
Structured Recurrent Temporal Restricted Boltzmann Machines

Roni Mittelman† RMITTELM@UMICH.EDU
Benjamin Kuipers† KUIPERS@UMICH.EDU
Silvio Savarese‡ SSILVIO@STANFORD.EDU
Honglak Lee† HONGLAK@UMICH.EDU
†Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI
‡Computer Science Department, Stanford University, Stanford, CA

Abstract
The recurrent temporal restricted Boltzmann ma-
chine (RTRBM) is a probabilistic time-series
model. The topology of the RTRBM graphical
model, however, assumes full connectivity be-
tween all the pairs of visible units and hidden
units, thereby ignoring the dependency structure
within the observations. Learning this structure
has the potential for not only improving the pre-
diction performance, but also revealing impor-
tant dependency patterns in the data. For ex-
ample, given a meteorological dataset, we could
identify regional weather patterns. In this work,
we propose a new class of RTRBM, which we
refer to as the structured RTRBM (SRTRBM),
which explicitly uses a graph to model the de-
pendency structure. Our technique is related to
methods such as graphical lasso, which are used
to learn the topology of Gaussian graphical mod-
els. We also develop a spike-and-slab version of
the RTRBM, and combine it with the SRTRBM
to learn dependency structures in datasets with
real-valued observations. Our experimental re-
sults using synthetic and real datasets demon-
strate that the SRTRBM can significantly im-
prove the prediction performance of the RTRBM,
particularly when the number of visible units is
large and the size of the training set is small. It
also reveals the dependency structures underly-
ing our benchmark datasets.

1. Introduction
Discovering patterns and relationships in static and time-
series data is an important theme in many machine learn-
ing problems, spanning different fields such as modeling
of human activities in videos (Prabhakar et al., 2010), or
inferring gene regulatory networks (Mohan et al., 2012).

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

Gaussian graphical models have been used often to learn
the structure of static data, by using a graph to describe
the sparsity pattern of the inverse covariance matrix. The
topology of the graph captures the conditional indepen-
dence property between non-adjacent nodes (Lauritzen,
1996). The structure of a Gaussian graphical model can
be learned using the graphical lasso (Banerjee et al., 2008;
Friedman et al., 2008) approach, which uses sparsity pro-
moting regularization to encourage the learning of sparsely
connected graphs. The graphical lasso framework is par-
ticularly important for estimation of the inverse covariance
matrix when the number of observations is smaller than the
number of variables.

The Graphical lasso has also been used to model se-
quence data, using graphical models of autoregressive pro-
cesses (Songsiri & Vandenberghe, 2010). Other time-
series models include hidden Markov models (Rabiner &
Juang, 1986) and dynamic Bayesian networks (Doshi et al.,
2011). However, as was discussed in Taylor et al. (2011),
these models have difficulties capturing long range tem-
poral dependencies. Another class of time-series mod-
els, which are potentially better suited to capture long
range dependencies, relies on the use of recurrent neu-
ral networks (RNNs) (Rumelhart et al., 1986; Martens
& Sutskever, 2011; Boulanger-Lewandowski et al., 2012;
Sutskever et al., 2013; Pascanu et al., 2013; Bengio et al.,
2013), and variants of restricted Boltzmann machines
(RBMs) (Taylor et al., 2011; Sutskever & Hinton, 2007;
Sutskever et al., 2008). However, these models assume a
full connectivity between all the pairs of visible and hid-
den units, which makes it difficult to identify important de-
pendency structures between observations and hidden units
from the learned model.

In this paper, we develop a new approach to learn de-
pendency structures in time-series data, based on the re-
current temporal restricted Boltzmann machine (RTRBM)
(Sutskever et al., 2008). The RTRBM can be viewed as a
temporal stack of RBMs, where each RBM has a contex-
tual hidden state that is received from the previous RBM

Structured Recurrent Temporal Restricted Boltzmann Machines

and is used to modulate its hidden units bias. In our model,
we use a dependency graph to define a new energy func-
tion for the RTRBM, such that the graph topology is used
to determine appropriate masking matrices for the RTRBM
model parameters. By replacing the elements of the mask-
ing matrices with logistic functions, we are able to learn the
structure of the graph. Furthermore, we propose a sparsity
promoting regularization to promote learning of sparsely
connected graphs.

In essence, our approach, which we refer to as the struc-
tured RTRBM (SRTRBM), shares similar motivations to
graphical lasso, and can reveal structure in time-series data.
Similarly to graphical lasso, we show that learning the
structure in the RTRBM can improve the prediction per-
formance, particularly when the size of the observations
vector is large, and the size of the training set is small. It
can also reveal important dependency patterns in the data.

Another contribution of this work is to develop a temporal
extension of the spike-and-slab RBM (ssRBM) (Courville
et al., 2011a;b) for modeling of time-series data with
real-valued observations. Previously, modeling of real-
valued observations using the RTRBM was achieved us-
ing a Gaussian RBM (GRBM) (Hinton & Salakhutdinov,
2006), which is known to suffer from inadequately model-
ing the conditional covariance of the visible units (Ranzato
& Hinton, 2010; Dahl. et al., 2010). The ssRBM associates
a real-valued variable (“slab”) with each binary hidden unit
(“spike”), and unlike the GRBM it has a conditional dis-
tribution for the visible units which has a non-diagonal co-
variance. We propose the spike-and-slab formulation in our
SRTRBM in order to learn the structure of datasets with
real-valued observations. Our experimental results verify
that the spike-and-slab version of our model can improve
over the Gaussian RTRBM, and that learning the structure
can reduce the prediction error. We are also able to learn
the underlying structure of our benchmark datasets.

