million examples of images and their user tags collected from the social photo-sharing website
Flickr. Among those, 25000 examples were annotated with 24 potential topics and 14 regular topics,
which leads to 38 classes in total with distributed class membership. The topics included object
categories such as dog, flower, and people, or scenic concepts such as sky, sea, and night.

We used the same visual and text features as in [30].5 Specifically, the image feature was a 3857
dimensional vector composed of Pyramid Histogram of Words (PHOW) features [4], GIST [25], and
MPEG-7 descriptors [22]. We preprocessed the image features to have zero mean and unit variance
for each dimension across all examples. The text feature was a word count vector of 2000 most
frequent tags. The number of tags varied from 0 to 72, with 5.15 tags per example in average.

Following the experimental protocol [15, 30], we randomly split the labeled examples into 15000
for training and 10000 for testing, and used 5000 from training set for validation. We iterated the
procedure for 5 times and report the mean average precision (mAP) averaged over 38 classes.

5http://www.cs.toronto.edu/˜nitish/multimodal/index.html
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Model Architecture. We used the network composed of [3857, 1024, 1024] variables for visual
pathway, [2000, 1024, 1024] variables for text pathway, and 2048 variables for top-layer MRBM,
as used in [30]. As described in Section 3, we pretrained the modality-specific deep networks in a
greedy layerwise way, and finetuned the whole network by initializing MDRNN with the pretrained
network. Specifically, we used gaussian RBM for the bottom layer of visual pathway and binary
RBM for text pathway.6 The intermediate layers were trained with binary RBMs, and the top-layer
MRBM was trained using MP training algorithm. For the layer-wise pretraining of RBMs, we used
PCD [32] to approximate the gradient. Since our algorithm requires both data modalities during
training, we excluded examples with too sparse or no tags from unlabeled dataset and used about
750K examples with at least 2 tags. After unsupervised training, we extracted joint feature repre-
sentations of the labeled training data and use them to train multiclass logistic regression classifiers.

Model Multimodal query
Autoencoder 0.610

Multimodal DBM [30] 0.609
Multimodal DBM† [31] 0.641

MK-SVM [8] 0.623
TagProp [33] 0.640

MDRNN 0.686± 0.003

Model Unimodal query
Autoencoder 0.495

Multimodal DBM [30] 0.531
MK-SVM [8] 0.530

MDRNN 0.607± 0.005

Table 2: Test set mAPs on MIR-Flickr database.
We implemented autoencoder following the de-
scription in [24]. Multimodal DBM† is super-
vised finetuned model. See [31] for details.

Recognition Tasks. For recognition tasks, we
trained multiclass logistic regression classifiers using
joint representations as input features. Depending on
the availability of data modalities at testing time, we
evaluated the performance using multimodal queries
(i.e., both visual and text data are available) and uni-
modal queries (i.e., visual data is available while the
text data is missing). In Table 2, we report the test
set mAPs of our proposed model and compared to
other methods. The proposed MDRNN outperformed
the previous state-of-the-art in multimodal queries by
4.5% in mAP. The performance improvement becomes
more significant for unimodal queries, achieving 7.6%
improvement in mAP over the best published result.
As we used the same input features in [30], the results
suggest that our proposed algorithm learns better rep-
resentations shared across multiple modalities.

For a closer look into our model, we performed an additional control experiment to explore the ben-
efit of recurrent encoding of MDRNN. Specifically, we compared the performance of the models
with different number of mean-field iterations.7 We report the validation set mAPs of models with
different number of iterations (0 ∼ 10) in Table 3. For multimodal query, the MDRNN with 10 iter-
ations improves the recognition performance by only 0.8% compared to the model with 0 iterations.
However, the improvement becomes significant for unimodal query, achieving 5.0% performance
gain. In addition, the largest improvement was made when we have at least one iteration (from 0 to
1 iteration, 3.4% gain; from 1 to 10 iteration, 1.6% gain). This suggests that a crucial factor of im-
provement comes from the inference with reconstructed missing data modality (e.g., text features),
and the quality of inferred missing modality improves as we increase the number of iterations.

# iterations 0 1 2 3 5 10
Multimodal query 0.677 0.678 0.679 0.680 0.682 0.685
Unimodal query 0.557 0.591 0.599 0.602 0.605 0.607

Table 3: Validation set mAPs on MIR-Flickr database with different number of mean-field iterations.

