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Abstract

Unsupervised feature learning has emerged
as a promising tool in learning representa-
tions from unlabeled data. However, it is still
challenging to learn useful high-level features
when the data contains a significant amount
of irrelevant patterns. Although feature se-
lection can be used for such complex data,
it may fail when we have to build a learning
system from scratch (i.e., starting from the
lack of useful raw features). To address this
problem, we propose a point-wise gated Boltz-
mann machine, a unified generative model
that combines feature learning and feature
selection. Our model performs not only fea-
ture selection on learned high-level features
(i.e., hidden units), but also dynamic feature
selection on raw features (i.e., visible units)
through a gating mechanism. For each ex-
ample, the model can adaptively focus on a
variable subset of visible nodes correspond-
ing to the task-relevant patterns, while ig-
noring the visible units corresponding to the
task-irrelevant patterns. In experiments, our
method achieves improved performance over
state-of-the-art in several visual recognition
benchmarks.

1. Introduction

One fundamental difficulty in building algorithms that
can robustly learn from complex real-world data is to
deal with significant noise and irrelevant patterns. In
particular, let’s consider a problem of learning from
scratch, assuming the lack of useful raw features. Here,
the challenge is how to learn a robust representation
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that can distinguish important (e.g., task-relevant)
patterns from significant amounts of distracting (e.g.,
task-irrelevant) patterns.

For constructing useful features, unsupervised feature
learning (Hinton et al., 2006; Bengio et al., 2007; Ran-
zato et al., 2007; Bengio, 2009) has emerged as a pow-
erful tool in learning representations from unlabeled
data. In many real-world problems, however, the data
is not cleaned up and contains significant amounts of
irrelevant sensory patterns. In other words, not all
patterns are equally important. In this case, the unsu-
pervised learning methods may blindly represent the
irrelevant patterns using the majority of the learned
high-level features, and it becomes even more diffi-
cult to learn task-relevant higher-layer features (e.g.,
by stacking). Although there are ways to incorporate
supervision (e.g., supervised fine-tuning), learning is
still challenging when the data contains lots of irrele-
vant patterns, as shown in (Larochelle et al., 2007).

To deal with such complex data, one may envision us-
ing feature selection. Indeed, feature selection (Jain &
Zongker, 1997; Yang & Pedersen, 1997; Weston et al.,
2001; Guyon & Elisseeff, 2003) is an effective method
for distinguishing useful raw features from irrelevant
raw features. However, feature selection may fail if
there are no good raw features to start with.

To address this issue, we propose to combine feature
learning and feature selection coherently in a unified
framework. Intuitively speaking, given that unsuper-
vised feature learning can find partially useful high-
level abstractions, it may be easier to apply feature
selection on learned high-level features to distinguish
the task-relevant ones from the task-irrelevant ones.
Then, the task-relevant high-level features can be used
to trace back where such important patterns occur.
This information can help the learning algorithm to
focus on these task-relevant raw features (i.e., visible
units corresponding to task-relevant patterns), while
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ignoring the rest.

In this paper, we formulate a generative feature learn-
ing algorithm called the point-wise gated Boltzmann
machine (PGBM ). Our model performs feature selec-
tion not only on learned high-level features (i.e., hid-
den units), but also on raw features (i.e., visible units)
through a gating mechanism using stochastic “switch
units.” The switch units allow our model to estimate
where the task-relevant patterns occur, and make only
those visible units to contribute to the final prediction
through multiplicative interaction. The model ignores
the task-irrelevant portion of the raw features, thus
it performs dynamic feature selection (i.e., choosing a
variable subset of raw features depending on semantic
interpretation of the individual example).

We evaluate our models in two ways: 1) recognizing
handwritten digits in the irrelevant background, and 2)
localizing and classifying objects in the natural scenes.
In the first experiment, our method shows strong per-
formance in learning features and distinguishing task-
relevant features from task-irrelevant features. In the
second experiment, our model shows promising results
in distinguishing foreground objects from background
scenes and localizing the object bounding boxes in a
weakly-supervised way, which leads to an improved ob-
ject recognition performance.

