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Abstract— Legged robots can, in principle, traverse a large
variety of obstacles and terrains. In this paper, we describe a
successful application of reinforcement learning to the problem
of negotiating obstacles with a quadruped robot. Our algorithm
is based on a two-level hierarchical decomposition of the task,
in which the high-level controller selects the sequence of foot-
placement positions, and the low-level controller generates the
continuous motions to move each foot to the specified positions.
The high-level controller uses an estimate of the value function to
guide its search; this estimate is learned partially from supervised
data. The low-level controller is obtained via policy search. We
demonstrate that our robot can successfully climb over a variety
of obstacles which were not seen at training time.

I. INTRODUCTION

While wheeled vehicles (such as cars and trucks) are very
fuel efficient, legged robots can, in principle, climb over much
larger obstacles relative to the size of the robot, and thereby
access significantly more difficult terrain. In this paper, we
apply reinforcement learning to develop a novel controller for
a quadruped robot so as to enable it to negotiate a wide variety
of obstacles, including ones that had not been previously seen
during training.

In related work, some other researchers have focused on
clever mechanical design of legs that automatically adapt to
terrains [1], [2]. Bai et al. [3] proposed a rule-based algorithm
for generating gaits to step onto (and over) small obstacles,
and demonstrated them in simulation. There has also been
work on adaptive gaits for quadruped robots based on “central
pattern generators” [4]–[8]. However, these gaits have mainly
been applied to traversing rough surfaces, rather than climbing
over large/discrete obstacles. Moore et al.’s hexapod (six-
legged) RHex robot is capable of climbing up steps, but
does so using ingenious mechanical design in which large,
circular, “wheel-like” legs flail at the obstacles, rather than
through careful balance and coordination [9], [10]. There
are also several robots that rely on hopping to climb up
steps, e.g., Raibert’s biped robot [11] and Poulakakis et al.’s
galloping robot [12]. Bretl et al.’s vertical climbing robot
successfully applied motion planning to robot climbing [13].
Their algorithm relied on computing statically stable poses
for vertical climbing, and does not immediately apply to
more general obstacle negotiation tasks. Learning algorithms
have been successfully applied to a few legged locomotion

problems, for example [14]–[16]. But these methods have been
demonstrated to work only on flat terrain in which the same
(periodic) gait could be repeated without taking into account
possible obstacles in the path. Kim et al. [17] proposed an
algorithm for walking and climbing in 3d environments, but
specifically for a robot whose feet had strong suction pads.
Chestnutt et al. [18] used hierarchical planning to deal with
obstacle avoidance, but considered only 2D path planning and
3D obstacle avoidance (“stepping” over small obstacles), and
not the more difficult task of climbing over obstacles.

Our method is based on hierarchical reinforcement learn-
ing [19]–[22] using a two-level hierarchical decomposition of
the task. Given an obstacle (such as a step) that the robot
needs to climb over, the high-level planner selects a sequence
of “target foot placement positions” for the robot, one foot at
a time. It is then the low-level controller’s task to move the
feet to these targets in order, while keeping the robot balanced
and preventing the legs from hitting any obstacles.

The low-level controller operates on a very short temporal
scale, in a problem which requires fine coordination and bal-
ance, but does not require careful multi-step reasoning. Policy
search algorithms [23] with simple parameterized policies
apply well to such problems; we use it to learn the low-level
controller.

In contrast, the high-level controller has to plan a sequence
of foot placement positions, and must reason on significantly
longer timescales. We build a high-level controller using value
function approximation and beam search. In detail, a value
function indicates the relative “desirability” of different states
in the problem. We learn a value function using a novel
reinforcement learning algorithm, one that also makes use
of some supervised information. We then apply beam search
with the learned value function to find the sequence of foot
placements that maximizes the reward. This sequence is then
executed by the low-level controller.

Hierarchical reinforcement learning algorithms have been
applied to a number of other problems, for example various
grid-world variants (e.g., [22]). To our knowledge, it has not
previously been successfully applied to any continuous state-
space problems of comparable size and complexity to ours.