Retrieval Tasks. We performed retrieval tasks using multimodal and unimodal input queries. Fol-
lowing [30], we selected 5000 image-text pairs from the test set to form a database and use 1000
disjoint set of examples from the test set as queries. For each query example, we computed the
relevance score to the data points as a cosine similarity of joint representations. The binary rele-
vance labels between query and the data points are determined 1 if any of the 38 class labels are
overlapped. Our proposed model achieves 0.633 mAP with multimodal query and 0.638 mAP
with unimodal query. This significantly outperforms the performance of multimodal DBM [30],
which reported 0.622 mAP with multimodal query and 0.614 mAP with unimodal query. We show
retrieved examples with multimodal queries in Figure 3.

6We assumed text features as binary, which is different from [30] where they modeled using replicated-
softmax RBM [28]. The rationale is that the tags are not likely to be assigned more than once for single image.

7In [24], Ngiam et al. proposed the “video-only” deep autoencoder whose objective is to predict audio data
and reconstruct video data when only video data is given as an input during the training. Our baseline model
(MDRNN with 0 iterations) is similar, but different since we don’t have a reconstruction training objective.
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skyline, indiana, 1855mm
night, city, river, night, long exposure, city, lights, buildings, nikon, night, d80, asia,

dark, buildings, skyline reflection, buildings, fireworks, skyscrapers skyline, hongkong, harbour
massachusetts, boston

sunset, explore, sun sunset, platinumphoto, sunset, sol, searchthebest, sunset canon, naturesfinest, 30dtrees, silhouette atardecer, nubes, abigfave

toys lego diy, robot toy, plastic, legokitty, miniature

Figure 3: Retrieval results with multimodal queries. The leftmost image-text pairs are multimodal query sam-
ples and those in the right side of the bar are retrieved samples with the highest similarities to the query sample
from the database. We include more results in Appendix C.

4.3 PASCAL VOC 2007
We evaluate the proposed algorithm on PASCAL VOC 2007 database. The original dataset does not
contain user tags, but Guillaumin et al. [8] have collected user tags from Flickr website.8

Motivated by the success of convolutional neural networks (CNNs) on large-scale visual object
recognition [17], we used the DeCAF7 features [6] as an input features for visual pathway, where
DeCAF7 is 4096 dimensional feature extracted from the CNN trained on ImageNet [5]. For text
features, we used the vocabulary of size 804 suggested by [8]. For unsupervised feature learning of
MDRNN, we used unlabeled data of MIR-Flickr database while converting the text features using
the new vocabulary from PASCAL database. The network architecture used in this experiment was
as follows: [4096, 1536, 1536] variables for the visual pathway, [804, 512, 1536] variables for the
text pathway, and 2048 variables for top-layer joint network.

Following the standard practice, we reported the mAP over 20 object classes. The performance im-
provement of our proposed method was significant, achieving 81.5% mAP with multimodal queries
and 76.2% mAP with unimodal queries, whereas the performance of the baseline model was 74.5%
mAP with multimodal queries (DeCAF7 + Text) and 74.3% mAP with unimodal queries (DeCAF7).

5 Conclusion
Motivated by the property of good generative models of multimodal data, we proposed a novel
multimodal deep learning framework based on variation of information. The minimum variation of
information objective enables to learn good shared representations of multiple heterogeneous data
modalities with a better prediction of missing input modality. We demonstrated the effectiveness
of our proposed method on multimodal RBM and its deep extensions and showed state-of-the-art
recognition performance on MIR-Flickr database and competitive performance on PASCAL VOC
2007 database with multimodal (visual + text) and unimodal (visual only) queries.
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Appendix
A Derivation of Equation (4)
The NLL objective function can be written as

2LNLL(θ) = −2EPD

[
logPθ(X,Y )

]
= −EPD

[
logPθ(X|Y ) + logPθ(Y )

]
− EPD

[
logPθ(Y |X) + logPθ(X)

]
= −EPD

[
logPθ(X|Y ) + logPθ(Y |X)

]
− EPD

[
logPθ(X) + logPθ(Y )

]
= LVI(θ)− EPD

[
logPθ(X)

]
− EPD

[
logPθ(Y )

]
(14)

= LVI(θ) + EPD

[
log

PD(X)

Pθ(X)

]
︸ ︷︷ ︸
KL(PD(X)‖Pθ(X))

+EPD

[
log

PD(Y )

Pθ(Y )

]
︸ ︷︷ ︸
KL(PD(Y )‖Pθ(Y ))

(15)

−EPD

[
logPD(X)

]
− EPD

[
logPD(Y )