We summarize our main contributions as follows:

e We propose the PGBMs that jointly perform fea-
ture learning and feature selection in a unified
framework.

e We propose the semi-supervised PGBM and show
its effectiveness when given a small amount of la-
beled data and a large amount of unlabeled data.

e We show that the PGBM is an effective building
block for constructing deep networks.

e We propose a convolutional extension of the
PGBM. We further show that this can be used for
weakly-supervised object localization. Using pre-
dicted bounding boxes of objects, we demonstrate
state-of-the-art object recognition performance on
the Caltech 101 dataset.

e We achieve a significant improvement over state-
of-the-art on variations of the MNIST dataset.

2. Preliminaries

Our model can be viewed as a high-order extension
of the restricted Boltzmann machine (RBM), and we
briefly review it in this section. The RBM is an undi-
rected graphical model that defines the distribution
of visible units using binary hidden units. The joint
distribution of binary visible units and binary hidden

units is written as follows:

P(v.h) = §exp<—E<v, h),

Z (% zkhk - Z bkhk - chvz
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where v € {0,1}” are the visible (i.e., input) units,
and h € {0,1}X are the hidden (i.e., latent) units.
Z is the normalizing constant, and W € RP*K b ¢
RX ¢ € RP are the weight matrix, hidden and visible
bias vectors, respectively. Since there are no connec-
tions between the units in the same layer, visible units
are conditionally independent given the hidden units,
and vice versa. The conditional probabilities of the
RBM can be written as follows:

Z Wlk‘h’k + Cz)
k

P(hk =1 | V) = U(ZWikvi —|—bk),
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H%‘ Training the RBM corre-
exp(—x)

sponds to maximizing the log-likelihood of the data
with respect to parameters {W,b,c}. Although the
gradient is intractable to compute, contrastive diver-

gence (Hinton, 2002) can be used to approximate it.

3. Proposed Models

In this section, we propose the point-wise gated Boltz-
mann machine and its extensions. In Section 3.1, we
describe the basic unsupervised PGBM that learns and
groups features into semantically distinct components.
In Section 3.2, we propose the supervised PGBM that
uses class labels as a top-down feedback to partition
the hidden units into the task-relevant and the task-
irrelevant components. In Section 3.3, we propose
the semi-supervised PGBM that uses unlabeled data
as a regularizer when there are only a small number
of labeled training examples. Furthermore, we con-
struct a deep network using the PGBM as a building
block, where we stack neural network layer(s) on top
of the PGBM’s task-relevant hidden units. Finally,
we present the convolutional extension of the PGBM
that can efficiently handle spatially correlated high-
dimensional data.

where o(x) =

3.1. Point-wise Gated Boltzmann machines

When we deal with complex data, it is desirable for
a learning algorithm to distinguish semantically dis-
tinct patterns. For example, an object recognition al-
gorithm may improve its performance if it can separate
the foreground object patterns from the background
clutters. To model this, we propose to represent each
visible unit as a mixture model when conditioned on
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Figure 1. Graphical model representation of the (a) PGBM and (b) supervised PGBM with two groups of hidden units.
The Bernoulli switch unit z; specifies which of the two components models the visible unit v;. In other words, when
z; = 1, v; is generated from the hidden units in the first group (shown in red); when z; = 2, v; is generated from the

hidden units in the second group (shown in green).

the hidden units, where each group of hidden units can
generate the corresponding mixture component.

Before going into details, we describe the generative
process of the PGBM as follows: (1) The hidden units
are partitioned into components, each of which defines
a distinct distribution over the visible units. (2) Con-
ditioning on the hidden units, we sample the switch
units. (3) The switch units determine which com-
ponent generates the corresponding visible units. A
schematic diagram is shown in Figure 1(a) as an undi-
rected graphical model.

The PGBM with R mixture components has a multi-
nomial switch unit, denoted z; € {1,--- , R},! for each
visible unit v;. The PGBM imposes element-wise mul-
tiplicative interaction between the paired switch and
visible units, as shown in Figure 1(a). Now, we define
the energy function of the PGBM as follows:

R D K,
B ==Y o wakp ()

r=11=1 k=1
R K, D

IPILUEDIPCTOLE
r=1k=1 r=11i=1

R

s.t. » z=1i=1,---,D.
r=1

Here, v, z" and h are the visible, switch and hidden
unit binary vectors, respectively, and the model pa-
rameters W/, by, ci are the weights, hidden biases,
and the visible biases of r-th component. The binary-
valued switch unit 2] is activated (i.e. takes value 1) if
and only if its paired visible unit v; is assigned to the
'For convenience, we also use the vector representa-
tion for switch unit in boldface, i.e., z; = [2},---, 25| €
{0,1}7, where 3% | 2I' = 1, for each visible unit v;.

r-th component, and its conditional probability given
hidden units follows a multinomial distribution over
R categories. The energy function can be written in
matrix form as follows:

R
EY(v,z,h) = — Z(zr ov)TWrh"
E R
=S )T =S @) (@ o),

where the operator ©® denotes element-wise multipli-
cation, i.e., (z" @ v); = 2[v;.

