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Summary. 3d reconstruction from a single image is inherently an ambiguous prob-
lem. Yet when we look at a picture, we can often infer 3d information about the
scene. Humans perform single-image 3d reconstructions by using a variety of single-
image depth cues, for example, by recognizing objects and surfaces, and reasoning
about how these surfaces are connected to each other. In this paper, we focus on the
problem of automatic 3d reconstruction of indoor scenes, specifically ones (some-
times called “Manhattan worlds”) that consist mainly of orthogonal planes. We use
a Markov random field (MRF) model to identify the different planes and edges in
the scene, as well as their orientations. Then, an iterative optimization algorithm is
applied to infer the most probable position of all the planes, and thereby obtain a 3d
reconstruction. Our approach is fully automatic—given an input image, no human
intervention is necessary to obtain an approximate 3d reconstruction.

1 Introduction

When viewing a single image such as that in Figure 1, most humans have little
trouble estimating the 3d shape of the scene. Given only a single image, depths
are inherently ambiguous, and thus 3d reconstruction cannot be achieved us-
ing naive, geometry-only approaches such as a straightforward implementation
of stereopsis (binocular vision). In this paper, we consider the task of monoc-
ular (single camera) 3d reconstruction, specifically of indoor scenes consisting
mainly of orthogonal planes. Our motivation for studying the monocular 3d
reconstruction problem is two-fold. First, although one may envision systems
that use both monocular and binocular cues, as a scientific endeavor we find
it most enlightening to focus exclusively on monocular vision; specifically, this
allows us to try to elucidate how monocular cues—which have heretofore been
little-exploited in automatic 3d reconstructions—can be used. Second, we con-
sider monocular 3d reconstruction to be interesting and important in its own
right. For example, unlike stereo vision, it works well even at large distances
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(if, say, the images are taken through a zoom lens). In contrast, stereo vision
is fundamentally limited by the baseline distance between the two cameras,
and performs poorly when used to estimate depths at ranges that are very
large relative to the baseline distance.

Fig. 1. Single camera image of a corridor.

Apart from stereopsis, there are many other algorithms that use multiple
images to estimate depths, such as structure from motion [23] and shape from
defocus [8]. These methods suffer from similar problems to stereopsis when
estimating depths at large ranges. A number of researchers have attempted
to recover 3d information from a single image. Shape from shading [25] is
one well-known approach, but is not applicable to richly structured/textured
images such as that in Figure 1. For such indoor images, methods based on
“3d metrology” hold some promise. Given sufficient human labeling/human-
specified constraints, efficient techniques can be used to generate a 3d recon-
struction of the scene. [5, 6, 21, 22] However, these methods tend to require
a significant amount of human input (for example, specifying the correspon-
dences between lines in the image and the edges of a reference model), and
are thus limited in their applicability.

Recent work strongly suggests that 3d information can be efficiently re-
covered using Bayesian methods that combine visual cues with some prior
knowledge about the geometry of a scene. For example, Kosaka and Kak [13]
give a navigation algorithm that allows a monocular robot to track its position
in a building by associating visual cues, such as lines and corners, with the
configuration of hallways on a floor plan. However, this approach would fail in
a new environment in which such a floor plan is not available beforehand. A
more flexible algorithm, due to Han and Zhu [11], used models both of man-
made “block-shaped objects” and of some natural objects, such as trees and
grass. Unfortunately, this approach has so far been applied only to fairly sim-
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ple images, and seems unlikely to scale in its present form to complex, textured
images as shown in Figure 1. Saxena, Chung and Ng [19] apply an MRF to
directly estimating depths from a monocular image, focusing mainly on un-
structured (for example, outdoor) scenes. (See also [18].) The “Manhattan
world” assumption [3, 4] (i.e., that the environment contains only orthogonal
planes, as in many urban environments) has been used to develop algorithms
for estimating camera calibration parameters [20] and camera pose [3, 4] from
complex images. In this paper, we exploit this same assumption to obtain
single-image 3d reconstructions.

(a) (b)

Fig. 2. 3d reconstruction of a corridor from single image presented in figure 1.

Our approach uses a Markov random field (MRF) to estimate whether each
point in an image represents a surface or an edge, and also the orientation of
the surface or edge. Using this information, we then use an iterative algorithm
to try to infer the 3d reconstruction of the scene. Figure 2 shows an example
of our algorithm’s output, generated fully automatically from the image in
Figure 1. To our knowledge, our work represents the first fully automatic
algorithm for 3d reconstruction from single indoor images.