Fig. 1. Quadruped robot

II. QUADRUPED ROBOT MODEL

The quadruped robot used in this work is shown in Figure 1.
The robot is approximately 10cm tall, 28cm wide, and 12cm
long, and weighs 500 grams. Each leg has three servomotors,
two at the hip joint for rotating the upper segment of each leg
forward/backward or up/down; and one at the knee joint for
rotating the lower segment of each leg inward/outward. The
servos have a maximum torque 3.0 kg-cm, and may fail to
move to the commanded position if the torque is insufficient.
The task is to send the right sequence of commands (target
angles) to these servos that enable the robot to climb up an
obstacle.

The state of the robot is completely determined by its
position (x, y, z); orientation (roll ψ1, pitch ψ2, yaw ψ3);
the twelve joint angles ξ1, ... , ξ12, and the corresponding
velocities and angular velocities ẋ, ẏ, ż, ψ̇1, ψ̇2, ψ̇3, ξ̇1, ...,
˙ξ12. This gives a 36 dimensional state space. However, our

low-level controller will choose commands only as a function
of the variables (x, y, z, ψ1, ψ2, ψ3, ξ1, ... , ξ12), which
span an 18 dimensional subspace (cf. state abstraction in
reinforcement learning [19]–[22]). To simplify our notation,
we will sometimes write these 18d state variables at time t as
Ωt = [ω1, ..., ω18]T .

Figure 2 shows the kinematic model of our robot and the
coordinate transformations used to compute the location of its
joints. Standard forward kinematics can be used to calculate
all the foot positions given Ωt [24]. We write foot i’s position
as follows:

ui
t =world

foot T (x, y, z, ψ1, ψ2, ψ3, ξi1 , ξi2 , ξi3). (1)

where ui
t is the foot i’s position at time t; and i1, i2, i3 are

the indices of the three joints on foot i. The term world
foot T (·)

is obtained from simple kinematic computations.

III. LOW-LEVEL CONTROLLER

The job of the low-level controller is to output a sequence
of servo commands that will move a single foot to a given
target position while keeping the other 3 feet stationary. Our
low-level controller uses a policy (controller) that maps from
the current state, the index of the moving foot, and the target
position to commands for the 12 servos. We take a policy

Fig. 2. Quadruped state variables and forward kinematics

search approach to learning the low-level controller. Thus,
as is standard practice in policy search, we will begin by
specifying the policy class (i.e., the parameterization of the
low-level controller). The low-level controller has to generate
foot motions that, during the motion to the target position,
do not hit any of a variety of possible obstacles. Potential
fields [25] seem well suited to this task. More precisely, we
choose a policy parameterization based on potential fields,
and use policy search to automatically learn the potential field
parameters.

Potential fields [25] are frequently used in robot motion
planning to find a sequence of actions to move towards a goal
without violating certain constraints; for example, to generate
a path to a goal while avoiding obstacles. Informally, we will
place an “attractive potential” at the goal (this potential is
represented by a function over the state space that decreases
as we approach the goal); and “repulsive potentials” at the ob-
stacles (represented by functions that increase as we approach
an obstacle). The overall potential function is the sum of all
the attractive and repulsive potentials. On each step, the robot
moves by taking the steepest descent direction over the overall
potential function.

In detail, we formulate a low-level controller using a poten-
tial field composed of three functions: (1) Goal potential:
an attractive potential field which encourages the robot to
move a single leg toward the specific goal position generated
by the high-level planner. (2) Surface potential: a repulsive
potential that keeps the moving foot away from the ground and
obstacle surfaces. (3) Posture Potential: a potential function
that encourages “good” posture (cf. [26]) such as having the
center of gravity (CG) within the triangle formed by the three
supporting feet and minimizing yaw and roll of the robot body.