The visible, hidden, and switch units are conditionally
independent given the other two types of units, and
the conditional probabilities can be written as follows:

P(hy=1|zv)=0(z 0v)"Wj+b), (2

P(wi=1|zh) =0 (Zz;" (w;_hwc;)), (3)

exp (vi (Wih" + ¢f))
2 .exp (v (Wih® +¢f))’

Plzi=1]|v,h) = (4)
where we use W/ to denote ¢-th row, and W', to
denote k-th column of the matrix W,

It is important to note that, while inferring the hid-
den units, our model gates (or re-weighs) each visible
unit v; according to the corresponding switch units z]
(Equation 2). In other words, the point-wise multi-
plicative interaction between the switch and the vis-
ible units allows the hidden units in each component
to focus on a specific part of the data, and this makes
the hidden units in one component to be robust to the
patterns learned by other components. Moreover, the
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top-down signal from the hidden units encourages as-
signing the same mixture component to semantically-
related visible units during the switch unit inference,
and therefore we can prune out the irrelevant raw fea-
tures dynamically for each example.

It is worth noting that, when we tie all switch units
(i.e., z; = z for all i), the PGBM becomes equiva-
lent to the implicit mixture of restricted Boltzmann
machine (Nair & Hinton, 2008). Furthermore, given
that there is a multiplicative interaction between three
types of variables, the PGBM can be understood in
the context of higher-order Boltzmann machines (Se-
jnowski, 1987; Memisevic & Hinton, 2010).

We train the PGBM with stochastic gradient descent
using contrastive divergence. Since the exact inference
is intractable due to the three-way interaction, we use
mean-field or alternating Gibbs sampling (i.e., sample
one type of variables given the other two types using
Equations (2),(3), and (4)) for approximate inference.

3.2. Generative feature selection with
supervised PGBMs

Although the PGBM can learn to group distinct fea-
tures for each mixture component, it doesn’t neces-
sarily learn discriminative features automatically since
the generative training is done in an unsupervised way.
One way to make the PGBM implicitly perform fea-
ture selection (i.e., distinguish features into different
groups based on their relevance to the task) is to pro-
vide a good initialization of the model parameters. For
example, we can pre-train the regular RBM and di-
vide the hidden units into two groups based on the
score from the simple feature selection algorithms such
as the t-test? to initialize the weight matrices of the
PGBM. As we will discuss in Section 5, this approach
improves classification performance of the PGBMs.

Furthermore, to make use of class labels during the
generative training, we propose a supervised PGBM
that only connects the hidden units in the task-
relevant component(s) to the label units. The graphi-
cal model representation is shown in Figure 1(b). By
transferring the label information to the raw features
through the task-relevant hidden units, the supervised
PGBM can perform generative feature selection both
at the high-level (i.e., using only a subset of hidden
units for classification) and the low-level (e.g., dynam-
ically blocking the influence of the task-irrelevant vis-
ible units) in a unified way.

For simplicity, we present the supervised PGBM with
two mixture components, where we assign the first

*http://featureselection.asu.edu/software.php

component to be task-relevant. The energy function
is defined as follows:

ES(V7Z5 haY) = EU(V7Z7h) - yTUhl - dTy (5)

subject to z} + 22 = 1, i = 1,---,D. The label
vector y € {0,1}* is in the 1-of-L representation.
U € REXK1 s the weight matrix between the task-
relevant hidden units and the label units, and d is the
label bias vector. The conditional probabilities can be
written as follows:

P(h,=1|zv.,y) (6)
=o((z' ov)"WL + b} + ULy),
exp (Ul_hl + dl)

_ 1y
Pl =110 = s U +dy)

(7)

The conditional probabilities of the visible and switch
units are the same as Equations (3) and (4). As we
can see in Equation (6), the label information, together
with the switch units, modulates the hidden unit ac-
tivations in the first (task-relevant) component, and
this in turn encourages the switch units z} to activate
at the task-relevant visible units® during the iterative
approximate inference.