The rest of the paper is organized as follows. Section 2
provides the background about the RBM and the ssRBM,
and in Section 3 we review the RTRBM and its learning
algorithm. We develop the SRTRBM in Section 4 and the
spike-and-slab-based RTRBM and SRTRBM in Section 5.
In Section 6 we present the experimental results, and Sec-
tion 7 concludes this paper.

2. Preliminaries
2.1. Restricted Boltzmann Machines
The RBM (Smolensky, 1987) is an undirected graphical
model that represents a joint distribution over visible units
vi, i = 1, . . . , Nv , and binary hidden units hj , j =
1, . . . , Nh. Assuming binary visible units, the joint distri-
bution takes the form:

P (v,h) = exp{−E(v,h)}/Z,
E(v,h) = −(h>Wv + c>v + b>h), (1)

where v = [v1, . . . , vNv
]>, h = [h1, . . . , hNh

]>, and Z
is the partition function which is a function of the model
parameters b, c, W. The posterior distributions for the
hidden and visible units take the form

P (hj = 1|v) = σ
(∑

i

wj,ivi + bj
)
, (2)

P (vi = 1|h) = σ
(∑

j

wj,ihj + ci
)
, (3)

where σ(x) = (1 + exp{−x})−1. Using (2) and (3), infer-
ence is performed using block Gibbs sampling. The partial
derivative of the data likelihood P (v) =

∑
h P (v,h) with

respect to each model parameter θ ∈ {W,b, c} takes the
form (Hinton, 2002):

∂

∂θ
P (v) = −(Eh|v

∂

∂θ
E(v,h)−Ev′,h

∂

∂θ
E(v′,h)). (4)

The first term in (4) can be evaluated analytically. However,
the second term is intractable, but it can typically be ap-
proximated by running few iterations of block Gibbs sam-
pling after initializing the visible units to the observation.
This approximation is known as contrastive-divergence
(CD) (Hinton, 2002).

2.2. Spike and Slab RBM
The ssRBM (Courville et al., 2011a;b) models a joint dis-
tribution over visible and hidden units, and a real valued
slab variable sj , j = 1, . . . , Nh, that is associated with
each hidden unit. In this paper, we consider the version of
Courville et al. (2011a). The energy function for the joint
distribution of the ssRBM takes the following form:

E(v,h, s) = −(s� h)>Wv +
1

2
v>
(
λI + diag(Φ>h)

)
v

+
α

2
‖s‖22 − αµ>(s� h)− b>h +

α

2
µ2>h (5)

where � denotes element-wise product, diag(·) denotes a
diagonal matrix with the argument vector on its diagonal,
µ2 = µ � µ, I is the identity matrix, s = [s1, . . . , sNh

]>,
and the model parameters are: λ, α ∈ R, µ ∈ RNh , Φ ∈
RNh×Nv

+ , W ∈ RNh×Nv .

Inference in the ssRBM is performed using Gibbs sam-
pling, from the following conditional distributions:

P (hi = 1|v) = σ(0.5α−1(Wi,·v)2 + µiWi,·v (6)

− 0.5v>diag(Φi,·)v + bi),

P (si|v, hi) = N ((α−1Wi,·v + µi)hi, α
−1) (7)

P (v|s,h) = N (Cv|s,hW
>(s� h), Cv|s,h) (8)

where Wi,· is the ith row vector of W (the same is true
for “Φi,·”), and Cv|s,h = (λI + diag(Φ>h))−1. Equations

Structured Recurrent Temporal Restricted Boltzmann Machines

(6)-(8) can be used iteratively using Gibbs sampling, and
therefore learning can be performed using CD.

The conditional distribution of the observation given the
hidden units takes the form:

P (v|h) = N (Cv|hW(µ� h), Cv|h), (9)

where Cv|h = (λI + diag(Φ>h)− 1
αW

>diag(h))W)−1.
This implies that the conditional covariance matrix Cv|h
is in general non-diagonal. This property of the ssRBM
allows it to capture the covariance structure between the
observations, which the GRBM does not model.

3. RTRBM revisited
The RTRBM describes the joint probability distribution of
the visible units vector vt ∈ RNv , and hidden units vector
ht ∈ RNh at time step t, using a conditional RBM which
depends on the hidden input rt−1. The RTRBM network is
illustrated in Figure 1. The joint probability distribution of
vt,ht for any t > 1 (given rt−1) takes the following form:

P (vt,ht; rt−1) =
1

Zrt−1

exp{−E(vt,ht; rt−1)} (10)

E(vt,ht; rt−1) = −(h>t Wvt + c>vt + b>ht + h>t Urt−1),

where W ∈ RNh×Nv , U ∈ RNh×Nh , c ∈ RNv , b ∈ RNh

are model parameters, and Zrt−1
denotes a normalization

factor which depends on rt−1 and the other model param-
eters (we used the subscript rt−1 since the dependency
on the input rt−1 is the major difference compared to the
RBM). For t = 1, the joint distribution of v1,h1 takes
the form of a standard RBM with the hidden units biases
binit ∈ RNh .

