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Abstract

Associating image regions with text queries has been

recently explored as a new way to bridge visual and lin-

guistic representations. A few pioneering approaches have

been proposed based on recurrent neural language models

trained generatively (e.g., generating captions), but achiev-

ing somewhat limited localization accuracy. To better ad-

dress natural-language-based visual entity localization, we

propose a discriminative approach. We formulate a dis-

criminative bimodal neural network (DBNet), which can be

trained by a classifier with extensive use of negative sam-

ples. Our training objective encourages better localiza-

tion on single images, incorporates text phrases in a broad

range, and properly pairs image regions with text phrases

into positive and negative examples. Experiments on the

Visual Genome dataset demonstrate the proposed DBNet

significantly outperforms previous state-of-the-art methods

both for localization on single images and for detection on

multiple images. We we also establish an evaluation proto-

col for natural-language visual detection. Code is avail-

able at: http://ytzhang.net/projects/dbnet .

1. Introduction

Object localization and detection in computer vision are

traditionally limited to a small number of predefined cat-

egories (e.g., car, dog, and person), and category-specific

image region classifiers [7, 11, 14] serve as object detectors.

However, in the real world, the visual entities of interest are

much more diverse, including groups of objects (involved

in certain relationships), object parts, and objects with par-

ticular attributes and/or in particular context. For scalable

annotation, these entities need to be labeled in a more flexi-

ble way, such as using text phrases.

Deep learning has been demonstrated as a unified learn-

ing framework for both text and image representations. Sig-

nificant progress has been made in many related tasks, such

as image captioning [55, 56, 25, 37, 5, 9, 23, 18, 38], vi-

sual question answering [3, 36, 57, 41, 2], text-based fine-

grained image classification [44], natural-language object

retrieval [21, 38], and text-to-image generation [45].

A few pioneering works [21, 38] use recurrent neural

language models [15, 39, 50] and deep image represen-
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Figure 1: Comparison between (a) image captioning model and

(b) our discriminative architecture for visual localization.

tations [31, 49] for localizing the object referred to by a

text phrase given a single image (i.e., “object referring"

task [26]). Global spatial context, such as “a man on the left

(of the image)”, has been commonly used to pick up the par-

ticular object. In contrast, Johnson et al. [23] takes descrip-

tions without global context1 as queries for localizing more

general visual entities on the Visual Genome dataset [30].

All above existing work performs localization by maxi-

mizing the likelihood to generate the query text given im-

age regions using an image captioning model (Figure 1a),

whose output probability density needs to be modeled on

the virtually infinite space of the natural language. Since it

is hard to train a classifier on such a huge structured out-

put space, current captioning models are constrained to be

trained in generative [21, 23] or partially discriminative [38]

ways. However, as discriminative tasks, localization and

detection usually favor models that are trained with a more

discriminative objective to better utilize negative samples.

In this paper, we propose a new deep architecture for

natural-language-based visual entity localization, which we

call a discriminative bimodal network (DBNet). Our ar-

chitecture uses a binary output space to allow extensive

discriminative training, where any negative training sam-

ple can be potentially utilized. The key idea is to take the

text query as a condition rather than an output and to let the

1Only a very small portion of text phrases on the Visual Genome refer

to the global context.

http://ytzhang.net/projects/dbnet


model directly predict if the text query and image region

are compatible (Figure 1b). In particular, the two pathways

of the deep architecture respectively extract the visual and

linguistic representations. A discriminative pathway is built

upon the two pathways to fuse the bimodal representations

for binary classification of the inter-modality compatibility.

Compared to the estimated probability density in the

huge space of the natural language, the score given by a bi-

nary classifier is more likely to be calibrated. In particular,

better calibrated scores should be more comparable across

different images and text queries. This property makes it

possible to learn decision thresholds to determine the exis-

tence of visual entities on multiple images and text queries,

making the localization model generalizable for detection

tasks. While a few examples of natural-language visual de-

tection are showcased in [23], we perform more compre-

hensive quantitive and ablative evaluations.

In our proposed architecture, we use convolutional neu-

ral networks (CNNs) for both visual and textual representa-

tions. Inspired by fast R-CNN [13], we use the RoI-pooling

architecture induced from large-scale image classification

networks for efficient feature extraction and model learning

on image regions. For textual representations, we develop a

character-level CNN [60] for extracting phrase features. A

network on top of the image and language pathways dynam-

ically forms classifiers for image region features depending

on the text features, and it outputs the classifier responses

on all regions of interest.

Our main contributions are as follows:

1. We develop a bimodal deep architecture with a binary

output space to enable fully discriminative training for

natural-language visual localization and detection.

2. We propose a training objective that extensively pairs

text phrases and bounding boxes, where 1) the discrim-

inative objective is defined over all possible region-text

pairs in the entire training set, and 2) the non-mutually

exclusive nature of text phrases is taken into account

to avoid ambiguous training samples.

3. Experimental results on Visual Genome demonstrate

that the proposed DBNet significantly outperforms ex-

isting methods based on recurrent neural language

models for visual entity localization on single images.