For the task of moving foot i from the current position ui
t to

a goal foot placement position ui
g , we construct the following

potential:

Ut(Ωt, u
i
t, u

i
g) = Ug

t (ui
t, u

i
g) + Us

t (ui
t, u

i
g) + Up

t (Ωt), (2)

where Ug
t (·), Us

t (·), and Up
t (·) represent the goal, floor, and

posture potential functions respectively. We defer to the Ap-
pendix the exact functional forms of these potential functions.
To execute a foot motion, at each instant in time the robot



computes the negative gradient, evaluated at the current state,
of the potential function:

g̃t,j = −∇ωj
Ut(Ωt, u

i
t, u

i
g), j = 1, ..., 18 (3)

The robot then tries to change its joint angles in the direction
specified by g̃t.1

This idea needs two additional refinements. Naively fol-
lowing the gradient of the potential function will only work
if there are no local minima in the potential, other than a
global minimum at the goal position. However, near the front
of obstacles, it is possible for the attractive goal potential and
the repulsive surface potential to cancel, causing local minima
to form in the potential function. To deal with this problem,
we add a vortex field term [27]; this is a vector field that goes
around the obstacles. Our use of the vortex field is motivated
by the observation that the moving foot must not only avoid
colliding with obstacles, but must also go around obstacles in
order to reach the goal position. So, near the front of obstacles
where the attractive goal potential and the repulsive surface
potentials can nearly cancel each other, the vortex field will
cause the moving foot to move upwards over the obstacle.
Details on the vortex field can be found in the Appendix.

One additional refinement to the algorithm is necessary to
keep the three supporting feet from moving. At every step, we
informally think of the robot as trying to change its state in
some direction ĝt (given by the sum of the gradient of Ut and
the vortex field vector). In general, following the direction of
ĝt exactly would also change the position of the supporting
(non-moving) feet us1

t , us2
t , and us3

t , where s1, s2, and s3 are
the indices of the robot’s three supporting feet at time t. In
order to avoid this (since we want to move only one leg at
a time), following [28] we will project ĝt into the subspace
of motions which keeps the positions of the supporting feet
constant. More precisely, we define Φt ∈ R18×9 to be the
matrix whose columns are the gradients of the components
of us1

t , us2
t , and us3

t with respect to the 18 state variables.
The change in the positions of the supporting feet due to a
small change in the state variables δΩt is approximately ΦT

t ·
δΩt. Hence, in order to keep the supporting feet stationary,
we should only move in directions that are in the nullspace of
ΦT

t . Now, let ĝt
∗ be the projection of ĝt onto the nullspace of

ΦT
t . Finding ĝt

∗ can be posed as the following minimization
problem:

min ||ĝt
∗ − ĝt||2

s.t. ΦT
t · ĝt

∗ = 0 (4)

The closed form solution for ĝt
∗ is:

ĝt
∗ = (I − Φt · (ΦT

t · Φt)−1 · ΦT
t ) · ĝt (5)

Thus, we change the joint angles in the direction of ĝt
∗.

In choosing the form of the potential function, we were thus
able to encode a significant amount of prior knowledge about
the task of moving a single foot. Specifically, minimizing
the combination of the three potential functions will tend

1Only 12 of the components of g̃t correspond to robot joint angles, and
are executed on the servomotors. The other 6 components are ignored.

to cause the robot to move the foot toward the goal while
maintaining balance and avoiding collisions with obstacles or
with the ground. Further, the projection onto the nullspace
of Φt prevents the supporting feet from moving. All this
prior knowledge, encoded into the low-level controller’s policy
class, helps it to solve the high-dimensional search problem
associated with moving a single foot to a new position.2 That
we can encode so much prior knowledge into the policy
parameterization is one of the strengths of policy search.
However, the policy class still has many free parameters which
are difficult to choose by hand. For example, even though it
is easy to specify the form of a potential that repulses a foot
from an obstacle, it is hard to decide by hand exactly what
the magnitude of this repulsion should be. In our approach, we
learn the parameters of the potential functions automatically,
as discussed in the next section.

A. Policy search

The low-level controller has 20 parameters that govern var-
ious trade-offs between its attractive and repulsive potentials.
To learn these parameters, we began by building a dynamical
simulator3 of the robot following the specifications of the real
robot. Using the simulator, we then applied PEGASUS policy
search [23], implemented with locally greedy hill-climbing
search, to optimize the parameters on a set of predefined
training tasks. Each of the training tasks involves moving a
single foot to a new location. During learning, we use a reward
function that penalizes undesirable behaviors such as taking a
long time to complete the foot movement, passing too close
to the vertical surface of an obstacle, or failing to move the
foot to the desired goal location. The policy search algorithm
tries to choose parameters so as to maximize the rewards.
The learned parameters are then fixed, giving us the low-level
controller that will be used by the high-level planner.