The inputs rt (where t ∈ {1, . . . , T−1}) are obtained from
a RNN given v1, ...,vt:

rt =

{
σ(Wvt + b + Urt−1), if t > 1

σ(Wvt + binit), if t = 1
(11)

where the logistic function σ(x) = (1 + exp(−x))−1 is
applied to each element of its argument vector. The moti-
vation for the choice of rt is that using the RBM associated
with time instant t, we have that E[ht|vt] = rt; i.e., it is
the expected value of the hidden units vector.

The joint probability distribution of the visible and hidden
units of the RTRBM with length T takes the form:

P ({vt,ht}Tt=1; {rt}T−1
t=1) =

exp{E({vt,ht}Tt=1; {rt}T−1
t=1)}

Z · Zr1 · · ·ZrT−1

where Z denotes the normalization factor for the first RBM
at t = 1, and where

E({vt,ht}Tt=1; {rt}T−1
t=1) = −

(
h>1 Wv1 + c>v1 (12)

+ b>inith1 +

T∑
t=2

(
h>t Wvt + c>vt + b>ht + h>t Urt−1

))

h1 h2 hT

v1 v2 vT

r1 r2 rT

W W W
!W

binit

W

!W

!W

W W

!W

b b

Figure 1. An illustration of the RTRBM.

3.1. Inference in the RTRBM
Given hidden inputs rt−1 (t > 1), the conditional distribu-
tions are factorized and takes the form:

P (ht,j = 1|vt, rt−1) = σ(
∑
i

wj,ivt,i + bj +
∑
l

uj,mrt−1,m),

P (vt,i = 1|ht, rt−1) = σ(
∑
j

wj,iht,j + ci), (13)

For t = 1, the posterior of h1 given v1 has a similar form as
(2), where binit replaces b. The above conditional proba-
bilities can also be used to generate samples v1, ...,vT (i.e.,
by repeatedly running Gibbs sampling for t = 1, ..., T).

Further, note that, given the hidden inputs r1, ..., rT−1,
all the RBMs (corresponding to different time frames) are
decoupled; thus, sampling can be performed using block
Gibbs sampling for each RBM independently. This fact is
useful in deriving the CD approximation for the RTRBM.

3.2. Learning in the RTRBM
In order to learn the parameters, we need to obtain the
partial derivatives of the log-likelihood, logP (v1, ...,vT),
with respect to the model parameters. Using the CD ap-
proximation to compute these derivatives requires the gra-
dients of energy function (12) with respect to all the model
parameters. We separate the energy function into the fol-
lowing two terms: E = −H−Q2, where

H = h>1 Wv1 + c>v1 + b>inith1

+

T∑
t=2

h>t Wvt + cvt + b>ht,

Q2 =

T∑
t=2

hTt Urt−1. (14)

Taking the gradients of H with respect to the model pa-
rameters is straightforward, and therefore we focus on Q2.
To compute the partial derivative of Q2 with respect to a
model parameter θ, we first compute the gradient of Q2

with respect to rt, for t = 1, . . . , T −1, which can be com-
puted recursively using the backpropagation-through-time
(BPTT) algorithm (Rumelhart et al., 1986). These gradi-
ents are then used with the chain rule to compute the deriva-
tives with respect to all the model parameters. In the next
subsection, we use the BPTT to derive the gradient with re-
spect to U. The other gradients can be computed similarly.

Structured Recurrent Temporal Restricted Boltzmann Machines

3.2.1. CALCULATING ∇rtQ2 USING BPTT
We observe that Q2 can be computed recursively using:

Qt =

T∑
τ=t

h>τ Urτ−1 = Qt+1 + h>t Urt−1 (15)

where QT+1 = 0. Using the chain rule and (15), we have

∂

∂rt,m
Qt+1 =

∑
m′

∂Qt+2

∂rt+1,m′

∂rt+1,m′

∂rt,m
+

∂

∂rt,m
(h>t+1Urt)

=
∑
m′

∂Qt+2

∂rt+1,m′
rt+1,m′(1− rt+1,m′)um′,m

+
∑
m′

ht+1,m′um′,m (16)

where rt+1,m′(1 − rt+1,m′) is obtained from the partial
derivative of the sigmoid function. Equation (16) can also
be expressed in vector form using:

∇rtQt+1 = U>(∇rt+1
Qt+2�rt+1� (1−rt+1)+ht+1),

(17)
where � denotes element-wise product. Since Qt+1 is
not a function of r1, . . . , rt−1, we have that ∇rtQ2 =
∇rtQt+1, and therefore the necessary partial derivatives
can be computed recursively using (17).

3.2.2. CALCULATING THE PARTIAL DERIVATIVES WITH
RESPECT TO THE MODEL PARAMETERS

In order to compute the derivatives with respect to U, we
use the chain rule and (15):

∂Q2

∂um,m′
=

T∑
t=2

(
∂Qt+1

∂rt,m

∂rt,m
∂um,m′

+
∂

∂um,m′
(h>t Urt−1)

)

=

T∑
t=2

(
∂Qt+1

∂rt,m
rt,m(1− rt,m) + ht,m

)
rt−1,m′ (18)

where when taking the derivative of h>t Urt−1 with respect
to um,m′ we regard rt−1 as a constant, since the contribu-
tion of its derivative is factored in through∇rt−1

Qt.