The remainder of this paper is structured as follows. In Section 2, we
describe the basic geometric calculations used by our algorithms. Section 3
presents the MRF model; and Section 4 then describes how we compute a 3d
reconstruction from the MRF’s output. In Section 5, we present experimental
results.

2 Preliminaries

We make the following assumptions:
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1. The image is obtained by perspective projection, using a calibrated cam-
era1 with calibration matrix K. Thus, as presented in Figure 3, a point
Q in the 3d world is projected to pixel coordinate q (represented in ho-
mogeneous coordinates) in the image if and only if:2

Q ∝ K−1q. (1)

2. The objects in the image are composed of planes in each of three mutually
orthogonal orientations. Thus, the image also contains three vanishing
points corresponding to three different directions (one of them orthogonal
to the floor plane).3

3. The camera’s vertical axis is orthogonal to the floor plane, and the floor
is in the lower part of the image.(Figure 3)4

4. The camera center (origin of the coordinate frame) is at a known height
above the ground.5

Assumption 2 is often called the Manhattan world assumption [3].
In an image that has no occluding edges, the assumptions above are suffi-

cient to ensure that the full 3d geometry of a scene is exactly specified, given
only a segmentation of the scene into surfaces (together with labels indicating
the surfaces’ orientations). Thus, knowledge of the segmentation and orien-
tations is sufficient to unambiguously reconstruct the 3d location of every
pixel in the image. This result is a completely straightforward consequence of
perspective geometry. Still assuming the absence of occluding edges, we now
describe how this 3d reconstruction can be obtained.

First, by perspective projection, the 3d location Qi of a pixel at position
qi in the image plane must satisfy:

Qi = λiK
−1qi (2)

1 A calibrated camera means that the orientation of each pixel relative to the optical
axis is known.

2 Here, K, q and Q are as follows:

K =

[
f 0 ∆u

0 f ∆v

0 0 1

]
, q =

[
u
v
1

]
, Q =

[
x
y
z

]
.

Thus, Q is projected onto a point q in the image plane if and only if there is
some constant λ so that Q = λK−1q.

3 Vanishing points in the image plane are the points where lines that are parallel in
the 3d space meet in the image. In a scene that has mainly orthogonal planes—
such as in many indoor scenes—most edges (in the 3d world) will lie in one of
three possible directions, and thus there will be three vanishing points in the
image.

4 Small misalignments of the camera’s vertical axis can also be easily compensated
for (e.g., see [3, 4]).

5 If the height of the camera is unknown, then the 3d reconstruction will be deter-
mined only up to an unknown scaling factor.
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Fig. 3. Coordinate system used by algorithm.

for some λi. Thus, Qi is restricted to a specific line that passes through the
origin of the camera. Further, if this point lies on some plane p that has normal
vector np, then we have

np ·Qi = λi np · (K−1qi) = dp, (3)

where dp is the distance of the plane from the camera center (the origin of
the 3d coordinate frame). Thus, λi can be exactly determined given only dp;
and therefore estimating the position of every pixel in the image reduces to
the problem of finding dp for all planes p.

Since we assumed that there are no occluding edges, every two adjacent
pixels in the image are also physically adjacent in 3d.6 Since each point qi

(with variable λi) is part of some plane, each variable λi is constrained by
at least one equation of the form in Equation (3). Moreover, if there are no
occluding edges in the image, then the points lying on the boundary of two
adjacent/connected planes participate in two different constraints (one for
each of the two neighboring planes). By incorporating assumption 4, we also
know the distance dp from the floor plane to the camera. Except in degenerate
cases, this is sufficient to ensure that, treating the λi and dp as variables, the
system of equations given in Equation (3) are sufficiently constrained to have
a unique solution.

The process described above required knowledge of the segmentation of
the scene into planes as well as knowledge of the orientation of the planes. In
Section 3, we describe an algorithm for estimating these quantities. Further-
more, the assumption that there are no occluding edges will often fail to hold
6 Section 4 will address the case of occluding edges.
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in indoor scenes; in Section 4, we describe a reconstruction algorithm that
applies even in the presence of occluding edges.