IV. HIGH-LEVEL PLANNER

Given the low-level controller for moving a single leg, we
now need a high-level planner for generating the sequence
of target foot positions. Finding this sequence of target foot
positions represents a difficult search problem because a bad
choice of foot position early in the sequence could lead
the robot to a bad state (for example, one with very bad
posture), from which it may be extremely difficult to make
further progress. Moreover, performing exhaustive search over
all possible sequences of foot positions is computationally
intractable, because of the high branching factor and large
search depth involved.

In order to avoid performing exhaustive search, we need a
way of measuring how “good” a state is. For example, in A∗

search, a heuristic cost-to-go function gives estimates of the
optimal future cost from any given state to the goal. However,

2The action space used by the low-level controller is 12d and not 3d, since
even if the current step requires only moving foot 1, we may still wish to
move the servomotors in the other legs to maintain balance.

3We used Open Dynamics Engine (ODE) to build our dynamical simulator.
See http://ode.org for details on ODE.



it is often difficult to hand-specify a good heuristic cost-to-
go function in complex problems, since it requires estimating
the entire sequence of unknown future costs. In reinforcement
learning (RL) [29], the “goodness” of a state s is measured
by the optimal value function V ∗(s). Informally, this is the
“expected optimal future rewards” starting from the state s.
Using reinforcement learning, we will automatically learn an
approximate value function.

A. Reinforcement learning preliminaries

This section gives a brief overview of the reinforcement
learning formalism. For more details, see, e.g., [29].

In reinforcement learning, we model a system to be con-
trolled as having a set of possible states S, and a set of
possible actions A. Further, we are given a reward function
R : S × A → R, so that R(s, a) is the reward for taking
action a in state s. The system’s dynamics are given by a
state transition function F : S × A → S, defined so that
s′ = F (s, a) is the state reached upon taking action a in state
s.4 A policy is any function π : S → A mapping from the
states to the actions. We say we are executing a policy π if
whenever we are in state s, we take action a = π(s). The
value function V π(s0) for a policy π is defined as the sum of
discounted rewards upon starting in state s0 and taking actions
according to π:

V π(s0) = R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

where ai = π(si), si+1 = F (si, ai), and γ ∈ [0, 1) is the
discount factor. The discount factor causes rewards in the
distant future to be weighted less than rewards in the near
future. The optimal value function is defined as

V ∗(s) = max
π

V π(s).

This is the best possible sum of discounted rewards that can be
attained using any policy. The optimal value function satisfies
the Bellman equation:

V ∗(s) = max
a

R(s, a) + γV ∗(s′), (6)

where s′ is the state reached upon taking action a in state
s. In other words, the maximum possible value starting from
the current state s is given by maximizing the sum of the
immediate one-step reward R(s, a) and the future rewards
from the next state s′. Once V ∗(·) is known, finding the policy
that gives the maximum sum of discounted rewards is easy.
The optimal policy π∗ : S → A is given by

π∗(s) = arg max
a

R(s, a) + γV ∗(s′). (7)

In our high-level planner, taking an action a will correspond
to choosing a new position for one of the feet. The reward
function we used gave positive rewards for (1) movement
of the robot’s CG towards the goal; small negative rewards
for (2) the time it took to execute the movement; and very

4Although the general RL framework is most commonly applied to prob-
lems with stochastic dynamics, here we will use a simplified version with
only deterministic dynamics.

large negative rewards for (3) failure of low-level controller to
execute the action.