Using the CD approximation with (16) and (18), it can be
shown that (see supplemental material) the update rule for
U, that is related to Q2 (not includingH), takes the form:

∆Q2

U =

T∑
t=2

(
Dt+1 � rt � (1− rt)

+ Eht|vt,rt−1
[ht]− Ev′t,ht|rt−1

[ht]
)
r>t−1 (19)

where

Dt = Eht,...,hT |vt,...vT ,r1...,rT−1
[∇rt−1Qt] (20)

− Eht,...,hT ,v′t,...v
′
T |r1...,rT−1

[∇rt−1
Qt].

Intuitively speaking, the first term is the expectation over
“data distribution”, and the second term is the expectation

over “model distribution” (conditioned on {rt}T−1
t=1). Sim-

ilarly to (17), Dt can be computed recursively using:

Dt+1 = U>(Dt+2 � rt+1 � (1− rt+1) (21)
+ Eht+1|vt+1;rt [ht+1]− Ev′t+1,ht+1|rt [ht+1]),

and DT+1 = 0 (see supplementary material for details).

The model parameters θ ∈ {W,U,b,binit, c} is updated
via gradient ascent (e.g., θ := θ + η∆H+Q2

θ) where

∆H+Q2

θ = E{ht}Tt=1|{vt,rt}Tt=1
[∇θH] (22)

− E{ht,v′t}Tt=1|{rt}Tt=1
[∇θH] + ∆Q2

θ

For the other model parameters, we have ∆Q2
c = 0, and

∆Q2

W =

T−1∑
t=1

(Dt+1 � rt � (1− rt))v
>
t (23)

∆Q2

b =

T−1∑
t=2

(Dt+1 � rt � (1− rt)) (24)

∆Q2

binit
= D2 � r1 � (1− r1) (25)

4. Structured RTRBM
The energy function at each stage in the RTRBM as defined
in Eq. (10) assumes full connectivity between all the pairs
of hidden units and inputs from previous time-steps, and
pairs of visible and hidden units. Our proposed SRTRBM
uses a dependency graph to define the set of allowed in-
teractions. We start by developing the SRTRBM assuming
that the graph structure is known, and then relax the energy
function in order to learn the topology from the data.

4.1. SRTRBM with a known dependency graph
In order to develop the SRTRBM, we use a graph struc-
ture to define block masking matrices that are associated
with the model parameters M and U, where the sparsity
pattern of the making matrices is specified by the graph.
Intuitively speaking, we partition visible units, and each
subset of the partition is associated with a node, as well as
its corresponding hidden units.

Specifically, we assume an undirected graph structure G =
(V,E), where V = {1, . . . , |V |} denotes the set of nodes,
and E denotes the set of undirected edges. We associate
with each node ε ∈ V a subset of visible units indices
Cvε ⊂ {1, . . . , Nv}, where Nv denotes the number of visi-
ble units (we note that a group can be comprised of a single
observation as well), such that ∪εCvε = {1, . . . , Nv}, and
∩εCvε = ∅ (i.e. the subsets are disjoint and each visible unit
is assigned to a node). Similarly, we define a set of hidden
units indices Chε ⊂ {1, . . . , Nh}, where Nh denotes the
number of hidden units, such that ∪εChε = {1, . . . , Nh},
and ∩εChε = ∅. We rearrange the order of the vec-
tor vt such that v = [v1>, . . . ,vε>, . . . ,v|V |>]>, where

Structured Recurrent Temporal Restricted Boltzmann Machines

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

×××

×××

×××

×××

443414

433323

322212

412111

0
0

0
0

,

W

4

1

4

1

4

1

vhvhvh

vhvhvh

vhvhvh

vhvhvh

111
111

111
111

M

r

r
r

h

h
h

v

v
v

NNNNNN

NNNNNN

NNNNNN

NNNNNN

v1,h1,r1 v2,h2,r2

v4,h4,r4 v3,h3,r3

Figure 2. Construction of the masking matrix MW, given the
graph structure (Nx denotes the dimension of the vector x)

vε is a vector containing all the visible units assigned to
node ε, and similarly we rearrange the order of the vec-
tors ht, rt, such that h = [h1>, . . . ,hε>, . . . ,h|V |>]>,
r = [r1>, . . . , rε>, . . . , r|V |>]>, where hε, rε are the vec-
tors containing all the hidden units and hidden inputs from
the previous time-step assigned to node ε respectively. We
define the energy function of SRTRBM for each t > 1 as:

E(vt,ht; rt−1) = −(h>t (W �MW)vt + c>vt

+ b>ht + h>t (U�MU)rt−1), (26)

where rt = σ((W�MW)vt + b + (U�MU)rt−1) for
t > 1, and r1 = σ((W �MW)v1 + binit). For t = 1,

E(v1,h1) = −(h>1 (W �MW)v1 + c>v1 + b>inith1),

where MW ∈ RNh×Nv is a |V |×|V | block masking matrix
such that the jith block has the dimensions |Chj |×|Cvi |, and
the jith block is set to all ones if there is an edge connecting
nodes i and j, and otherwise to all zeros. All the “diago-
nal” blocks (i.e., the iith blocks) are set to all ones. Simi-
larly, MU ∈ RNh×Nh is a |V |×|V | block masking matrix,
where the jith block has the dimensions |Chj | × |Chi |, and
the jith block is set to all ones if there is an edge connecting
nodes i and j, and otherwise to all zeros. All the diagonal
blocks are set to all ones as well. The construction of the
masking matrix MW is illustrated in Figure 2.