3 Markov random field model

Given an image of a scene comprising planes in three mutually orthogonal
directions, there are standard algorithms for recovering the three vanishing
points in the image. (E.g., [17, 20]) We use [20] to identify these vanishing
points; by doing so, we also identify the three possible orientations for the
planes nfloor, n1, and n2 (one orthogonal to each of the vanishing point
directions).

In our Manhattan world, the edges (boundaries) of a plane cannot be
oriented in the same direction as its normal. If there is no occlusion, this
gives us a constraint on the possible directions for the edges of a surface. (For
example, the floor should not be bordered by edges that point upwards in the
direction nfloor). Our MRF model will incorporate this constraint.

Our MRF is structured as a 320*240 grid (each node corresponding to a
different position in the image). Each node corresponds to a random variable
that takes on one of 6 possible values, that indicate whether the node is on
a line pointing toward one of the three vanishing points (labels e1, e2, e3),
or whether it lies on a plane whose normal is oriented in one of the three
orthogonal directions (labels p1, p2, p3). Figure 4 shows the 6 labels. The
MRF models the joint probability distribution of this 320*240 grid of label
values; and will be used to infer the most likely set of labels given a new
image.

Fig. 4. The 6 possible labels for the MRF nodes (points in the 2d image).
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(a) (b) (c) (d)

Fig. 5. Example of features extracted from an image. (a) The input image. (b)
A mask identifying the floor pixels. (c) Lines extracted using [16] and classified
according to their orientations. (d) Labeling of each pixel with the direction of the
edge in (c) which is closest in the same row or column.

3.1 MRF features

This section briefly describes the image features used in our MRF model.

Edge statistics features

Statistics about edges were computed using the Canny edge detector [2], the
phase congruence [15], and Sobel edge filter [10]. Using the orientation of
intensity gradients, we also determined for each location the most likely van-
ishing point of each edge. Line extraction algorithms from [14] and [16] were
used to obtain a list of lines in the image (generating two different sets of
features). Each line was also identified according to its vanishing point.7 We
also created additional features based on the nearby edges’ orientations.8

Segmentation-based features

Surfaces often have fairly uniform appearances in texture and color, and thus
image segmentation algorithms provide another set of useful features. Specif-
ically, pixels that are members of the same segmented group should usually
be labeled with the same orientation. We used a graph-based segmentation
algorithm [9] to generate a partition of the image, and assigned a unique iden-
tifier to each partition output by the segmentation algorithm. For each pair
of adjacent nodes in the grid, we also generated a pairwise/relational feature
in our MRF model indicating whether the nodes were members of the same
partition of the image.

7 Lines which diverged from all three vanishing points were discarded. Some lines
whose 3d orientations were ambiguous were assigned to two vanishing points.

8 At a given position in the image, we add an extra feature corresponding to the
orientation of the closest line (measured either in the same row or column) in the
image. (See Figure 5d.) We also created additional features corresponding to the
second and third closest lines.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Results from DBN floor segmentation algorithm of [7]. (a),(d) original image.
(b),(e) floor mask. (c),(f) 3d reconstruction (obtained assuming presence only of floor
and walls in image).

Floor segmentation features

Since many planes (e.g., most walls) are connected to the floor, correct labeling
of the floor plane plays an important role in 3d reconstruction. Building on
our earlier work [7], we used a dynamic Bayesian network (DBN) to identify
the floor boundary in the image plane. Our DBN is a probabilistic model that
incorporates a number of local image features, and tries to reason about the
chroma of the floor, the position of the floor boundary in each column of the
image, and the local direction of the floor boundary. The DBN output is then
used to generate a “floor mask” feature indicating whether each pixel was
identified as part of the floor.9 (See Figure 5b.)

In [7], it was shown that if the image contains only the floor and vertical
walls, then (under mild assumptions) knowledge of this floor boundary is
sufficient to give a complete 3d reconstruction of the scene. The basic idea is
that, given the camera height and orientation, every point in the ground plane
can be reconstructed exactly. Then, because the position of each point on the
boundary between the floor and each wall is now known (because these points
also comprise part of the ground plane), we also now know the 3d position
of the lower-edge of each wall. This is sufficient to exactly reconstruct the
position of each wall. Figure 6 shows some examples of results obtained using
this procedure. We note, however, that this procedure does not apply to scenes

9 Two additional features were created using the DBN output: one to identify edges
of the floor boundary; the other to identify sharp changes in direction of the floor
boundary (which are often indicative of a transition between two wall planes).
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that have other orthogonal surfaces (e.g., the top surfaces of desks and filing
cabinets), such as in the Manhattan worlds considered in the present paper.