4. We also establish evaluation methods for natural-

language visual detection on multiple images and show

state-of-the-art results.

2. Related work

Object detection. Recent success of deep learning on vi-

sual object recognition [31, 59, 49, 51, 53, 17] constitutes

the backbone of the state-of-the-art for object detection

[14, 48, 52, 61, 42, 43, 13, 46, 17, 6]. Natural-language vi-

sual detection can adapt the deep visual representations and

single forward-pass computing framework (e.g., RoI pool-

ing [13], SPP [16], R-FCN [6]) used in existing work of tra-

ditional object detection. However, natural-language visual

detection needs a huge structured label space to represent

the natural language, and finding a proper mapping to the

huge space from visual representations is difficult.

Image captioning and caption grounding. The recur-

rent neural network (RNN) [19] based language model

[15, 39, 50] has become the dominant method for caption-

ing images with text [55]. Despite differences in details

of network architectures, most RNN language models learn

the likelihood of picking up a word from a predefined vo-

cabulary given the visual appearance features and previous

words (Figure 1a). Xu et al. [56] introduced an attention

mechanism to encourage RNNs to focus on relevant image

regions when generating particular words. Karpathy and

Fei-Fei [25] used strong supervision of text-region align-

ment for well-grounded captioning.

Object localization by natural language. Recent work

used the conditional likelihood of captioning an image re-

gion with given text for localizing associated objects. Hu

et al. [21] proposed the spatial-context recurrent ConvNet

(SCRC), which conditioned on both local visual features

and global contexts for evaluating given captions. John-

son et al. [23] combined captioning and object proposal in

an end-to-end neural network, which can densely caption

(DenseCap) image regions and localize objects. Mao et al.

[38] trained the captioning model by maximizing the pos-

terior of localizing an object given the text phrase, which

reduced the ambiguity of generated captions. However, the

training objective was limited to figuring out single objects

on single images. Lu et al. [34] simplified and limited

text queries to subject-relationship-object (SVO) triplets.

Rohrbach et al. [47] improved localization accuracy with

an extra text reconstruction task. Hu et al. [20] extended

bounding box localization to instance segmentation using

natural language queries. Yu et al. [58] and Nagaraja et al.

[40] explicitly modeled context for referral expressions.

Text representation. Neural networks can also embed text

into a fixed-dimensional feature space. Most RNN-based

methods (e.g., skip-thought vectors [29]) and CNN-based

methods [24, 27] use word-level one-hot encoding as the

input. Recently, character-level CNN has also been demon-

strated an effective way for paragraph categorization [60]

and zero-shot image classification [44].

3. Discriminative visual-linguistic network
The best-performing object detection framework [7, 11,

14] in terms of accuracy generally verifies if a candidate

image region belongs to a particular category of interest.

Though recent deep architectures [52, 46, 23] can propose

regions with confidence scores at the same time, a verifica-

tion model, taking as input the image features from the exact

proposed regions, still serves as a key to boost the accuracy.

In this section, we develop a verification model for

natural-language visual localization and detection. Unlike



the classifiers for a small number of predefined categories

in traditional object detection, our model is dynamically

adaptable to different text phrases.

3.1. Model framework

Let x be an image, r be the coordinates of a region, and

t be a text phrase. The verification model f(x, t, r; Θ) ∈ R

outputs the confidence of r’s being matched with t. Sup-

pose that l ∈ {1, 0} is the binary label indicating if (t, r) is

a positive or negative region-text pair on x. Our verification

model learns to fit the probability for r and t being compat-

ible (a positive pair), i.e., p(l = 1|x, r, t). See Section B

in the supplementary materials for a formalized comparison

with conditional captioning models.

To this end, we develop a bimodal deep neural network

for our model. In particular, f(x, t, r; Θ) is composed of

two single-modality pathways followed by a discriminative

pathway. The image pathway φrgn(x, r; Θrgn) extracts the

drgn-dim visual representation on the image region r on x.

The language pathway φtxt(t; Θtxt) extracts the dtxt-dim tex-

tual representation for the phrase t. The discriminative path-

way with parameters Θdis dynamically generates a classifier

for visual representation according to the textual represen-

tation, and predicts if r and t are matched on x. The full

model is specified by Θ = (Θtxt,Θrgn,Θdis).

3.2. Visual and linguistic pathways

RoI-pooling image network. We suppose the regions of

interest are given by an existing region proposal method

(e.g., EdgeBox [62], RPN [46]). We calculate visual rep-

resentations for all image regions in one pass using the fast

R-CNN RoI-pooling pipeline. State-of-the-art image classi-

fication networks, including the 16-layer VGGNet [49] and

ResNet-101 [17], are used as backbone architectures.