The assignment of observations to groups can be performed
in several ways. If some prior knowledge is available (e.g.,
if some observations belong to the same node in a sensor
network), it can be used to determine the groups. Alterna-
tively, one can assign a single observation to each node.

Inference and learning are performed similarly to the
RTRBM, where W and U are replaced by W �MW and
U �MU respectively. When updating the parameter ma-
trices W and U, we simply multiply the partial derivatives
by their corresponding masking matrix.

4.2. Learning the dependency graph from the data
In order to learn the graph structure from the data, we re-
place the blocks of the masking matrices MW and MU

with logistic functions σδ(ν) = (1 + exp{−δν})−1, where

the jith block of both masking matrices is set to σδ(νji),
and where δ ≥ 1 is a hyper-parameter. Learning the graph
structure now corresponds to learning the logistic param-
eters νji. Setting the hyper-parameter δ to values larger
than 1 tends to speed up the convergence of the learning
algorithm, since the logistic function saturates for smaller
magnitudes of ν. We used δ = 8 throughout this work.

We use CD to learn the logistic parameters. Using (26)
we have that the partial derivative of the SRTRBM energy
function with respect to νji takes the form:

∂

∂νji
E(vt,ht; rt−1) = −

∑
t

[
hj>t Wjivit + hj>t Ujirit−1

+ (∇rtQ
j
t+1 � rjt � (1− rjt))

>(Wjivit + Ujirit−1)
]

× δσδ(νji)(1− σδ(νji)) (27)

where Wji and Uji denote the jith block of W and U
respectively.

Sparsity regularization. In order to learn sparsely con-
nected graph structures, we propose to regularize the logis-
tic parameters νji such they are encouraged to be close to
some negative hyper-parameter. Specifically, we add the
penalty term−β

∑
j 6=i |νji−κ|, where κ is a negative con-

stant (we used κ = −3 throughout this work), and β is the
regularization parameter. This method can also be inter-
preted as using a Laplace distribution prior with negative
mean for νji. Note that this regularization is different from
the conventional sparsity regularization imposed on the ac-
tivation of hidden units (Lee et al., 2008).

5. Spike and slab RTRBM and SRTRBM
Previous applications of the RTRBM to modeling of time-
series with real valued observations used a GRBM for each
stage in the network. Here we propose to use a ssRBM
instead of the GRBM, since it is known to provide better
modeling for the conditional covariance. The hidden in-
put from the previous time-step is also replaced with the
expected value of the hidden units at each stage in the net-
work. We do not add any additional terms related to the
slab variables. Following (5) and (10), we have that the
probability distribution for each time-step takes the form:

P (vt,ht, st; rt−1) =
1

Zrt−1

exp{−E(vt,ht, st; rt−1)}

E(vt,ht, st; rt−1) = −(st � ht)
>Wvt (28)

+
1

2
v>t
(
λI + diag(Φ>ht)

)
vt +

α

2
‖st‖22

− αµ>(st � ht)− b>ht +
α

2
µ2>ht − h>t Urt−1,

where rt,i = σ(0.5α−1(Wi,·vt)
2 + µiWi,·vt −

0.5v>t diag(Φi,·)vt + bi + Ui,·rt−1) for t > 1, and r1,i =
σ(0.5α−1(Wi,·v1)2 + µiWi,·v1 − 0.5v>1 diag(Φi,·)v1 +
binit,i). The model parameters are {W, U, b, Φ, µ, λ, α}.

Structured Recurrent Temporal Restricted Boltzmann Machines

The joint probability takes the form:

P ({vt,ht, st}Tt=1; {rt}T−1
t=1) ∝ exp{E({vt,ht, st}Tt=1)},

where E({vt,ht, st}Tt=1) = −H−Q2, with

H = (binit − b)>h1 +

T∑
t=1

[
(st � ht)

>Wvt

− 1

2
v>t (λI + diag(Φ>ht))vt −

α

2
‖st‖22

+ αµ>(st � ht) + b>ht −
α

2
µ2>ht

]
, (29)

and Q2 defined as in (14).

Inference can be performed using Gibbs sampling, where
vt,ht, st are sampled similarly to (6)-(8), and learning can
be performed using CD. The gradients with respect to each
of the model parameters related to H are straightforward
to compute, whereas the gradients related to Q2 are com-
puted using the same approach used for the RTRBM. First,
the gradients with respect to rt are computed using (17),
and subsequently the gradients with respect to each of the
model parameters are computed using the chain rule.

5.1. Spike-and-slab SRTRBM
In order to learn structure in real valued time-series us-
ing the spike-and-slab SRTRBM, we define the masking
matrices MW and MU similarly to the previous section.
We then replace the model matrices W, U, and Φ, with
W�MW, U�MU, and Φ�MW respectively. Learning
of the logistic parameters νji is performed using CD (simi-
larly as in Section 4.2). Using (28) we have that the partial
derivative of the spike-and-slab SRTRBM energy function
with respect to νji takes the form:

∂

∂νji
E(vt,ht; rt−1) = −

∑
t

[
(hjt � sjt)

>Wjivit

+ hj>t (−0.5Φji(vit � vit) + Ujirit−1)

+ (∇rtQ
j
t+1 � rjt � (1− rjt)� (µj + α−1(W̃vt)

j))>Wjivit

+ (∇rtQ
j
t+1 � rjt � (1− rjt))

>(Ujirit−1 − 0.5Φji(vit � vit))
]

× δσδ(νji)(1− σδ(νji)) (30)

where W̃ = W � MW. The learning scheme for the
spike-and-slab SRTRBM is summarized in Algorithm 1.