B. Value function approximation

There is a large number of existing RL algorithms for
exactly learning the optimal value function. However, most of
the exact algorithms apply only to problems with small, finite,
state-spaces. For problems with large, continuous state spaces,
it is generally not possible to obtain V ∗(·) exactly, since even
explicitly storing V ∗(s) for every s ∈ S is impossible. In such
cases, an approximate representation for V ∗(·) must be used.
Following fairly standard practice in RL, we will approximate
V ∗(s) as a linear combination of a set of features of the state
s. Specifically, we approximate V ∗(s) as:

V̂ (s) = θTφ(s),

where φ(s) is a vector of features of the state s, and θ is a
parameter vector that will be learned.

In our approach, φ(s) consisted of the following features
of the state5: (1) Distance from robot’s CG to the goal; (2)
Average distance from the feet to the goal; (3) Orientation of
the body, expressed as (1−cos(ψ1), 1−cos(ψ2), 1−cos(ψ3));
(4) Maximum knee angle; (5) A feature capturing surface
roughness underneath each foot on the ground6; (6) Surface
curvature7; (7) Difference between maximum and minimum
heights of the feet; (8) Area of supporting triangle (formed by
the three stationary feet); (9) Radius of the largest circle that
inscribes the supporting triangle; (10) The distances between
each pair of feet.

C. Reinforcement learning algorithm

To learn an approximation to the value function, we devel-
oped a new partially supervised learning algorithm, inspired by
Support Vector Machines [30], for learning an approximation
to the value function. Our algorithm is based on the obser-
vation that in order to have π̂(s)—the action chosen using
our learned value function V̂—to be the same as the optimal
action π∗(s), we need only for the following to hold:

R(s, π∗(s))+γV̂ (F (s, π∗(s))) > R(s, a)+γV̂ (F (s, a)). (8)

for all actions a 6= π∗(s). Thus, if we have a “training
set” consisting of 3-tuples (si, a

∗
i , ai), i = 1, . . . ,m where

si ∈ S, a∗i = π∗(si) and ai 6= π∗(si), then one might try to
find an approximation V̂ to the value function that satisfies
the equation above for all tuples in the training set. Since
V̂ (s) = θTφ(s) is linear in the parameters θ, this simply
gives a set of linear constraints, and in fact any number
of standard linear classification algorithms (such as softmax

5We fixed the foot movement order as in the conventional trot gait (left-
front, right-rear, right-front, left-rear), and so our state actually also includes
information about which foot is to be moved next.

6This is computed using a (gaussian weighted) sum of squares of the local
gradient of the terrain height, over a small patch centered at each foot on the
ground.

7Computed as a (gaussian weighted) sum of the second derivatives of the
terrain height function, over a small patch centered at each foot on the ground.



regression [31], and support vector machines [30]) can be used
to learn the parameters.

However, in our experiments, one additional refinement to
this idea caused it to work significantly better. Specifically,
under mild conditions, it can be shown that the optimal value
function V ∗ is the unique solution to the Bellman equations
(Eq. 6). Thus, one possible approach to approximating V ∗ is to
find the parameters θ that come as close as possible to solving
the Bellman equations. More precisely (following [32]), we
can solve for θ so as to minimize the squared Bellman error:

min
θ

∑
|V̂ (si)−R(si, a

∗
i )− γV̂ (F (si, a

∗
i ))|2, (9)

where si and a∗i are from our training set,8 as described above,
and V̂ (si) = θTφ(si).

Putting together the two ideas described above—supervised
learning to try to satisfy the constraints given in Eq. 8, as
well as minimizing the squared Bellman error as in Eq. 9—
we obtain the following optimization problem:

maxθ,δ δ − β
P

|V̂ (si)−R(si, a
∗
i )− γV̂ (F (si, a

∗
i ))|2 − α||θ||22

s.t. R(si, a
∗
i ) + γV̂ (F (si, a

∗
i ))

−R(si, ai)− γV̂ (F (si, ai)) ≥ δ i = 1, . . . , m.
(10)

Here, α and β are constants that determine the relative
weighting of the different terms in the optimization objective.
This optimization problem is a quadratic program, which
can be readily solved [33]. Note that the constraints in the
optimization are exactly demanding that Eq. 8 holds for all
tuples in the training set (assuming δ > 0), and moreover that
the left-hand-side be larger than the right-hand-side by a gap
or “margin” of at least δ.9

If β = 0, then the objective function reduces to only
trying to optimize the constraints given in Eq. 8. (In fact,
the resulting algorithm would be extremely similar to using
a Support Vector Machine [30] with parameters θ to try to
learn a classifier to identify optimal actions a∗i vs. suboptimal
actions ai.) Conversely, for small or zero α, the optimization
objective instead emphasizes minimizing the squared Bellman
error, as in Eq. 9. However, by combining both of these
objective functions together, we obtain a better algorithm than
either approach alone.