We can train the supervised PGBM in generative cri-
teria whose objective is to maximize the joint log-
likelihood of the visible and the label units (Larochelle
& Bengio, 2008). Similarly to that of PGBM, the in-
ference can be done with alternating Gibbs sampling
between Equations (3),(4),(6), and (7).

3.3. Variations of the model
3.3.1. SEMI-SUPERVISED PGBMSs

There are many classification tasks where we are given
a large number of unlabeled examples in addition to
only a small number of labeled training examples. For
this scenario, it is important to include unlabeled ex-
amples during the training to generalize well to the un-
seen data. The supervised PGBM can be adapted to
the semi-supervised learning framework. For example,
we can regularize the joint log-likelihood log PS(v,y)
with the data log-likelihood log PS(v) defined on the
unlabeled data (Larochelle & Bengio, 2008). We pro-
vide more details in Section 5 and the supplementary
material.

3.3.2. DEEP NETWORKS

The PGBM can be used as a building block of deep
networks. For example, we can use it as a first layer

3Note: In our model, we call that a visible unit (a
raw feature) is “task-relevant” (or “task-irrelevant”) if its
switch unit for the task-relevant (or task-irrelevant) com-
ponent is active, respectively.
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(a) task-relevant filters (b) task-irrelevant filters
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(d) original images

Figure 2. (a, b) Visualization of filters corresponding to two components learned from the PGBM, (c) visualization of the
activation of switch units, and (d) corresponding original images on mnist-back-image dataset. Specifically, (a) represents
the group of hidden units that activates for the foreground digits (task-relevant), and (b) represents the group of hidden
units that activates for the background images (task-irrelevant). See text for details.

block and stack neural networks on the hidden units of
task-relevant components. Since the PGBM can select
the task-relevant hidden units with supervision, the
higher-layer networks can focus on the task-relevant
information. In Section 5.1, we show that the two-
layer model, where we stack a single-layer neural net-
work on top of a PGBM’s task-relevant component,
was sufficient to outperform existing state-of-the-art
classification performance on the variations of MNIST
dataset with irrelevant backgrounds.

3.3.3. CoNnvoLUTIONAL PGBM

Convolutional models can be useful in representing
spatially or temporally correlated data. The PGBM
can be extended to a convolutional setting (Lee et al.,
2011), where we share the filter weights over different
locations in large images. In Section 5.2, we present
the convolutional PGBM with an application to the
weakly supervised foreground object localization prob-
lem. Furthermore, by locating the bounding box at the
foreground object accurately, we achieved state-of-the-
art recognition performance in Caltech 101. For more
details, see the supplementary material.

4. Related Work

As mentioned in Section 3.1, the PGBM can be viewed
as an extension of the implicit mixture of RBM (im-
RBM) (Nair & Hinton, 2008) that allows per-visible-
unit switching. Although these two models look sim-
ilar, the per-visible-unit switching property of the
PGBM brings an important benefit over the imRBM
because it allows the PGBM to represent data with
multiple components, each of which focusing on dif-
ferent part of the raw features. In particular, the su-
pervised PGBM represents the data with two groups
of hidden units (one containing task-relevant hidden
units and the other containing task-irrelevant hidden
units). In contrast, the inRBM uses a single com-
ponent to represent the data, and thus cannot dis-

tinguish between the relevant and irrelevant patterns
when the data contains significant amounts of irrele-
vant patterns.

The discriminative RBM (discRBM) (Larochelle &
Bengio, 2008) is another model that can learn dis-
criminative features using class labels. We argue that,
however, the PGBM can be more robust to noisy data
since it can prune out (or re-weigh) the irrelevant fea-
tures dynamically for each data instance using switch
unit activations, whereas the discRBM accumulates
the contribution from noisy visible units with the fixed
weights applied to all data instances. In Section 5.1,
we empirically show that the PGBM significantly out-
performs both the imRBM and the discRBM in clas-
sifying handwritten digits in the presence of irrelevant
background patterns.

Rifai et al. (2012) proposed the contractive discrim-
inative analysis (CDA). Similarly to the PGBM, the
CDA has two groups of hidden units, one of which is
connected to labels. The difference is that the CDA
is a feed-forward neural network which can learn dis-
tinct features for each group with a contractive penalty
term, while the PGBM is a probabilistic model that
performs generative feature selection through a mul-
tiplicative interaction between visible, hidden, and
switch units.