Character-level textual network. For an English text

phrase t, we encode each of its characters into a 74-dim

one-hot vector, where the alphabet is composed of 74 print-

able characters including punctuations and the space. Thus,

the t is encoded as a 74-channel sequence by stacking all

character encodings. We use a character-level deep CNN

[60] to obtain the high-level textual representation of t. In

particular, our network has 6 convolutional layers interleav-

ing with 3 max-pooling layers and followed by 2 fully con-

nected layers (see Section A in the supplementary materials

for more details). It takes a sequence of a fixed length as the

input and produces textual representations of a fixed dimen-

sion. The input length is set to be long enough (here, 256

characters) to cover possible text phrases.2 To avoid empty

tailing characters in the input, we replicate the text phrase

until reaching the input length limit.

We empirically found that the very sparse input can eas-

ily lead to over-sparse intermediate activations, which can

2The Visual Genome dataset has more than 2.8M unique phrases,

whose median length in character is 29. Less than 500 phrases has more

than 100 characters.

create a large portion of “dead” ReLUs and finally result in

a degenerate solution. To avoid this problem, we adopt the

Leaky ReLU (LReLU) [35] to keep all hidden units active

in the character-level CNN.

Other text embedding methods [29, 24, 27] also can be

used in the DBNet framework. We use the character-level

CNN because of its simplicity and flexibility. Compared to

word-based models, it uses lower-dimensional input vectors

and has no constraint on the word vocabulary size. Com-

pared to RNNs, it easily allows deeper architectures.

3.3. Discriminative pathway

The discriminative pathway first forms a linear classifier

using the textual representation of the phrase t. Its linear

combination weights and bias are

w(t) = A
⊤
w
φtxt(t; Θtxt), (1)

b(t) = a
⊤
b φtxt(t; Θtxt), (2)

where Aw ∈ R
dtxt×drgn , ab ∈ R

dtxt , and Θdis = (Aw,ab).
This classifier is applied to the visual representation of the

image region r on x, obtaining the verification confidence

predicted by our model:

f(x, r, t; Θ) = w(t)⊤φrgn(x, r; Θrgn) + b(t). (3)

Compared to the basic form of the bilinear function

φ⊤

txt(t; Θtxt)Awφrgn(x, r; Θrgn), our discriminative pathway

includes an additional linear term as the text-dependent bias

for the visual representation classifier.

As a natural way for modeling the cross-modality corre-

lation, multiplication is also a source of instability for train-

ing. To improve the training stability, we introduce a regu-

larization term Γdynamic = ‖w(t)‖22+|b(t)|2 for the dynamic

classifier, besides the network weight decay Γdecay for Θ.

4. Model learning

In DBNet, we drive the training of the proposed two-

pathway bimodal CNN with a binary classification objec-

tive. We pair image regions and text phrases as train-

ing samples. We define the ground truth binary label for

each training region-text pair (Section 4.1), and propose a

weighted training loss function (Section 4.2).

Training samples. Given M training images x1, x2, . . . ,

xM , let Gi = {(rij , tij)}
Ni

j=1 be the set of ground truth an-

notations for xi, where Ni is the number of annotations, rij
is the coordinate of the jth region, and tij is the text phrase

corresponding to rij . When one region is paired with mul-

tiple phrases, we take each pair as a separate entry in Gi.

We denote the set of all regions considered on xi by Ri,

which includes both annotated regions
⋃Ni

j=1{rij} and re-

gions given by proposal methods [54, 62, 46]. We write

Ti =
⋃

{tij}
Ni

j=1 for the set of annotated text phrases on xi,

and T =
⋃M

i=1 Ti for all training text phrases.

4.1. Ground truth labels

Labeling criterion. We assign each possible training

region-text pair with a ground truth label for binary clas-
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Figure 2: Ground truth labels for region-text pairs (given an ar-

bitrary image region). Phrases are categorized into positive, am-

biguous, and negative sets based on the given region’s overlap with

ground truth boxes (measured by IoU and displayed as the num-

bers in front of the text phrases). Ambiguous phrases augmented

by text similarity is not shown here (see the video in the supple-

mentary materials for an illustration). For visual clarity, ηneg = 0.3

and ηpos = 0.7, which are different from the rest of the paper.

sification. For a region r on the image xi and a text phrase

t ∈ Ti, we take the largest overlap between r and t’s ground

truth regions as evidence to determine (r, t)’s label. Let

IoU(·, ·) denote the intersection over union. The largest

overlap is defined as

νi(r, t) = max
r′∈Ri

{IoU(r′, r) : (r′, t) ∈ Gi}. (4)

In object detection on a limited number of categories (i.e.,

Ti consists of category labels), νi(r, t) is usually reliable

enough for assigning binary training labels, given the (al-

most) complete ground truth annotations for all categories.

In contrast, text phrase annotations are inevitably incom-

plete in the training set. One image region can have an

intractable number of valid textual descriptions, including

different points of focus and paraphrases of the same de-

scription, so annotating all of them is infeasible. Conse-

quently, νi(r, t) cannot always reflect the consistency be-

tween an image region and a text phrase. To obtain reliable

training labels, we define positive labels in a conservative

manner; and then, we combine text similarity together with

spatial IoU to establish the ambiguous text phrase set that

reflects potential “false negative” labels. We provide de-

tailed definitions below.