6. Experimental results
6.1. Simulations using synthetic data
Here we use synthetic videos of 3 bouncing balls, where the
pixels are binary valued. We generated 4000 videos of size
30 × 30 pixels and duration of 100 time-steps for training,
using the code that is available online and was described
in Sutskever et al. (2008). We generated another 200 such
videos for testing. We defined the SRTRBM groups by par-
titioning each frame into a 5 × 5 grid, and assigning the

Algorithm 1 Contrastive Divergence training iteration for
the spike-and-slab SRTRBM.

Input: training sequence v1, . . . ,vT , and number of CD
iterations NCD.

1. Set W̃ = W�MW, Ũ = U�MU, Φ̃ = Φ�MW.

2. For t = 1, . . . , T

• For each i = 1, . . . , Nh, compute:
rt,i = σ(0.5α−1(W̃i,·vt)

2 + µiW̃i,·vt −
0.5v>t diag(Φ̃i,·)vt + b′t,i)), where b′1,i = binit,i

and b′t,i = bi + Ũi,·rt−1 for t > 1.
• Run NCD Gibbs sampling iterations to obtain

v
(n)
t ,h

(n)
t , s

(n)
t , n = 0, . . . , NCD.

3. Approximate Dt recursively using h
(0)
t , h(NCD)

t , t =

T, . . . , 2 using (21), using Ũ instead of U.

4. Compute approximate gradients related toQ2 with re-
spect to the model parameters:

• ∆Q2

W =
∑T−1
t=1 ((Dt+1 � rt � (1 − rt)) �

(α−1W̃vt + µ))v>t

• ∆Q2

Φ =
∑T−1
t=1 −0.5(Dt+1 � rt � (1− rt))v

2>
t

• ∆Q2
µ =

∑T−1
t=1 (Dt+1 � rt � (1− rt))� (W̃vt)

• Compute ∆Q2

U , ∆Q2

b , and ∆Q2

binit
using (19),

(24), and (25) respectively.

5. For each θ ∈ {W,U,b,binit,Φ, µ, λ} update using

∆H+Q2

θ =
(∂
∂θ
H({v(0)

t ,h
(0)
t }Tt=1)

− ∂

∂θ
H({v(NCD)

t ,h
(NCD)
t }Tt=1) + ∆Q2

θ

)
�Mθ

where H is given in (29), MΦ = MW, Mb =
Mbinit

= Mµ = Mλ = 1, and ∆Q2

λ = 0.

6. Set any negative element of Φ to zero.

7. Update νji using (30) and the sparsity regularization.

pixels within each block to a unique node in the graph.
We used the same total number of hidden units for the
RTRBM and SRTRBM. For the SRTRBM, the number of
hidden units assigned to each SRTRBM groups was identi-
cal, and the regularization hyper-parameter to β = 0.001.
The number of CD iterations during training was set to 25.

In Figure 3(a), we show 30 of the bases that were
learned using the SRTRBM. Comparing to the bases that
were presented in previous works (Sutskever et al., 2008;
Boulanger-Lewandowski et al., 2012), the bases shown in
Figure 3(a) are more spatially localized. In Table 1, we

Structured Recurrent Temporal Restricted Boltzmann Machines

(a) Learned bases (b) Neighbors (c) Learned mask

Figure 3. (a) The bases learned using SRTRBM for the videos of
bouncing balls, (b) the mask MU corresponding to a dependency
graph in which only neighboring nodes (i.e., adjacent regions in
the grid) are connected, (c) the learned mask MU.

Nh 2500 3750
RTRBM 4.00± 0.35 3.88± 0.33

SRTRBM 3.58± 0.35 3.31± 0.33

Table 1. Average prediction error for the bouncing balls dataset.
Intervals represent the standard error of the mean.

compare the average squared prediction error per frame
over the 200 test videos, for the RTRBM and SRTRBM
with different number of hidden units. We used 5 iterations
per frame to hallucinate the prediction. It can be seen that
the SRTRBM outperforms the RTRBM, and that using the
SRTRBM instead of the RTRBM becomes more important
when the number of hidden units increases. In an additional
control experiment, we also tried to use `1 regularization
for the model matrix W of the RTRBM; however, it did
not improve the performance of the RTRBM.

In Figure 3(b) we show the sparse adjacency matrix for a
graph in which only the neighboring nodes (adjacent re-
gions in the 5x5 grid) are connected. In Figure 3(c), we
show the learned masking matrix MU (i.e., brighter inten-
sities correspond to larger values, and dark intensity values
correspond to smaller values). The results suggest that the
learned graph captures the dependency between adjacent
blocks, as is expected for the bouncing balls dataset.