In our experiments, we used a training set of 400 tuples of
states, optimal actions (target foot positions) and suboptimal
actions.10 Out of these 400 training examples, there were only
16 distinct states si and (assumed) optimal actions a∗i , which
corresponded to a sequence of 16 footsteps that successfully

8We sum over only distinct si’s.
9Following the L1 norm soft margin SVM [30], we also considered adding

slack parameters to address the case of linearly inseparable data. However,
this turned out to be unnecessary for our application, and even without the
soft margin, the algorithm attained good performance.

10We note that generating these training examples was fairly easy, since it
is not difficult for this robot to climb the (relatively short) 2.6cm step. Thus,
we could quite easily find a sequence of actions which succeeded in climbing
this step; the actions in this sequence then formed our (assumed optimal) a∗i
in the training set. A set of (assumed suboptimal) actions ai were similarly
quickly generated.

Fig. 3. Simulated robot executing a sequence of controls to climb up a single
4cm step.

Fig. 4. Simulated robot climbing up an irregular step; the right portion of
the step is 6cm and the right portion of the step is 3 cm.

climbed a single 2.6cm step. The suboptimal actions for these
16 steps were generated by manually labeling a number of
foot positions that were clearly suboptimal or inappropriate
for the current state si.

We also tried learning a value function using temporal
difference (TD) learning [29], which is one of the best
known, standard, reinforcement learning algorithms. Unlike
our algorithm, TD does not make use of a labeled training
set during learning. But despite devoting significant efforts to
tuning TD, including trying out different features, different
minor modifications to the learning algorithm and so on, in
every instance it still failed to produce a good value function
even after running for more than 10 hours.

Having learned the parameters θ, we are now ready to
generate actions using the high-level planner. Given V̂ , Eq. 7
gives a straightforward way to choose actions. However, as
in [34] we can do even better by performing a multiple-
step lookahead. More precisely, we used beam search to
look multiple steps ahead, and to try to find a sequence of
actions to move us towards the goal, or more formally, to
maximize the total sum of discounted rewards. During the
beam search procedure, we used our (deterministic) simulator
for the robot to expand different search nodes, and used the
learned V̂ (s) as the heuristic function with which to guide the
search algorithm. Our implementation discretized the space of
possible actions a (possible foot placements) into 15 different
values, and used a beam width of 10.

V. EXPERIMENTAL RESULTS

All learning was done using our simulator of the robot.
After learning the parameters for both the low- and the high-
level controllers, we tested the resulting hierarchical policy, in
simulation, on a variety of obstacles. In the first experiment,
we asked the robot to climb up a 4cm tall step. Figure 3 shows
the resulting sequence of robot motions. We also tested the
robot on an “irregular” step. (See Figure 4.) In this example,
the right half of the step is 6cm high, and the left half is 3cm
high. We believe that it is extremely difficult to hand-code
controllers for climbing asymmetric steps like these, since
they require somewhat difficult, asymmetric (and, we find,



(a) A single step (b) Double-angled steps

(c) Double-cornered steps (d) Four interleaved steps

Fig. 5. Real robot executing learned sequence of controls to climb up
obstacles.

somewhat non-intuitive) gaits. The learned controller success-
fully climbed this obstacle. In addition to these examples, the
learned controller also appeared quite robust, and was able
to climb a large variety of different obstacles, including steps
at various heights (0-6cm); ones oriented at different angles
relative to the robot; and irregular steps (with high and low
portions) of different heights.