3.2 MRF parameterization

Fig. 7. Markov random field model over the image.

As discussed previously, each node can take on one of 6 possible label
values: 3 for plane orientations (labels p1, p2, p3) and 3 for edge orientations
(labels e1, e2, e3).10 We used a grid-structured Markov random field. Figure 7
shows the structure of the MRF. We use V to denote the set of nodes in the
model, and E to denote the edges. Let yv ∈ {p1, p2, p3, e1, e2, e3} denote the
value associated with vertex v ∈ V , and let xv denote the vector of features
computed at position v in the image (and similarly xu,v be computed from
positions u and v). The MRF defines a joint probability distribution over all
label assignments y:

Pθ(y|x) =
1

Zθ(x)
exp


−

∑

v∈V

Ψ1(yv, xv; θ1)−
∑

(u,v)∈E

Ψ2(yu, yv, xu,v; θ2)


 .

(4)
Here, Ψ1 is the potential function for individual nodes, Ψ2 gives the pairwise
potentials in the MRF, θ = [θ1, θ2] are the parameters of the model, and Zθ(x)
is the partition function.

Using the features described in Section 3.1, we chose Ψ1(yv, xv; θ1) to be a
weighted linear combination of features indicative of the label at a vertex v:11

10 A plane with orientation pi has a normal in direction ei. Thus, a plane with
orientation p1 would typically be bordered by edges of type e2 and e3

11 For example, given a specific edge-based feature C1(v, xv) from Section 3.1 (one
that is indicative of whether an edge at position v heads towards e1), we create
the following MRF features:
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Ψ1(yv, xv; θ1) = θT
1 · Φ(yv, xv). (5)

Similarly, we used

Ψ2(yu, yv, xu,v; θ2) = θT
2 · Φ(yu, yv, xu,v), (6)

where Φ(yu, yv, xu,v) were chosen to be features indicative of whether yu and
yv are likely to be the same label (e.g., the segmentation-based feature of
Section 3.1). We also included features in the pairwise potential that measure
“consistency” between the plane and the edge orientations.12 For example,
these features can be used to help capture the fact (discussed earlier) that a
plane with normal pi is unlikely to be bordered by edges of orientation ei.

Putting all the features together, Φ(yv, xv) was a 75 dimension vector, and
Φ(yu, yv, xu,v) was a 9 dimension vector.

3.3 Training and inference

In order to train the model parameters θ1 and θ2, we hand-labeled two images
with their ground-truth labels y. This set of two images made up our training
set. Unfortunately, maximum likelihood parameter learning is intractable in
grid-structured MRF models; thus we learned the parameters using an objec-
tive similar to pseudo-likelihood.13 [1]

Φ1(yv, xv) = C1(v, xv)× 1{yv = e1}
Φ2(yv, xv) = C1(v, xv)× 1{(yv = e2) ∨ (yv = e3)}
Φ3(yv, xv) = C1(v, xv)× 1{(yv 6= e1) ∧ (yv 6= e2) ∧ (yv 6= e3)},

12 For example:

Φ1(yu, yv, xu,v) = 1{yu = plane ∧ yv = yu}
Φ2(yu, yv, xu,v) = 1{yu = plane ∧ yv = plane ∧ yu 6= yv}
Φ3(yu, yv, xu,v) = 1{yu = edge ∧ yv = edge}

Φ4(yu, yv, xu,v) =

3∑
i=1

1{yu = pi ∧ yu = ei}

Φ5(yu, yv, xu,v) =

3∑
i=1

1{yu = pi ∧ yv = edge ∧ yu 6= ei}

13 In our experiments, straightforward pseudo-likelihood (or generalized pseudo-
likelihood [12] using small clusters of nodes) did not work well. Our parameters
were actually learned using a product approximation over 3-node networks. More
formally, we used:

max
θ

∏
(u,v,w)∈F

P̂θ(yu, yv, yw|x),
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Finally, after learning the parameters, the inference task in our Markov
random field is to compute the most likely set of labelings, given a feature
vector x from a new image:

ŷ = arg max
y

Pθ(y|x), (7)

Exact inference in a grid-structured MRF is intractable. We approximated
this using the algorithm of Wainwright et al. [24].