6.2. Simulations using motion capture data
In this experiment, we used the CMU motion capture
dataset1, which contains the joint angles for different mo-
tion types. We followed Taylor et al. (2011) and used the 33
running and walking sequences of subject 35 (23 walking
sequences, and 10 running sequences). We partitioned the
33 sequences into two groups: the first had 31 sequences,
and the second had 2 sequences (one walking, and the other
running). We used the following preprocessing on the data.
First, we removed all the joint angles which were constant
throughout all the time-series (after which we were left
with 58 angles). Subsequently, we subsampled each se-
quence by a factor of 4, and normalized the angles by first
subtracting the mean from each joint and dividing by the
standard deviation. We evaluated the performance in this

1http://mocap.cs.cmu.edu/

walking running
RNN 21.67 19.05

Gaussian-RTRBM 14.41± 0.38 10.91± 0.27
ss-RTRBM 8.45± 0.05 6.22± 0.04

ss-SRTRBM (no grouping) 8.32± 0.08 5.84± 0.05
ss-SRTRBM (groups) 8.13± 0.06 5.88± 0.05

Table 2. Average prediction error obtained for the motion capture
dataset using different methods (“no groupings”: one observa-
tion per node; “groups”: all the observations associated with each
body part are assigned to the same node).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

5

10

15

20

25

30

35

ss−RTRBM
ss−SRTRBM

Figure 4. The prediction error for each motion capture testing se-
quence, obtained using the spike-and-slab RTRBM (ss-RTRBM)
and the spike-and-slab SRTRBM (ss-SRTRBM)

normalized space.

We used two different approaches to assign the observa-
tions to SRTRBM groups. First, we assigned each observa-
tion to a group (i.e., no grouping), and the second approach
was to assign all the angles associated with one of 27 body
parts (e.g. left-foot, right-hand, etc.) to a single group. The
number of hidden units that were assigned to each node in
the SRTRBM was 10 times the number of observations as-
signed to that node, and we used the same total number of
hidden units for the RTRBM.

We used a fixed learning rate of 10−3 with 10 CD itera-
tions for training the Gaussian RTRBM, and a single CD it-
eration for training the spike-and-slab-based methods since
we observed that when using more iterations the spike-and-
slab-based algorithms often diverged. We hypothesize that
this is because the probability distribution of the ssRBM is
not guaranteed to integrate to 1. The spike-and-slab hyper-
parameter α was set to 1. The SRTRBM regularization pa-
rameter β was set to 5× 10−3 when assigning each obser-
vation to an independent node, and 10−2 when assigning
observations to groups based on the body parts. We used a
single Gibbs sampling iteration per time-step to predict the
normalized joint angles, since it produced the best results
for all the compared algorithms. We averaged the predic-
tion error over 200 trials.

In Table 2, we report the average prediction error obtained

Structured Recurrent Temporal Restricted Boltzmann Machines

Figure 5. The sub-graph related to the extremities and major
bones in the hands and legs, learned using the spike-and-slab
SRTRBM for the motion capture dataset.

when training with the time-series from the first group, and
testing with the time-series from the second, using RNN,
Gaussian RTRBM, spike-and-slab RTRBM, and spike-and-
slab SRTRBM with the two different groupings described
before. It can be seen that the spike-and-slab-based meth-
ods improve over the Gaussian RTRBM significantly, and
that the SRTRBM improves over the RTRBM. For the
spike-and-slab SRTRBM, “no grouping” achieved compa-
rable (or only slightly worse) performance to grouping-
based method (based on prior knowledge).

In Figure 5, we show the parts of the dependency graph
which are related to the extremities and major bones in the
legs and hands. We used the sequences from the first group
to learn the graph using the SRTRBM, where we assigned
all the angles associated with each body part to the same
node. It can be observed that many of the edges satisfy
adjacency relationships in the human body (e.g. left-thumb
and left-hand, left-thumb and left-fingers, left-foot and left-
tibia, left-femur and left-tibia, right-tibia and right-femur,
right-foot and right-femur, right-foot and right-toes, etc.).

6.3. Weather modeling
In this experiment, we used a dataset of historical weather
records available at the National Climatic Data Center2. We
used the maximum and minimum daily temperature mea-
surements from 120 weather stations, and we normalized
the data using the same procedure described in the previ-
ous section. We assigned the minimum and maximum tem-
peratures measured at each station to the same node in the
SRTRBM, and assigned 10 hidden units per observation.
We used a learning rate of 5 × 10−5, and SRTRBM reg-
ularization parameter β = 10−2. We used the spike-and-
slab parameter α = 8.5 and α = 1 for the non-structured
and structured versions of the RTRBM respectively. We
extracted 6 training sequences of length 50 time-steps each
for training, and 5 such sequences for testing. The predic-
tion error was computed by running a single Gibbs sam-
pling iteration for each time-step, and averaging over 200

2ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/daily

GRTRBM ss-RTRBM ss-SRTRBM
1 33.69± 0.77 26.24± 0.12 23.49± 0.16
2 42.75± 0.97 35.16± 0.14 32.91± 0.17
3 38.68± 1.00 30.81± 0.14 30.87± 0.22
4 34.46± 0.86 25.55± 0.1 24.55± 0.16
5 35.59± 0.76 27.62± 0.11 24.51± 0.14

Table 3. Average prediction error for the historical weather
records dataset, for each of the 5 testing sequences.