We also successfully demonstrated these gaits on the real
robot, for a large variety of obstacles. For example, Figure 5
shows the real robot executing the gait shown in Figure 3, as
well as gaits for several other obstacles.11 Videos of the sim-
ulated and actual robot executing the learned gaits are avail-
able online, at http://ai.stanford.edu/∼yirong/
quadruped/videos

Note that our experiments used a training set (specifying
optimal and sub-optimal target foot positions) based on climb-
ing only a 2.6cm step. However, our learned gaits readily
generalized to a large range of obstacles that were not seen in
the training set, and were indeed significantly more complex
and difficult than the single 2.6cm step seen during training.

For comparison, we also implemented the Rapidly exploring
Random Trees (RRT) algorithm [35]. This is a commonly-used
nonholonomic motion planning algorithm, that in principle can
be applied to tasks such as ours. We spent significant effort
adjusting RRT’s parameters, but in all versions, even after
running for more than twenty hours, it was never able to find

11So far, our description has assumed a closed-loop controller that chooses
the current action as a function of the state s. In our initial experiments, we
used a 3-camera array and an IMU to estimate the robot state s, so as to
execute a closed-loop controller. However, somewhat to our surprise, just by
generating an open-loop sequence of actions (by executing the controller in
closed-loop in simulation, and taking the resulting sequence of servomotor
angles executed), we were also able to execute these gaits (comprising small
numbers of steps) open-loop on the robot. We note also that the obstacle
shown in Figure 3d, which comprises surfaces at four different heights, seemed
particularly difficult. Our algorithm successfully found a gait for it using
a beam width as small as two, but neither the Bellman-error only nor the
supervised learning only (β = 0) algorithm was able to do so.

control sequences for negotiating a single 4cm step.

VI. CONCLUSIONS

We described the application of a hierarchical reinforcement
learning algorithm, one that uses a two-level hierarchical task
decomposition, to a quadruped robot. The algorithm was able
to learn a controller for negotiating a large variety of different
obstacles, including ones not seen during training. We believe
that hierarchical reinforcement learning holds rich promise for
negotiating obstacles and rough terrain with biped, quadruped
and hexapod robots.
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APPENDIX
LOW-LEVEL CONTROLLER DETAILS

Here, we describe the potential functions and the vortex field
in detail. Our coordinate system is defined with the robot’s
direction of travel being the positive x direction, with up being
the positive z direction, and y being given by the right-hand
rule. We will use the following notation:
t is the time since the start of the task (of moving a

single leg)
Ωt is the state vector at time t
i is the index of the moving foot
uj

t uj
t = (uj

t,x, u
j
t,y, u

j
t,z) is the position vector of foot

j at time t

ug ug = (ug,x, ug,y, ug,z) is the goal position for the
moving foot

Nobs is the number of obstacles in the environment. Our
current implementation permits only obstacles that
are rectangular boxes. Note that the ground is also
considered as an obstacle in the definitions below.

ξ(Ωt) is a measure of how far the center of gravity(CG)
of the robot is inside the triangle formed by the 3
supporting legs. It is calculated by projecting the
positions of the 3 supporting feet and the CG into
the xy plane and measuring the minimum distance
between projection of the CG to the sides of the
triangle formed by the projected feet positions. ξ(Ωt)
is positive if the CG is within the triangle, and
negative if it is outside the triangle.

The low-level controller has 20 parameters: ρ1, ρ2, . . . , ρ16,
λ1, λ2, τ1, τ2. The ρi’s control the shape and size of the various
potential and vortex fields. The λi’s and τi’s determine which
potentials are turned on based on the position of the CG and
the amount of time elapsed.

At the beginning of each task, the robot starts in a centering
phase, during which the goal and surface potentials are off
while the CG potential is on. This allows the robot to shift
its CG into the new supporting triangle before it tries to take
a new step. The initial centering phase will last a minimum
of τ2 time steps and will terminate when either the CG is
sufficiently inside the supporting triangle (i.e., ξ(Ωt) ≤ λ1)
or when the maximum number of time steps for the initial
centering phase τ2 is reached. The goal and surface potentials
are also turned off whenever the center of mass is near or
outside the boundary of the supporting triangle (ξ(Ωt) ≤ τ1);
this in effect stops the motion of the active foot and allows the
robot to move its CG into a stable position before continuing
with moving the active foot.

