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S1. Parameters for VGGNet-based models

Macro- Learning rate Loss weighting 1

layer SAE-layerwise SAE-layer/all

1 3× 10−9 1× 10−4

2 1× 10−8 1× 10−12

3 3× 10−12 1× 10−12

4 1× 10−12 1× 10−12

5 1× 10−11 1× 10−10

LR: learning rate; 1 the top-level softmax is weighted by 1.

Table S-1. Layer-wise training parameters for networks augmented from VGGNet

We report the learning parameters for 16-layer VGGNet-based model in Table S-1. We chose the learning rates that lead to

the largest decrease in the reconstruction loss in the first 2000 iterations for each layer. The “loss weighting” are balancing

factors for reconstruction losses in different layers varied to make them comparable in magnitude. In particular, we com-

puted image reconstruction loss against RGB values normalized to [0,1], which are different in scale from intermediate

features. We also did not normalize the reconstruction loss with feature dimensions for any layer.

S2. More experimental results and discussions

S2.1. Learned filters

Compared to the baseline VGGNet, the finetuned SWWAE-all model demonstrated ∼ 35% element-wise relative change

of the filter weights on average for all the layers. A small portion of the filters showed stronger contrast after finetuning.

Qualitatively, the finetuned filters kept the pretrained visual shapes. In Figure S-1, we visualize the first-layer 3 × 3

convolution filters.
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(a) Pretrained VGGNet (b) Finetuned SWWAE-all

Figure S-1. Visualization of the normalizaed first-layer convolution filters in 16-layer VGGNet-based network. The filters of the

SWWAE-all model had nearly the same patterns to those of the pretrained VGGNet, but showed stronger contrast. It is more clear

see the difference if displaying the two images alternatively in the same place. (online example: http://www.ytzhang.net/

files/publications/2016-icml-recon-dec/filters/)
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Figure S-2. Training curves for the single-crop validation accuracy of VGGNet-based SWWAE-all models.

S2.2. Training curve

In Figure S-2, we report the training curves of validation accuracy for SWWAE-all, where the pretrained VGGNet classi-

fication network and decoder network were taken as the starting point.

S2.3. Selection of different model variants

The performance for different variants of the augmented network are comparable, but we can still choose the best available

one. In particular, we provide following discussions.

• Since the computational costs were similar for training and the same for testing, we can use the best available ar-

chitecture depending on tasks. For example, when using decoding pathways for spatially corresponded tasks like

reconstruction (as in our paper) and segmentation, we can use the SWWAE. For more general objectives like pre-

dicting next frames, where pooling switches are non-transferrable, we can still use ordinary SAEs to get competitive

performance.

• S(WW)AE-first has less hyper-parameters than S(WW)AE-all, and can be trained first for quick parameter search. It

can be switched to *-all for better performance.

S2.4. Ladder networks

We tried training a ladder network following the same procedures of pretraining auxiliary pathways and finetuning the

whole network as for our models, which is also similar to Rasmus et al. (2015)’s strategy. We used the augmented multi-

layer perceptron (AMLP) combinator, which Pezeshki et al. (2016) proposed as the best combinator function. Different
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from the previous work conducted on the variants of MNIST dataset, the pretrained VGGNet does not have batch normal-

ization (BN) layers, which pushed us to remove the BN layers from the ladder network. However, BN turned out to be

critical for proper noise injection, and the non-BN ladder network did not perform well. It might suggest that our models

are easier to pair with a standard convolutional network and train on large-scale datasets.

S2.5. Image reconstruction

In Figure S-3, we visualize the images reconstructed by the pretrained decoder of SWWAE-first and the final models for

SWWAE-first/all, and reported the L2 reconstruction loss on the validation set. Finetuning the entire networks also resulted

in better reconstruction quality, which is consistent with our assumption that enhancing the ability of preserving input

information can lead to better features for image classification. Since the shape details had already been well recovered

by the pretrained decoder, the finetuned SWWAE-first/all mainly improved the accuracy of colors. Note that the decoder

learning is more difficult for SWWAE-all than SWWAE-first, which explains its slightly higher reconstruction loss and

better regularization ability.

In Figure S-4 and S-5, we showed more examples for reconstructing input images from pretrained neural network features

for AlexNet and VGGNet.
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Model L2 Loss ImageNet Non-ImageNet 1

Ground truth -

SWWAE-first
(Pretrained,

fixing encoder)

513.4

SWWAE-first
(Finetuned with

encoder)

462.2

SWWAE-all
(Finetuned with

encoder)

493.0

1 The first three images are from morguefile.com; the fourth is a screenshot of Wikipedia; the fifth is a depth image from NYU
dataset; the last is used with permission from Debbie Ridpath Ohi at Inkygirl.com

Figure S-3. Image reconstruction from pool5 features to images. The reconstruction loss is computed on the ILSVRC2012 validation set

and measured with L2-distance with the ground truth (RGB values are in [0, 1]). The first 2 example images are from the ILSVRC2012

validation set (excluding the 100 categories). The rest are not in ImageNet.

4



Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification

Layer image pool1 pool2 pool3 pool4 pool5 fc6 fc7 fc8

Dosovitskiy &
Brox (2016)

(fixed unpooling
switches)

SWWAE-first
(known

unpooling
switches)

SWWAE-first
(known

unpooling
switches)

SWWAE-first
(known

unpooling
switches)

SWWAE-first
(known

unpooling
switches)

SWWAE-first
(known

unpooling
switches)

SWWAE-first
(known

unpooling
switches)

SWWAE-first
(known

unpooling
switches)

SWWAE-first
(known

unpooling
switches)

SWWAE-first
(known

unpooling
switches)

SWWAE-first
(known

unpooling
switches)

SWWAE-first
(known

unpooling
switches)

Figure S-4. AlexNet reconstruction on ImageNet ILSVRC2012 validation set. (Best viewed when zoomed in on a screen.)
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Layer image pool1 pool2 pool3 pool4 pool5

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

(continued on next page)
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Layer image pool1 pool2 pool3 pool4 pool5

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

(continued on next page)
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Layer image pool1 pool2 pool3 pool4 pool5

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

SAE-first (fixed
unpooling
switches)

SWWAE-first
(known unpooling

switches)

Figure S-5. VGGNet reconstruction on ImageNet ILSVRC2012 validation set. (Best viewed when zoomed in on a screen.)
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