The robust Boltzmann machine (RoBM) (Tang et al.,
2012) shares its motivation with our work, though
there are several technical differences. First, the
RoBM models each background noise unit with a
unimodal Gaussian distribution, whereas the PGBM
models the background visible units with more com-
plicated multimodal distribution with a group of hid-
den units. Furthermore, the PGBM can directly learn
from the noisy data with class labels, but the RoBM
requires clean data to pre-train the GRBM.

In terms of energy function, the unsupervised PGBM
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Table 1. Test classification errors of (top) single-layer and (bottom) multi-layer models on MNIST variation datasets.
We used 10,000/2,000/50,000 splits for train, validation and test sets, and report the test classification errors without

retraining the model after hyperparameter search over the validation set.

For all RBM variants including imRBM,

discRBM, and PGBM, we used sparsity regularizer (Lee et al., 2008). The best performers among the single-layer models

and the deep network models are both in bold.

Algorithm mmist-back-rand | mmnist-back-image | mnist-rot-back-image | mnist-rot-back-rand

RBM 11.39 15.42 49.89 51.97

imRBM 10.46 16.35 51.03 51.02

discRBM 10.29 15.56 48.34 48.28

RBM-FS 11.42 15.20 49.65 51.69

PGBM 7.27 13.33 45.45 45.53

supervised PGBM 6.87 12.85 44.67 43.47
DBN-3 (Vincent et al., 2008) 6.73 16.31 47.39 -
CAE-2 (Rifai et al., 2011) 10.90 15.50 45.23 -

[ PGBM+ DN-1 i 6.08 [ 12.25 [ 36.76 [ 30.41 ]

can be viewed as having a similar formulation to the
masked RBM (Le Roux et al., 2011; Heess et al., 2011).
However, our main motivation is to perform joint fea-
ture selection at both low-level and high-level. Specifi-
cally, the difference becomes clearer when we use class
labels in supervised PGBM that performs generative
feature selection, as discussed in Section 3.2.

5. Experiments

5.1. Recognizing handwritten digits in the
presence of irrelevant background noise

We evaluated the capability of the proposed models
in learning task-relevant features from noisy data. We
tested the single-layer PGBMs and their extensions
on the variations of MNIST dataset: mnist-back-rand,
mmnist-back-image, mnist-rot-back-image, and mnist-
rot-back-rand.* The first two datasets use uniform
noise or natural images as background patterns. The
other two have rotated digits in front of the corre-
sponding background patterns. We used the PGBM
with two components of 500 hidden units, and initial-
ized with the pre-trained RBM using the feature selec-
tion as described in Section 3.2. We used mean-field
for approximate inference for all our experiments.’

In Figure 2, we visualize the filters and the switch
unit activations for mnist-back-image. The foreground
filters capture the task-relevant patterns resembling
pen strokes (Figure 2(a)), while the background fil-
ters (Figure 2(b)) capture task-irrelevant patterns in
the natural images. Further, the switch unit activa-
tions (the posterior probabilities that the input pixel
belongs to the foreground component, Figure 2(c)) are

4The first three datasets are generated by Larochelle et
al. (2007). We generated mnist-rot-back-rand following the
procedure described in their paper.

5We have tested mean-field and alternating Gibbs sam-
pling with 10-25 iterations, and they showed similar results.

high (colored in white) for the foreground digit pixels,
and low (colored in gray) for the background pixels.
This suggests that our model can dynamically separate
the task-relevant raw features from the task-irrelevant
raw features for each example.

For quantitative evaluation, we show test classification
errors in Table 1. For all experiments with our single-
layer models, we used the “task-relevant” hidden unit
activations as the input for the linear SVM (Fan et al.,
2008). The single-layer PGBM significantly outper-
formed the baseline RBM, imRBM, and discRBM.®
We did a careful model selection to choose the best hy-
perparameters for each of the compared models. These
results suggest that the point-wise mixture hypothesis
is effective in learning task-relevant features from com-
plex data containing irrelevant patterns.

5.1.1. GENERATIVE FEATURE SELECTION

As a control experiment, we compared our model to
the two-step model which we call “RBM-FS,” where
we first trained the RBM and selected a subset of hid-
den units using feature selection. As we see in Table 1,
the RBM-FS is only marginally better (or sometimes
worse) than the baseline RBM. However, the PGBM
significantly outperforms the RBM-FS, which demon-
strates the benefit of the joint training.