A. Goal Potential

The goal potential attracts the moving foot to the goal
location ug .

If we are in the initial centering phase or if the CG is near
the boundary of the supporting triangle (i.e., ξ(Ωt) ≤ λ1),
then Ug

t = 0. Otherwise,

Ug
t = ρ1||ui

t − ug||2 − ρ2 exp(−ρ3||ui
t − ug||2)

+ρ4(ui
t,y − ug,y)2

The third term puts a heavier emphasis on the y coordinate to
reduce small oscillations of the moving foot in the y direction.

B. Surface Potential

Away from the goal position, the surface potential repels the
moving foot from the surfaces of obstacles and the ground.
The strength of this potential decays to 0 as one approaches
the goal position.

If we are in the initial centering phase or if the CG is near
the boundary of the supporting triangle (i.e. ξ(Ωt) ≤ λ1), then



Us
t = 0. Otherwise,

Us
t = (1− exp(−ρ7||ui

t − ug||22))
Nobs∑
k=1

ρ5 exp(−ρ6dk)

where dk is the distance from the moving foot to obstacle k.

C. Posture Potential

The posture potential is defined as the sum of three other
potentials

Up
t = U c

t + Uo
t + Uf

t

where U c
t , Uo

t and Uf
t are the CG, orientation, and support

feet constraint potentials respectively.
1) CG Potential: The CG potential encourages the the CG

of the robot to stay within the triangle formed by the three
supporting feet. It is always on during the initial centering
phase of a new task. It is also on when the CG is near or
outside the boundary of the supporting triangle.

If we are not in the initial centering phase and ξ(Ωt) ≥ λ2

then U c
t = 0. Otherwise,

U c
t = exp(−ρ9 min(ξ, ρ8))

2) Orientation Potential: The orientation potential discour-
ages large roll and yaw of the robot body and is defined as

Uo
t = ρ10(1− cos(ψ1)) + ρ11(1− cos(ψ3)),

where ψ1 and ψ3 are respectively the roll and yaw of the robot
body.

3) Constraint Potential: The constraint potential tries to
keep the supporting feet at the same position as they were
at the beginning of the task and is defined as

Uf
t = ρ12

∑
j=1,j 6=i

||uj
t − uj

0||22

Although it may seem that the constraint potential is redundant
since it accomplishes the same purpose as the nullspace
projection described by 4, it is nonetheless necessary because
of errors in the linearization used by the nullspace projection.

D. Vortex Field

The vortex field encourages the moving foot to move up
along the vertical surfaces of obstacles. The vortex field is
used to help ensure that the moving foot does not get stuck in
regions where the potential function has nearly zero gradient
(e.g., places where the goal and surface potential gradients
point in nearly opposite directions). The strength of the vortex
field of an obstacle decays with distance to the obstacle.

The total vortex field is the sum of the vortex fields induced
by all the obstacles. Let ṽk denote the vortex field induced by
obstacle k. Let pk = (pk,x, pk,y, pk,z) be the nearest point on
obstacle k to the position of the moving foot ui

t. If ui
t,x = pk,x

then the moving foot is already above a flat region of obstacle
k and we set ṽk = 0. If the moving foot is higher than and
relatively close to the goal position (i.e., ui

t,z > ug,z) and
|ui

t,x − ug,x| < ρ16, then we expect the goal potential will be

able to pull the foot in and so we set all the vortex fields to
0 in this case. In all other cases, ṽk is calculated as

ṽk =
ρ13

1 + exp(ρ14(||ui
t − pk||2 − ρ15))

·
sign(ui

t,x − ug,x)~vk

||~vk||2
where ~vk is the vector cross product

~vk = (ui
t − pk)× ŷ

and ŷ is the unit vector in the y direction.
We note that ṽ is given in terms of the 3d coordinates of

the moving foot and we need to convert it into the 18d state
space of the robot. This is done by multiplying by the Jacobian
made up of the partial derivatives of the components of the
moving foot’s position with respect to the state variables.