4 Using the MRF output for 3d reconstruction

We now address the problem of 3d reconstruction given an image in which the
planes have been segmented and labeled with their orientations, for example
by our MRF. Sturm and Maybank [22] proposed an algorithm for a similar
problem, and demonstrated good 3d reconstruction given human-labeled im-
ages. However, their algorithm is not directly applicable to an image labeled
by our MRF, as it requires that occlusion vs. non-occlusion edges be labeled
(i.e., labels indicating whether two adjacent planes in the image are physically
connected in 3d). This is difficult to infer from local image features, and is
not part of the information output by our MRF. Their algorithm has also
been tested only on instances with perfectly correct human-generated labels.
We now present an algorithm, a modification and generalization of Sturm
and Maybank’s algorithm, for 3d reconstruction from an image given possibly
noisy labels of the planes and edges.

If we examine an individual “edge” point qi that is on the boundary be-
tween two planes p and p′, this point can either be part of an occluding edge
between the two planes or part of an edge that physically connects the two
planes p and p′. Therefore, in the latter case we would want to find a 3d
reconstruction where the following distance is small:

∆i,p,p′ = ‖Qi,p −Qi,p′‖2.

Here, Qi,p (respectively Qi,p′) is the 3d position in the plane of p (respec-
tively p′) that would appear at position qi in the image plane. Thus, we can
informally think of ∆i,p,p′ as the distance between (two specific points on) the
planes p and p′.

Thus argument above applies if an edge is known to be non-occluding.
However, it is usually not obvious if an edge is indeed occluding, and thus

where

P̂θ(yu, yv, yw|x) =
1

Ẑθ(x)
exp

(
−

∑
i∈{u,v,w}

Ψ1(yi, xi; θ1)−
∑

(i,j)∈{(u,v),(v,w)}

Ψ2(yi, yj , xi,j ; θ2)

)
.

Above, F is set of randomly sampled regions of three connected vertices.
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occlusion vs. non-occlusion must be inferred. We model the distance ∆i,p,p′

using a Laplacian probability distribution parameterized by αp,p′ :

Pαp,p′ (∆i,p,p′) = αp,p′ exp(−αp,p′∆i,p,p′), ∀ i ∈ Rp,p′ , (8)

where Rp,p′ is the set of (indices of) points that are on the boundary between
the planes p and p′.

To form a 3d reconstruction, we will try to maximize the log-likelihood of
d, λ, Q and α, given the MRF labeling of the planes and edges. More formally,
we have:

maximized,λ,Q,α

∑
(p,p′)∈B

∑
i∈Rp,p′

log Pαp,p′ (‖Qi,p −Qi,p′‖2)
subject to Qi,p = K−1qiλi,p , ∀ (i, p)

dp = nT
p K−1qiλi,p , ∀ (i, p)

dfloor = c ,

(9)

where B is the set of pairs (p, p′) of planes that share a common boundary in
the image.

We apply an efficient alternating maximization algorithm to this optimiza-
tion problem. For fixed α, maximizing the objective over d, λ and Q reduces
to a linear program:

minimized,λ

∑
(p,p′)∈B

∑
i∈Rp,p′

wi,p,p′ |λi,p − λi,p′ |
subject to dp = nT

p K−1qiλi,p , ∀ (i, p)
dfloor = c ,

(10)

where wi,p,p′ = αp,p′‖K−1qi‖2. For fixed d, λ and Q, we can maximize over
α in closed form:14

αi,j =

∑
i∈Rp,p′

1
∑

i∈Rp,p′
‖Qi,p −Qi,p′‖2 . (11)

We iterate updating d, λ and Q; and updating α, until convergence.15

Sturm and Maybank’s method—which relied on known occlusion edges—
can roughly be viewed as a variant of our algorithm in which a Gaussian
14 Using a heuristic reminiscent of Laplace smoothing, we actually add 0.5 to the

denominator, and 5 to the numerator. This smooths the estimates, and also pre-
vents a small denominator from causing αp,p′ from growing without bound. To
help the search procedure, we also used a heuristic in which αfloor,p′ (and αp,p′

for horizontal edges) were initialized to be large. Edges that appeared clearly to
be occluding, specifically ones parallel to the normal of a plane, were discarded
from the optimization (or, less formally, had αp,p′ set to an infinitesimally small
value).