Positive phrases. For a region r on xi, its positive text

phrases (i.e., phrases assigned with positive labels) consti-

tute the set

Pi(r) = {t ∈ Ti : νi(r, t) ≥ ηpos}, (5)

where ηpos is a high enough IoU threshold (= 0.9) to deter-

mine positive labels. Some positive phrases may be missing

due to incomplete annotations. However, we do not try to

recover them (e.g., using text similarity), as “false positive”

training labels may be introduced by doing so.

Ambiguous phrases. Still for the region r, we collect the

text phrases whose ground truth regions have moderate (nei-

ther too large nor too small) overlap with r into a set

Ui(r) = {t ∈ Ti : ηneg < νi(r, t) < ηpos}, (6)

where ηneg is the IoU lower bound (= 0.1). When r’s largest

IoU with the ground truths of a phrase t lies in (ηneg, ηpos),
it is uncertain whether t is positive or negative. In other

words, t is ambiguous with respect to the region r.

Note that Ui(r) only contains phrases from Ti. To cover

all possible ambiguous phrases from the full set T , we use

a text similarity measurement sim(·, ·) to augment Ui(r) to

the finalized ambiguous phrase set

Ai(r) = {t ∈ T : ∃t′ ∈ Ui(r), sim(t, t′) > τ}\Pi(r),
(7)

where we use the METEOR [4] similarity for sim(·, ·) and

set the text similarity threshold τ = 0.3.3

Labels for region-text pairs. For any image region r on

xi and any phrase t ∈ T , the ground truth label of (r, t) is

yi(r, t) =











1, t ∈ Pi(r),

〈uncertain〉, t ∈ Ai(r),

0, otherwise,

(8)

where the pairs of a region and its ambiguous text phrases

are assigned with the “uncertain” label to avoid false nega-

tive labels. Figure 2 illustrates the region-text label for an

arbitrary training image region.

4.2. Weighted training loss

Effective training sets. On the image xi, the effective set

of training region-text pairs is

Si = {(r, t) ∈ Ri × T : yi(r, t) 6= 〈uncertain〉}, (9)

where, as previously defined, Ri consists of annotated and

proposed regions, and T consists of all phrases from the

training set. We exclude samples of uncertain labels.

We partition Si into three subsets according to the value

of yi(r, t) and the origin of the phrase t: Spos
i for yi(r, t) =

1, Sneg
i for yi(r, t) = 0 ∧ t ∈ Ti, and S rest

i for all nega-

tive region-text pairs containing phrases from the rest of the

training set (i.e., not from xi).

Per-image training loss Let fi(r, t) = f(xi, r, t; Θ) ∈ R

for notation convenience; and, let ℓ(·, ·) be a binary classi-

fication loss, in particular, the cross-entropy loss of logistic

regression. We define the training loss on xi as the summa-

tion of three parts:

Li = λposL
pos
i + λnegL

neg
i + λrestL

rest
i , (10)

L
pos
i =

1

|Spos
i |

∑

(r,t)∈S
pos

i

ℓ (fi(r, t), 1) , (11)

L
neg
i =

1

|Sneg
i |

∑

(r,t)∈S
neg

i

ℓ (fi(r, t), 0) , (12)

Lrest
i =

∑

(r,t)∈S rest
i

freq(t) · ℓ (fi(r, t), 0)
∑

(r,t)∈S rest
i

freq(t)
, (13)

3If the METEOR similarity of two phrases is greater than 0.3, they

are usually very similar. In Visual Genome, ∼0.25% of all possible pairs

formed by the text phrases that occur ≥20 times can pass this threshold.



where freq(t) is t’s frequency of occurrences in the training

set. We normalize and re-weight the loss for each of the

three subsets of Si separately. In particular, we set λpos =
λneg+λrest = 1 to balance the positive and negative training

loss. The values of λneg and λrest are implicitly determined

by the numbers of text phrases that we choose inside and

outside xi during stochastic optimization.

The training loss functions in most existing work on

natural-language visual localization [21, 23] use only pos-

itive samples for training, which is similar to solely using

L
pos
i . The method in [38] also considers the negative case

(similar to L
neg
i ), but it is less flexible and not extensible to

the case of Lrest
i . The recurrent neural language model can

encourage a certain amount of discriminativeness on word

selection, but not on entire text phrases as ours.

Full training objective. Summing up the training loss for

all images together with weight decay for the whole neural

network and the regularization for the text-specific dynamic

classifier (Section 3.3), the full training objective is:

min
Θ

1

M

M
∑

i=1

Li + β1Γdecay + β2Γdynamic, (14)

where we set β1 = 5 × 10−4 and β2 = 10−8. Model opti-

mization is in Section C of the supplementary materials.

5. Experiments

Dataset. We evaluated the proposed DBNet on the Visual

Genome dataset [30]. It contains 108,077 images, where

∼5M regions are annotated with text phrases in order to

densely cover a wide range of visual entities.