]︸ ︷︷ ︸
C1

= LVI(θ) +KL (PD(X)‖Pθ(X)) +KL (PD(Y )‖Pθ(Y )) + C1 (16)

where Equation (14) holds by the definition of LVI(θ). Note that C1 is independent of θ. Similarly,
we can rewrite the MinVI objective as

LVI(θ) = −EPD

[
logPθ(X|Y ) + logPθ(Y |X)

]
(17)

= EPD

[
log

PD(X|Y )

Pθ(X|Y )

]
+ EPD

[
log

PD(Y |X)

Pθ(Y |X)

]
(18)

−EPD

[
logPD(X|Y )

]
− EPD

[
logPD(Y |X)

]︸ ︷︷ ︸
C2

where in Equation (18), we have

EPD

[
log

PD(X|Y )

Pθ(X|Y )

]
=
∑
y

PD(y)EPD(X|y)

[
log

PD(X|y)
Pθ(X|y)

]
(19)

= EPD(Y )

[
KL (PD(X|Y )‖Pθ(X|Y ))

]
(20)

Finally, we have
LVI(θ) = EPD(X)

[
KL (PD(Y |X)‖Pθ(Y |X))

]
+

EPD(Y )

[
KL (PD(X|Y )‖Pθ(X|Y ))

]
+ C2. (21)

C2 is independent of θ and by setting C = C1 + C2, we derive the Equation (4).

B Proof of Theorem 2.1
Proposition B.1 ([3, 2]). Assume that X is a finite state space. Let Tn and T be irreducible tran-
sition matrices that have stationary distributions πn(X) and π(X), respectively, where π(X) =
PD(X) is a data-generating distribution of X . If Tn converges to T entrywise, then πn(X) con-
verges to PD(X) entrywise.

Proof. Let |X | be the number of states of variable X . For simplicity, we denote π = π(X) and
πn = πn(X). Since the transition matrix T is irreducible, the stationary distribution π is unique. In
other words, π is characterized by the following equations:

|X |∑
k=1

Tj,kπk = πj ,∀j ∈ {1, · · · , |X |} (22)

|X |∑
k=1

πk = 1, (23)

|X |∑
j=1

Tj,k = 1,∀j ∈ {1, · · · , |X |}. (24)
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Here, (24) holds since T is a transition matrix. It is easy to see that one of the equations from (22)
is redundant; for example,

∑|X |
k=1 T|X |,kπk = π|X | can be recovered from other equations of (22),

(23), and (24). Therefore, we can combine the above system of linear equations in an equivalent
form as follows:


T1,1 − 1 T1,2 · · · T1,|X |
T2,1 T2,2 − 1 · · · T2,|X |

... · · · · · ·
...

T|X |−1,1 · · · · · · T|X |−1,|X |
1 1 · · · 1


︸ ︷︷ ︸

=T̃

π =


0
0
...
1,

 (25)

where T̃ is defined accordingly. Since π exists and is unique, the null space of T̃ must be empty and
T̃ is invertible. Now we have

π = T̃−1 [0 0 · · · 1]
> (26)

and similarly,
πn = T̃−1n [0 0 · · · 1]

>
. (27)

Since Tn converges to T entrywise, T̃n converges to T̃ entrywise, and T̃−1n also converges to T̃−1
entrywise. Therefore, we conclude πn converges to π = PD(X) entrywise [12]. Since on a finite-
dimensional space, all norms are equivalent [1], the above convergence, in fact, holds for any norm.

Now, we provide a proof of Theorem 2.1.

Proof of Theorem 2.1. To prove the convergence of marginal distributions, it is sufficient to show
the convergence of transition operators. Since |X | and |Y| are finite, for any ε > 0, δ > 0 there
exists N such that ∀n ≥ N , with probability at least 1− δ, ∀x ∈ X ,∀y ∈ Y ,

|Pθn (y|x)− PD (y|x)| < ε, |Pθn (x|y)− PD (x|y)| < ε

The transition operators are defined as follows:

TYn (y[t]|y[t− 1]) =
∑
x∈X

Pθn (y[t]|x)Pθn (x|y[t− 1]) ,

TY (y[t]|y[t− 1]) =
∑
x∈X

PD (y[t]|x)PD (x|y[t− 1]) .