Figure 6. The graph corresponding to a subset of the 120 weather
stations, learned using the historical weather records dataset.

runs. The prediction error results are shown in Table 3,
where it can be seen that the spike-and-slab-based methods
significantly outperform the Gaussian RTRBM, and that
the SRTRBM outperforms the RTRBM.

In Figure 6, we present a subset of the learned graph for 24
stations out of the 120 that are located at the western part
of the US. We used both the training and testing sequences
to train the model. It can be observed that the links capture
the neighborhood relationship as well as some longer range
relationships.

7. Conclusions
We developed a new approach, the structured recurrent
temporal restricted Boltzmann machine, to learn the struc-
ture of time-series signals. In addition, we proposed
the spike-and-slab RTRBM, and combined it with the
SRTRBM to learn the structure of real-valued time-series
datasets. Our experimental results using several synthetic
and real datasets verify that the SRTRBM is able to recover
the structure of the datasets and outperform the RTRBM,
particularly when the size of the training set is small. Fur-
thermore, the spike-and-slab version of the RTRBM signif-
icantly outperforms the Gaussian RTRBM. We hope that
our approach will inspire more research on deep structural
learning models for temporal modeling.

Acknowledgments
This work was supported in part by ONR N000141310762,
NSF CPS-0931474, and Google Faculty Research Award.

Structured Recurrent Temporal Restricted Boltzmann Machines

References
Banerjee, O., Ghaoui, L. E., and D’aspremont, A. Model

selection through sparse maximum likelihood estimation
for multivariate Gaussian or binary data. Journal of Ma-
chine Learning Research, 9:485–516, 2008.

Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R.
Advances in optimizing recurrent networks. In ICASSP,
2013.

Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P.
Modeling temporal dependencies in high-dimensional
sequences: Application to polyphonic music generation
and transcription. In ICML, 2012.

Courville, A. C., Bergstra, J., and Bengio, Y. Unsupervised
models of images by spike and-slab RBMs. In ICML,
2011a.

Courville, A. C., Bergstra, J., and Bengio, Y. A spike and
slab restricted Boltzmann machine. In AISTATS, 2011b.

Dahl., G. E., Ranzato, M., Rahman, M. A., and Hinton,
G. E. Phone recognition with the mean-covariance re-
stricted Boltzmann machine. In NIPS, 2010.

Doshi, F., Wingate, D., Tenenbaum, J. B., and Roy, N. In-
finite dynamic Bayesian networks. In ICML, 2011.

Friedman, J., Hastie, T., and Tibshirani, R. Sparse inverse
covariance estimation with the graphical lasso. Biostatis-
tics, (5):432441, 2008.

Hinton, G. E. Training products of experts by minimiz-
ing contrastive divergence. Neural Computation, 14(8):
1771–1800, 2002.

Hinton, G. E. and Salakhutdinov, R. Reducing the dimen-
sionality of data with neural networks. Science, 313:
504–507, 2006.

Lauritzen, S. L. Graphical Models. Oxford University
Press, 1996.

Lee, H., Ekanadham, C., and Ng, A. Y. Sparse deep belief
net model for visual area V2. In NIPS. 2008.

Martens, J. and Sutskever, I. Learning recurrent neural net-
works with Hessian-free optimization. In ICML, 2011.

Mohan, K., Chung, M., Han, S., Witten, D., Lee, S. I., and
M, F. Structured learning of Gaussian graphical models.
In NIPS. 2012.

Pascanu, R., Mikolov, T., and Bengio, Y. On the diffi-
culty of training recurrent neural networks. In ICML,
volume 28, 2013.

Prabhakar, K., Oh, S. M., Wang, P., Abowd., G. D., and
Rehg, J. M. Temporal causality for the analysis of visual
events. In CVPR, 2010.

Rabiner, L. and Juang, B.-H. An introduction to hid-
den markov models. ASSP Magazine, IEEE, 3(1):4–16,
1986.

Ranzato, M. and Hinton, G. E. Modeling pixel means and
covariances using factorized third-order boltzmann ma-
chines. In CVPR, 2010.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing internal representations by error propagation. In
Rumelhart, D. E. and Mcclelland, J. L. (eds.), Parallel
Distributed Processing: Explorations in the Microstruc-
ture of Cognition, Volume 1: Foundations, pp. 318–362.
MIT Press, Cambridge, MA, 1986.

Smolensky, P. Information processing in dynamical sys-
tems: Foundations of harmony theory. In Rumelhart,
D. E., McClelland, J. L., et al. (eds.), Parallel Distributed
Processing: Volume 1: Foundations, pp. 194–281. MIT
Press, Cambridge, 1987.

Songsiri, J. and Vandenberghe, L. Topology selection in
graphical models of autoregressive processes. Journal
of Machine Learning Research, 11:2671–2705, 2010.

Sutskever, I. and Hinton, G. E. Learning multilevel dis-
tributed representations for high-dimensional sequences.
In AISTATS, 2007.

Sutskever, I., Hinton, G. E., and Graham, T. W. The recur-
rent temporal restricted Boltzmann machine. In NIPS,
2008.

Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. On
the importance of initialization and momentum in deep
learning. In ICML, 2013.

Taylor, G. W., Hinton, G. E., and Roweis, S. T. Two
distributed-state models for generating high-dimensional
time series. Journal of Machine Learning Research, 12:
1025–1068, 2011.