We split the Visual Genome datasets in the same way

as in [23]: 77,398 images for training, 5,000 for valida-

tion (tuning model parameters), and 5000 for testing; the re-

maining 20,679 images were not included (following [23]).

The text phrases were annotated from crowd sourcing

and included a significant portion of misspelled words.

We corrected misspelled words using the Enchant spell

checker [1] from AbiWord. After that, there were 2,113,688

unique phrases in the training set and 180,363 unique

phrases in the testing set. In the test set, about one third

(61,048) of the phrases appeared in the training set, and

the remaining two thirds (119,315) were unseen. About 43

unique phrases were annotated with ground truth regions

per image. All experimental results are reported on this

dataset.

Models. We constructed the fast R-CNN [13]-style visual

pathway of DBNet based on either the 16-layer VGGNet

(Model-D in [49]) or ResNet-101 [17]. In most experi-

ments, we used VGGNet for fair comparison with existing

works (which also use VGGNet) and less evaluation time.

ResNet-101 was used to further improve the accuracy.

We compared DBNet with two image captioning based

localization models: DenseCap [23] and SCRC [21]. In

DBNet, the visual pathway was pretrained for object de-

tection using the faster R-CNN [46] on the PASCAL VOC

2007+2012 trainval set [10]. The linguistic pathway was

randomly initialized. Pretrained VGGNet on ImageNet

ILSVRC classification dataset [8] was used to initialize

DenseCap, and the model was trained to match the dense

captioning accuracy reported by Johnson et al. [23]. We

found that the faster R-CNN pretraining did not benefit

DenseCap (see Section E.1 of the supplementary materi-

als). The SCRC model was additionally pretrained for im-

age captioning on MS COCO [33] in the same way as Hu

et al. [21] did.

We trained all models using the training set on Visual

Genome and evaluated them for both localization on single

images and detection on multiple images. We also assessed

the usefulness of the major components of our DBNet.

5.1. Single image localization

In the localization task, we took all ground truth text

phrases annotated on an image as queries to localize the as-

sociated objects by maximizing the network response over

proposed image regions.

Evaluation metrics. We used the same region proposal

method to propose bounding boxes for all models, and we

used the non-maximum suppression (NMS) with the IoU

threshold 0.3 to localize a few boxes. The performance was

evaluated by the recall of ground truth regions of the query

phrase (see Section D of the supplementary materials for

a discussion on recall and precision for localization tasks).

If one of the proposed bounding boxes with the top-k net-

work responses had a large enough overlap (determined by

an IoU threshold) with the ground truth bounding box, we

took it as a successful localization. If multiple ground truth

boxes were on the same image, we only required the lo-

calized boxes to match one of them. The final recall was

averaged over all test cases, i.e., per image and text phrase.

Median and mean overlap (IoU) between the top-1 localized

box and the ground truth were also considered.

DBNet outperforms captioning models. We summarize

the top-1 localization performance of different methods in

Table 1, where 500 bounding boxes were proposed for test-

ing. DBNet outperforms DenseCap and SCRC under all

metrics. In particular, DBNet’s recall was more than twice

as high as the other two methods for the IoU threshold at 0.5
(commonly used for object detection [10, 33]) and about

4 times higher for IoU at 0.7 (for high-precision localiza-

tion [12, 61]).

Johnson et al. [23] reported DenseCap’s localization ac-

curacy on a much smaller test set (1000 images and 100 test

queries in total), which is not comparable to our exhaustive

test settings (Table 2 for comparison). We also note that

different region proposal methods (EdgeBox and DenseCap

RPN) did not make a big difference on the localization per-

formance. We used EdgeBox for the rest of our evaluation.



Region Visual Localization Recall / % for IoU@ Median Mean

proposal network model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 IoU IoU

DC-RPN

500

16-layer

VGGNet

DenseCap 52.5 38.9 27.0 17.1 09.5 04.3 01.5 0.117 0.184

DBNet 57.4 46.9 37.8 29.4 21.3 13.6 07.0 0.168 0.250

EdgeBox

500

16-layer

VGGNet

DenseCap 48.8 36.2 25.7 16.9 10.1 05.4 02.4 0.092 0.178

SCRC 52.0 39.1 27.8 18.4 11.0 05.8 02.5 0.115 0.189

DBNet w/o bias term 52.3 43.8 36.3 29.3 22.4 15.7 09.4 0.124 0.246

DBNet w/o VOC pretraining 54.3 45.0 36.6 28.8 21.3 14.4 08.2 0.144 0.245

DBNet 54.8 45.9 38.3 30.9 23.7 16.6 09.9 0.152 0.258

ResNet-101 DBNet 59.6 50.5 42.3 34.3 26.4 18.6 11.2 0.205 0.284

Table 1: Single-image object localization accuracy on the Visual Genome dataset. Any text phrase annotated on a test image is taken as a

query for that image. “IoU@” denotes the overlapping threshold for determining the recall of ground truth boxes. DC-RPN is the region

proposal network from DenseCap.