For data-generating distribution, PD (x|y) and PD (y|x) are derived from PD (x, y). Then, for ∀n ≥
N , we have, for any yt, yt−1 ∈ Y , with probability at least 1− δ,∣∣∣ TYn (yt|yt−1)− TY (yt|yt−1)

∣∣∣
≤
∣∣∣ ∑
x∈X

Pθn (yt|x)Pθn (x|yt−1)− PD (yt|x)PD (x|yt−1)
∣∣∣

≤ |X |max
x∈X

∣∣∣Pθn (yt|x)Pθn (x|yt−1)− PD (yt|x)PD (x|yt−1)
∣∣∣ (28)

≤ |X | (2ε)
As we assume finite sets X and Y , this proves the convergence (in probability) of transition operator
TYn to TY . The same argument holds for the convergence of transition operator TXn to TX . Together
with Proposition B.1, we have proved the convergence of asymptotic marginal distribution πn(X)
and πn(Y ) to data-generating marginal distributions PD(X) and PD(Y ), respectively.

Now, let’s look at the joint probability distributions Pθn (x, y) = Pθn(x|y)Pθn(y) and similarly,
PD (x, y) = PD(x|y)PD(y). From a similar argument as above, with probability at least 1 − δ,
there exists N ′ such that the following inequalities hold ∀n ≥ N ′, ∀x ∈ X ,∀y ∈ Y:∣∣∣Pθn(y)− PD(y)∣∣∣ < ε,

∣∣∣Pθn (x|y)− PD (x|y)
∣∣∣ < ε (29)
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Therefore, using the similar argument in Equation (28), we have∣∣∣Pθn(x, y)− PD(x, y)∣∣∣ < 2ε (30)

and this completes the proof.
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C Retrieval Task

We provide more results of retrieval task with multimodal queries on MIR-Flickr database.

sky, night, clouds, space sky, night, stars sky, night, mountains, stars, fab 2007
nikon, nature, sky, night, landscape,

impressedbeauty, d300, dark,
longexposure, colorado, stars

2007, beauty, hair, friend bw, portrait, blackandwhite, blackandwhite, selfportrait, bw, portrait, photo 2007, maygirl, nikon80 happy, mac, makeup

studio, craft, room home, toys, interior, bed, books, decor chair design, studio studio, craft

puppy cute, puppy puppy dog explore

skyline, indiana, 1855mm night, city, river, night, reflection, longexposure, city, lights, buildings, nikon, night, d80, asia,
dark, buildings, skyline buildings, massachusetts, boston fireworks, skyscrapers skyline, hongkong, harbour

portrait, me portrait, man, colours selfportrait, me, 365days, 365, self selfportrait, 365days, 365 portrait, girl, woman, birthday

portrait, explore, portrait london, uk bw, halloween blackandwhite, milanblackwhite, portraits

white, me bw, selfportrait, me, layers
bw, blackandwhite, selfportrait,

de bw, selfme, 365days, photoshop, self,
face, head, myself, me

blue, night, city, explore,

nyc, newyorkcity citynyc, newyork, lights, newyorkcity, night, lights, new, york, sunset, chicago, tower,
manhattan, ny, skyline, exposure, noche, long, pier skyline, dusk, skyscraper

cityscape, twilight, skyscrapers

sunset, explore, sun sunset, trees, atardecer, sunset, abigfave, sunset canon, naturesfinest, 30dplatinumphoto, silhouette searchthebest, nubes, sol
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home, modern, chair chair
california, home, design, ca,

home deskday, interior, rainbow, chair,
books, library, apartment, decor

knitting desk home design, studio window, house, door, books

apple, ipod iphone, macbook nyc, newyorkcity, pro canoneos350d iphone

car, ford, gt, estate car, british carshow car carshow

toys lego diy, robot toy, kitty, plastic, miniature lego

blackandwhite, selfportrait, selfportrait, 365days, bw, portrait, nikon40, hands bw, chile, mujer light, window, blackandwhitebw, 365days, symmetry blackandwhite, dancing

portrait, blackandwhite, nikon, bw, portrait,
bw, portraits

bw, portrait, japan,
bw, blackandwhite, bn, milangirl, newyork, best blackandwhite, 365days, music, beautiful, fuji, face

self, friends, d50, hair

portrait, 365days, 365, self november selfportrait, 365days, 365 self me

laptop work, mac, lighting, computer, desk books, diy pen iphone, apple, mac, ipod, macbook

graffiti, streetart, graffiti, portugal, streetart, graffiti, 2007, graf, graffiti, 2007, graf, graffiti, nyc, streetartchile, rio lisboa, lisbon tags, graff tags, graff

Figure 4: Retrieval results with multimodal queries on MIR-Flickr database. The leftmost image-text pairs are
multimodal queries and those in the right side of the bar are retrieved samples with the highest similarities to
the query.
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