5.1.2. SEMI-SUPERVISED LEARNING

The supervised PGBM can be trained in a semi-
supervised way as described in Section 3.3.1. We used
the same experimental setting as (Larochelle & Ben-
gio, 2008), and provided labels for only 10 percent of
training examples (100 labeled examples for each digit
category). We summarize the classification errors of
semi-supervised PGBM, supervised PGBM, RBM and

SWe used “hybrid” discriminative RBM whose objec-
tive is a weighted sum of the discriminative (conditional)
and generative (joint) likelihood.
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Table 2. The mean and the standard deviation of the test classification errors of semi-supervised PGBM, supervised
PGBM, RBM, and RBM-FS. We repeated 5 times with randomly sampled 1,000 labeled training examples in addition to
the remaining 9,000 unlabeled training examples. The best model and those within the standard deviation are in bold.

Algorithm mnist-back-rand | mnist-back-image | mnist-rot-back-image | mmnist-rot-back-rand
RBM 17.43 £ 0.36 23.71 + 0.34 63.94 £ 0.50 63.17 + 0.32
RBM-FS 17.15 + 0.46 20.22 + 0.31 61.76 £+ 0.43 62.02 £ 0.81
supervised PGBM 16.15 £+ 0.70 21.04 + 0.18 59.39 + 0.58 63.82 + 0.68
semi-supervised PGBM 11.98 4+ 0.80 20.32 £ 0.15 59.19 + 0.68 58.57 + 0.49

RBM-FS in Table 2. The semi-supervised PGBM con-
sistently performed the best for all datasets, showing
that semi-supervised training is effective in utilizing a
large number of unlabeled examples.

5.1.3. DEEP NETWORKS

Finally, we constructed a two-layer deep network by
stacking one layer of neural network with 1,000 hidden
units on the task-relevant component of the PGBM.
We used softmax classifier for fine-tuning of the second
layer neural network. Table 1 shows that our deep net-
work (referred to as “PGBM-+DN-17) outperforms the
DBN-3 and the stacked contractive autoencoder by a
large margin. In particular, the result of the DBN-3 on
mnist-back-image implies that adding more layers to
the DBN does not necessarily improve the performance
when there are significant amounts of irrelevant pat-
terns in the data. In contrast, the PGBM can block the
task-irrelevant information from propagating to the
higher layers, and hence it is an effective building block
for deep networks. Finally, we note that, to the best
of our knowledge, the PGBM+DN-1 achieved state-of-
the-art classification performance on all datasets ex-
cept mnist-rot-back-image, where the transformation-
invariant RBM (Sohn & Lee, 2012) achieved 35.5%
error by incorporating the rotational invariance.

5.2. Weakly supervised object segmentation
with an application to object recognition

In this section, we extend our model to learn groups of
task-relevant features (i.e., foreground patterns) from
the images with higher resolution, and apply it to
weakly supervised object segmentation.

5.2.1. WEAKLY SUPERVISED OBJECT SEGMENTATION

Lee et al. (2011) showed that the convolutional deep
belief network (CDBN) composed of multiple layers
of convolutional RBM (CRBM) can learn hierarchical
feature representations from large images. In particu-
lar, the first layer of the CDBN mostly learns generic
edge filters, and the higher layers learn not only com-
plex generic patterns, such as corners or contours, but
also semantically meaningful features, such as object
parts (e.g., eyes, nose, or wheels) in the second layer
or whole objects (e.g., human face or car) in the third
layer. To learn and group related features from large

images, we propose the point-wise gated convolutional
deep network (CPGDN), where we use the convolu-
tional extension of the PGBM (CPGBM) as a building
block.

Specifically, we construct the two-layer CPGDN by
stacking the CPGBM on the first layer CRBM. This
construction makes sense because the first layer fea-
tures are mostly generic, and the class-specific features
emerge in higher layers (Lee et al., 2011). We train the
CPGDN using greedy layer-wise training method, and
perform feedforward inference in the first layer. We use
mean-field in the second layer for approximate infer-
ence of switch and hidden units. Due to the space con-
straint, we put more technical details of the CPGDN
in the supplementary material.