DenseCap Recall / % for IoU@ Median

performance 0.1 0.3 0.5 IoU

Small test set in [23] 56.0 34.5 15.3 0.137

Test set in this paper 50.5 24.7 08.1 0.103

Table 2: Localization accuracy of DenseCap on the small test set

(1000 images and 100 test queries) used in [23] and the full test set

(5000 images and >0.2M queries) used in this paper. 1000 boxes

(at most) per image are proposed using the DenseCap RPN.
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Figure 3: Top-k localization recall under two overlapping thresh-

olds. VGGNet and EdgeBox 500 are used in all methods.

Figure 3 shows the top-k recall (k = 1, 2, . . . , 10) in

curves. SCRC is slightly better than DenseCap, possibly

due to the global context features used in SCRC. DBNet

outperforms both consistently with a significant margin,

thanks to the effectiveness of discriminative training.

Dynamic bias term improves performance. The text-

dependent bias term introduced in (2) and (3) makes our

method for fusing visual and linguistic representations dif-

ferent from the basic bilinear functions (e.g., used in [44])

and more similar to a visual feature classifier. As in Table 1,

this dynamic bias term led to > 20% relative improvement

on median IoU and ∼ 5% (2.5% ∼ 0.5% absolute) relative

improvement on recall at all IoU thresholds.

Transferring knowledge benefits localization accuracy.

Pretraining the visual pathway of DBNet for object detec-

tion on PASCAL VOC showed minor benefit on recall at

lower IoU thresholds, but it brought 10% and 17% relative

improvement to the recall for the IoU threshold at 0.5 and

0.7, respectively. See Section E.1 in the supplementary ma-

terials for more results, where we showed that DenseCap

did not get benefit from the same technique.
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Figure 4: Qualitative comparison between DBNet and Dense-

Cap on localization task. Green boxes: ground truth; Red boxes:

DenseCap; Yellow boxes: DBNet.

Qualitative results. We visually compared the localiza-

tion results of DBNet and DenseCap in Figure 4. In many

cases, DBNet localized the queried entities at more reason-

able locations. More examples are provided in Section F of

the supplementary materials.

More quantitative results. In the supplementary materi-

als, we studied the performance improvement of the learned

models over random guessing and the upper bound per-

formance due to the limitation of region proposal methods

(Section E.2). We also evaluated DBNet using queries in a

constrained form (Section E.3), where the high query com-

plexity was demonstrated as a significant source of failures

for natural language visual localization.



5.2. Detection on multiple images

In the detection task, the model needs to verify the exis-

tence and quantity of queried visual entities in addition to

localizing them, if any. Text phrases not associated with

any image regions can exist in the query set of an image,

and evaluation metrics can be defined by extending those

used in traditional object detection.

Query sets. Due to the huge total number of possible

query phrases, it is practical to test only a subset of phrases

on a test image. We developed query sets in three difficulty

levels (0, 1, 2). For a text phrase, a test image is positive if

at least one ground truth region exists for the phrase; other-

wise, the image is negative.

• Level-0: The query set was the same as in the local-

ization task, so every text phrase was tested only on its

positive images (∼43 phrases per image).

• Level-1: For each text phrase, we randomly chose the

same number of negative images and the positive im-

ages (∼92 phrases per image).

• Level-2: The number of negative images was either 5

times the number of positive images or 20 (whichever

was larger) for each test phrase (∼775 phrases per im-

age). This set included relatively more negative images

(compared to positive images) for infrequent phrases.

As the level went up, it became more challenging for a de-

tector to maintain its precision, as more negative test cases

are included. In the level-1 and level-2 sets, text phrases

depicting obvious non-object “stuff”, such as sky, were re-

moved to better fit the detection task. Then, 176,794 phrases

(59,303 seen and 117,491 unseen) remained.

Evaluation metrics. We measured the detection perfor-

mance by average precision (AP). In particular, we com-

puted AP independently for each query phrase (compara-

ble to a category in traditional object detection [10]) over

its test images, and reported the mean AP (mAP) over all

query phrases. Like traditional object detection, the score

threshold for a detected region is category/phrase-specific.

For more practical natural-language visual detection,

where the query text may not be known in advance, we also

directly computed AP over all test cases. We term it global

AP (gAP), which implies a universal decision threshold for

any query phrase. Table 3 summarizes mAPs and gAPs un-

der different overlapping thresholds for all models.

DBNet shows higher per-phrase performance. DBNet

achieved consistently stronger performance than DenseCap

and SCRC in terms of mAP, indicating that DBNet pro-

duced more accurate detection per given phrase. Even for

the challenging IoU threshold of 0.7, DBNet still showed

reasonable performance. The mAP results suggest the ef-

fectiveness of discriminative training.

DBNet scores are better “calibrated”. Achieving good

performance in gAP is challenging as it assumes a phrase-

agnostic, universal decision threshold. For IoU at 0.3 and

Average IoU@0.3 IoU@0.5 IoU@0.7

precision / % mAP gAP mAP gAP mAP gAP

DenseCap 36.2 01.8 15.7 00.5 03.4 00.0

SCRC 38.5 02.2 16.5 00.5 03.4 00.0

DBNet 48.1 23.1 30.0 10.8 11.6 02.1

DBNet w/ Res 51.1 24.2 32.6 11.5 12.9 02.2

(a) Level-0: Only positive images per text phrase.