15 Other details: During the reconstruction, we also discard the ceiling plane. Also,
all planes that were reconstructed as lying outside a reasonable range (a 10m
× 10m × 50 m box in front of the camera) were considered outliers, and also
discarded.
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(instead of Laplacian) model with a fixed variance parameter (rather than
the variable α) is used. [19] found Laplacians to be a superior model than
Gaussians for modeling differences between distances. In our experiments (de-
scribed in Section 5), we also find the Laplacian to outperform the Gaussian.

5 Experimental results

We applied our algorithm to a test set of 15 images obtained using a cali-
brated digital camera in 8 different buildings (all of which had fairly different
interior decoration themes from each other, and from the building from which
the training set images were taken). Since the test set buildings contained
a diverse range of orthogonal geometries (boxes, doors, hallways, cabinets,
etc.), we believe that the results we present are indicative of the algorithm’s
performance on images of new (Manhattan world) buildings and scenes.

Figures 9 shows the labeling obtained by the MRF on 6 images from the
test set, as well as the resulting 3d reconstructions. Even in fairly complex
environments or ones that do not perfectly respect the Manhattan world as-
sumption, the algorithm is still able to label most of the planes correctly, and
obtain reasonable 3d reconstructions.

We also evaluate the algorithm more formally. First, using a hand-labeling
of the test set images, we measure the labeling error rate of the MRF. The
overall accuracy of the MRF is 79.6%. Given that there are 6 possible labels
for each pixel, random guessing would have obtained 16.7% accuracy. Table 1
shows a further breakdown of these results by planes and edges.16 Although
our precision on edges was surprisingly low, this appears to be a consequence
of only a very small fraction of the pixels being edge pixels, and did not seem
to significantly affect the final reconstruction performance.

Table 1. MRF labeling errors on test set images

planes edges

Recall 80.6% 65.7%
Precision 89.1% 29.0%

Using a careful hand-labeling of the test set images (including both plane
orientations and occluding edges), we also generated a full ground-truth 3d re-
construction of the test set scenes. We then measured the average errors in the
reconstructed distances, for pixels at different ground-truth distances from the
camera. These statistics do not include planes that were discarded during the
16 Recall is the fraction of plane/edge labels that we labeled correctly. Precision is,

out of all the times we predicted a specific label, the fraction of times that the
prediction was correct.
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reconstruction, and thus might reflect a slightly overoptimistic performance
metric, but nonetheless represents a fair comparison between the different al-
gorithms.17 The results are shown in Figure 8. We also compare the Laplacian
model with a Gaussian one (that, similar to our procedure for learning αp,p′ ,
tries to adapt its variance parameters), and with an implementation of Sturm
and Maybank’s algorithm that assumes there are no occluding edges. When
performing 3d reconstruction using our MRF’s output labels, the Laplacian
model appears to perform best.
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Fig. 8. Errors in 3d reconstructions, for pixels at different ground-truth distances
from the camera.

6 Summary

We have presented an algorithm for fully automatic 3d reconstruction of in-
door Manhattan world scenes from a single image. Our method uses an MRF
to label each pixel as belonging to one of three plane orientations or one of
three edge orientations. Given the MRF model’s outputs, we use a Laplacian
probabilistic model to infer a 3d reconstruction. Our experimental results
show the algorithm performing well on a number of indoor scenes, even ones
very different from the training set images. The work presented in this paper

17 See footnote 15 for details. Given the MRF output, all three algorithms discard
(the same) 4% of pixels as belonging to the ceiling; 22% of pixels labeled as edges
(whose distance is truly ambiguous, since they can be reconstructed as lying on
either of two planes); and under 1% as outliers (reconstructed as lying outside
the box described in footnote 15).
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was restricted to Manhattan worlds, and it remains an important problem to
generalize these ideas to other scenes. More generally, we believe that monoc-
ular depth estimation holds significant promise, and it remains an important
problem to develop algorithms that exploit other single-image cues for depth
estimation.
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Fig. 9. Inferred 3d reconstructions of test set indoor scenes. Left column: Input
image. Middle column: Labeling generated by MRF (red, green and blue correspond
to the three plane orientations; black corresponds to all three edge orientations).
Right column: Resulting 3d reconstructions.