Figure 3. Visualization of the second layer CPGBM fea-
tures from “Faces” (top row) and “Car side” (bottom row)
classes. The left column shows the filters in the task-
relevant components, and the right column shows the filters
in task-irrelevant components.

We first trained a CPGDN with two mixture com-
ponents only on the single class of images from Cal-
tech 101 dataset (Fei-Fei et al., 2004). For this ex-
periment, we randomly initialized the weights without
pre-training. We visualize the second layer features
trained on “Faces” and “Car side” classes in Figure 3.
The CPGDN made a good distinction between the
task-relevant patterns such as face parts and wheels,
and the generic patterns. In Figure 4, we visualize
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Figure 4. Visualization of (top) the switch unit activation map and (bottom) the images overlayed with the predicted

(red) and the ground truth bounding boxes (green).

the switch unit activation map, which shows that the
switch units are selectively activated at the most infor-
mative region in each image. Interestingly, using this
activation map, we can segment the object region from
the background reasonably well, though our model is
not specifically designed for image segmentation.

5.2.2. OBJECT RECOGNITION

Inspired by the CPGDN’s ability to distinguish the
foreground object from the background scene, we pro-
pose a novel object recognition pipeline on Caltech
101 dataset, where we first “crop” each image at the
bounding box predicted using the switch unit activa-
tions of the CPGDN and perform classification us-
ing those cropped images. Specifically, we used the
CPGDN with two mixture components, each of which
is composed of 100 hidden units. To train the model ef-
ficiently from many different classes of images, we pre-
train a set of second layer CRBMs with a small num-
ber of hidden units (e.g., 30) for each class to capture
more diverse and class-specific patterns, and perform
feature selection on those CRBM features from all ob-
ject categories to initialize the weights of the second
layer CPGBM. Once we train the model, we compute
the posterior of switch units arranged in 2d. To pre-
dict the bounding box, we compute the row-wise and
column-wise cumulative sum of switch unit activations
and select the region containing (5,95) percentiles of
the total activations as a bounding box. For classifi-
cation, we followed the pipeline used in (Sohn et al.,
2011), which uses the Gaussian (convolutional) RBMs
with dense SIFT as input.

We first evaluated the bounding box detection accu-
racy. We declare that the bounding box prediction is
correct when the average overlap ratio (the area of in-
tersection divided by the union between the predicted
and the ground truth bounding boxes) is greater than
0.5 (Everingham et al., 2010). We achieved average
overlap ratio of 0.702 and detection accuracy of 88.3%.

Finally, we evaluated the classification accuracy using
the cropped Caltech 101 dataset with CPGDN and
summarize the results in Table 3. The object centered

Table 3. Test classification accuracy on Caltech 101.

Training images per class 15 30
Lazebnik et al. (2006) 56.4% | 64.6%
Griffin et al. (2007) 59.0% | 67.6%
Yang ot al. (2000) 67.0% | 732%
Boureau et al. (2010) - 75.7%
Goh et al. (2012) 71.1% | 78.9%
RBM (Sohn et al., 2011) | 68.6% | 74.9%
Our method + RBM 70.2% | 76.8%
CRBM (Sohn et al., 2011) | 71.3% | 77.8%
Our method + CRBM 72.4% | 78.9%

cropped images brought improvement in classification
accuracies, such as 74.9% to 76.8% with RBM, and
77.8% to 78.9% with CRBM using 30 training images
per class, respectively.” As a baseline, we also report
the classification accuracy on the augmented dataset
where we uniformly crop the center region across all
the images with a fixed ratio. After cross-validating
with different ratios, we obtain a worse classification
accuracy of 75.8% with RBM using 30 training images
per class. This suggests that the classification perfor-
mance can be improved by localizing the object better
than simply cropping the center region.

6. Conclusion

In this paper, we proposed a point-wise gated Boltz-
mann machine that can effectively learn useful fea-
ture representations from data containing irrelevant
patterns. Our methods achieve state-of-the-art clas-
sification performance on several datasets that con-
tain irrelevant patterns. We believe our method holds
promise in building a robust algorithm that can learn
from large-scale, complex, sensory input data.
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"We also performed the same experiment using different
CPGDN model without pre-training. We obtained similar
accuracy for the bounding box detection (0.697 for aver-
age overlap ratio, 90.2% for detection accuracy), but got
slightly worse classification accuracy (76.4% with RBM us-
ing 30 training images per class).
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