Average IoU@0.3 IoU@0.5 IoU@0.7

precision / % mAP gAP mAP gAP mAP gAP

DenseCap 22.9 01.0 10.0 00.3 02.1 00.0

SCRC 37.5 01.7 16.3 00.4 03.4 00.0

DBNet 45.5 21.0 28.8 09.9 11.4 02.0

DBNet w/ Res 48.3 22.2 31.2 10.7 12.6 02.1

(b) Level-1: The ratio between the positive and negative images is 1:1 per

text phrase.

Average IoU@0.3 IoU@0.5 IoU@0.7

precision / % mAP gAP mAP gAP mAP gAP

DenseCap 04.1 00.1 01.7 00.0 00.3 00.0

DBNet 26.7 08.0 17.7 03.9 07.6 00.9

DBNet w/ Res 29.7 09.0 19.8 04.3 08.5 00.9

(c) Level-2: The ratio between the positive and negative images is at least

1:5 (minimum 20 negative images and 1:5 otherwise) per text phrase.

Table 3: Detection average precision using query set of three lev-

els of difficulties. mAP: mean AP over all text phrases. gAP:

AP over all test cases. VGGNet is the default visual CNN for all

methods. “DBNet w/ Res” denotes our DBNet with ResNet-101.

0.5, DenseCap and SCRC showed very low performance in

terms of gAP, and DBNet dramatically (10 ∼ 20×) outper-

formed them. For IoU at 0.7, DenseCap and SCRC were un-

successful, while DBNet could produce a certain degree of

positive results. The gAP results suggest that the responses

of DBNet are much better calibrated among different text

phrases than captioning models, supporting our hypothesis

that distributions on a binary decision space are easier to

model than those on the huge natural language space.

Robustness to negative and rare cases. The performance

of all models dropped as the query set became more diffi-

cult. SCRC appeared to be more robust than DenseCap for

negative test cases (level-1 performance). DBNet showed

superior performance in all difficulty levels. Particularly for

the level-2 query set, DenseCap’s performance dropped sig-

nificantly compared to the level-1 case, which suggests that

it probably failed at handling rare phrases (note that rela-

tively more negative images are included in the level-2 set

for rare phrases). For IoU at 0.5 and 0.7, DBNet’s level-2

performance was even better than the level-0 performance

of DenseCap and SCRC. We did not test SCRC on the level-

2 query set because of its high time consumption.4

4For level-2 query set, DBNet and DenseCap cost ∼0.5 min to pro-

cess one image (775 queries) when using the VGGNet and a Titan X card.

SCRC takes nearly 10 minutes with the same setting. In addition, DBNet

took 2–3 seconds to process one image when using level-0 query set.



blanket covering
mother and son

calico cat laying on bed

dark haired woman
sitting up in bed

glasses the woman is
wearing on her face

little boy sitting up in bed

one pink and one blue books

back wheel of a bicycle

bikers riding in
a bicycle lane

bus with the route number 21

front wheel of a bicycle

gray building
with many windows

no turning street
signs over the street

a brown basket full of fruit

a brown basket with a
green and white plaid towel

a can of oatmeal on shelf

a green glass bowl

a percolating coffee maker

potatoes in a bin

a bright colored snow board

a green dollar
sign on a board

a red and white sign

a snowboarder with
a red jacket

bright white snow
on a ski slop

dark green pine
trees in the snow

331 / 3 rpm record albums

a brown couch

a chair sitting by the wall

a classic telephone

a coffee table
filled with books

a framed picture on the wall

a car

a doorway with
an arched entryway

a small domed roof

a tree with bare branches

large white
multi level building

light in the
roof of building

Figure 5: Qualitative detection results of DBNet with ResNet-101. We show detection results of six different text phrases on each image.

For each image, the colors of bounding boxes correspond to the colors of text tags on the right. The semi-transparent boxes with dashed

boundaries are ground truth regions, and the boxes with solid boundaries are detection results.

Prune Phrases Finetune Localization Detection (Level-1)

ambiguous from other visual Recall / % for IoU@ Median Mean mAP / % for IoU@ gAP / % for IoU@

phrases images pathway 0.3 0.5 0.7 IoU IoU 0.3 0.5 0.7 0.3 0.5 0.7

No No No 30.6 17.5 07.8 0.066 0.211 35.5 22.0 08.6 08.3 03.1 00.4

Yes No No 34.5 21.2 09.0 0.113 0.237 39.0 24.6 09.7 15.5 07.4 01.6

Yes Yes No 34.7 21.1 08.8 0.119 0.238 41.3 25.6 10.0 17.2 07.9 01.6

Yes Yes Yes 38.3 23.7 09.9 0.152 0.258 45.5 28.8 11.4 21.0 09.9 02.0

Table 4: Ablation study of DBNet’s major components. The visual pathway is based on the 16-layer VGGNet.

Qualitative results. We showed qualitative results of DB-

Net detection on selected examples in Figure 5. More com-

prehensive (random and failed) examples are provided in

Section G of the supplementary materials. Our DBNet

could detect diverse visual entities, including objects with

attributes (e.g., “a bright colored snow board”), objects in

context (e.g., “little boy sitting up in bed”), object parts

(e.g., “front wheel of a bicycle”), and groups of objects

(e.g.,“bikers riding in a bicycle lane”).

5.3. Ablation study on training strategy

We did ablation studies for three components of our DB-

Net training strategy: 1) pruning ambiguous phrases (Ai(r)
defined in Eq. (7)), 2) training with negative phrases from

other images (Lrest
i ), and 3) finetuning the visual pathway.

As shown in Table 4, the performance of the most basic

training strategy is better than DenseCap and SCRC, due

to the effectiveness of discriminative training. Ambiguous

phrase pruning led to significant performance gain, by im-

proving the correctness of training labels, where no “prun-

ing ambiguous phrases” means setting Ai(r) = ∅. More

quantitative analysis on tuning the text similarity threshold

τ are provided in Section E.4 of the supplementary mate-

rials. Inter-image negative phrases did not benefit localiza-

tion performance, since localization is a single-image task.

However, this mechanism improved the detection perfor-

mance by making the model more robust to diverse neg-

ative cases. As expected in most vision tasks, finetuning

pretrained classification network boosted the performance

of our models. In addition, upgrading the VGGNet-based

visual pathway to ResNet-101 led to another clear gain in

DBNet’s performance (Table 1 and 3).

6. Conclusion

We demonstrated the importance of discriminative learn-

ing for natural-language visual localization. We proposed

the discriminative bimodal neural network (DBNet) to al-

low flexible discriminative training objectives. We fur-

ther developed a comprehensive training strategy to ex-

tensively and properly leverage negative observations on

training data. DBNet significantly outperformed the pre-

vious state-of-the-art based on caption generation models.

We also proposed quantitative measurement protocols for

natural-language visual detection. DBNet showed more ro-

bustness against rare queries compared to existing meth-

ods and produced detection scores with better calibration

over various text queries. Our method can be potentially

improved by combining its discriminative objective with a

generative objective, such as image captioning.
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danpur. Recurrent neural network based language model. In

INTERSPEECH, 2010. 1, 2

[40] V. Nagaraja, V. Morariu, and L. Davis. Modeling context

between objects for referring expression understanding. In

ECCV, 2016. 2

[41] H. Noh, P. H. Seo, and B. Han. Image question answering

using convolutional neural network with dynamic parameter

prediction. In CVPR, 2016. 1

[42] W. Ouyang, X. Zeng, X. Wang, S. Qiu, P. Luo, Y. Tian, H. Li,

S. Yang, Z. Wang, H. Li, C. C. Loy, K. Wang, J. Yan, and

X. Tang. DeepID-Net: Deformable deep convolutional neu-

ral networks for object detection. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 2016. 2

[43] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In

CVPR, 2016. 2

[44] S. Reed, Z. Akata, B. Schiele, and H. Lee. Learning deep

representations of fine-grained visual descriptions. In IEEE

Computer Vision and Pattern Recognition, 2016. 1, 2, 6

[45] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and

H. Lee. Generative adversarial text-to-image synthesis. In

ICML, 2016. 1

[46] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, 2015. 2, 3, 5

[47] A. Rohrbach, M. Rohrbach, R. Hu, T. Darrell, and

B. Schiele. Grounding of textual phrases in images by re-

construction. In ECCV, 2016. 2

[48] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and

Y. LeCun. OverFeat: Integrated recognition, localization and

detection using convolutional networks. In ICLR, 2014. 2

[49] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 2, 3, 5

[50] I. Sutskever, J. Martens, and G. E. Hinton. Generating text

with recurrent neural networks. In ICML, 2011. 1, 2

[51] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 2

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 2

[53] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision.

2016. 2

[54] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. Interna-

tional Journal of Computer Vision, 104(2):154–171, 2013.

3

[55] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and

tell: A neural image caption generator. In CVPR, 2015. 1, 2

[56] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdi-

nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural

image caption generation with visual attention. In ICML,

2015. 1, 2

[57] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked

attention networks for image question answering. In CVPR,

2016. 1

[58] L. Yu, P. Poirson, S. Yang, A. Berg, and T. Berg. Modeling

context in referring expressions. In ECCV, 2016. 2

[59] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV, 2014. 2

[60] X. Zhang, J. Zhao, and Y. LeCun. Character-level convo-

lutional networks for text classification. In NIPS, 2015. 2,

3

[61] Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee. Improv-

ing object detection with deep convolutional networks via

bayesian optimization and structured prediction. In CVPR,

2015. 2, 5, 3

[62] C. L. Zitnick and P. Dollár. Edge boxes: Locating object

proposals from edges. In ECCV, 2014. 3, 2


