
An Efficient Branch-and-Bound Algorithm for Optimal Human Pose Estimation

Min Sun Murali Telaprolu Honglak Lee Silvio Savarese

Department of EECS, University of Michigan, Ann Arbor, MI 48109

Abstract

Human pose estimation in a static image is a challenging

problem in computer vision in that body part configurations

are often subject to severe deformations and occlusions.

Moreover, efficient pose estimation is often a desirable re-

quirement in many applications. The trade-off between ac-

curacy and efficiency has been explored in a large number

of approaches. On the one hand, models with simple rep-

resentations (like tree or star models) can be efficiently ap-

plied in pose estimation problems. However, these models

are often prone to body part misclassification errors. On

the other hand, models with rich representations (i.e., loopy

graphical models) are theoretically more robust, but their

inference complexity may increase dramatically. In this

work, we propose an efficient and exact inference algorithm

based on branch-and-bound to solve the human pose esti-

mation problem on loopy graphical models. We show that

our method is empirically much faster (about 74 times) than
the state-of-the-art exact inference algorithm [21]. By ex-

tending a state-of-the-art tree model [16] to a loopy graph-

ical model, we show that the estimation accuracy improves

for most of the body parts (especially lower arms) on pop-

ular datasets such as Buffy [7] and Stickmen [5] datasets.

Finally, our method can be used to exactly solve most of

the inference problems on Stretchable Models [18] (which

contains a few hundreds of variables) in just a few minutes.

1. Introduction

Estimating the pose of humans (e.g., determining body

part locations) from images and videos is a core problem

in computer vision and it is critical in many applications

such as human computer interaction, video surveillance and

gaming. Because speed is an important requirement in

most of these applications, researchers have focused on ap-

proaches that put a premium on efficiency. Among them,

tree-structured models [6, 13, 5, 1, 15, 16, 22, 29] (Fig. 1a)

are commonly used. A tree structure typically captures only

the most informative spatial relationships (i.e., kinematic

constraints) between pairs of parts since the location of one

part is well constrained by the location of its connected parts

(e.g., the hand location is constrained by the arm location).

Inference in tree models can be done efficiently using dy-

namic programming. As a result, such models can strike a

good balance between efficiency and estimation accuracy.

Despite their success, tree models are prone to some

common misclassification errors. For example, left and

right limbs are often misclassified because their appear-

ance is typically very similar and their estimated loca-

tions tend to overlap in the image (over-counting evi-

dence). To overcome these types of misclassification er-

rors, more structured models such as the loopy graphical

models (later referred as loopy model) have been proposed

[9, 20, 31, 14, 26, 28] (Fig. 1b). By capturing interactions

between a large number of pairs of parts, these methods are

effective at improving pose estimation results at the expense

of a significantly increased computational cost [21, 11]. For

instance, methods based on cluster pursuit [21] become pro-

hibitively slow when the number of states (i.e., number of

part location hypothesis) is large since its time complexity

is proportional to the number of states to the power of the

cluster size (typically ≥ 3). Methods based on Branch-and-

Bound (BB) [10] search are used in Bayesian networks with

a large number of random variables [11], but they become

extremely inefficient when the number of states becomes

larger (as in the human pose estimation problem). This is

because the search proceeds by instantiating each state of

every random variable sequentially so that both time and

memory usages increase dramatically when the number of

states increases. To improve efficiency, i) greedy methods

are used to reduce the part location hypothesis (e.g., select-

ing sparse interest points) [14, 31, 26] and/or ii) approxi-

mate inference approaches are applied [9, 31, 14, 26, 28].

In this work, we propose an efficient and exact inference

algorithm based on BB to solve the human pose estimation

problem on loopy models, where the number of part loca-

tion hypotheses is large. Our BB algorithm is built upon

our earlier BB algorithm [24] for solving MAP inference

on general MRF. Our contribution is two-fold: i) similarly

to linear programming relaxation, a novel bound is obtained

by relaxing the loopy model into a mixture of star-models;

ii) a special data structure (BMT) and an efficient search

routine (OBMS) (see Sec. 4.2) are used to significantly re-

duce the time complexity for calculating the bound in each

branch of the BB search. We empirically show that when

1

(a) Tree Model

Inferred State

Variables

Tree Edges

Loopy Edges

θ

θ
u

p

(b) loopy Model

θu

β

Torso Head

Upper
Arm

Lower
Arm

(c) Mixture of Star Model

Figure 1: Illustration of models. Panel

(a,b,c) show graphical representations of the

tree model, loopy model, and mixture of star

models, respectively. Panel (c) enumerates star

models with different parts (torso, head, upper-

arm, and lower-arm) as the center parts. In all

panels, every circle denotes a variable; every

blue or red edge denotes the interaction be-

tween two variables in the tree or loopy model,

respectively. The MAP assignments are shown

in green arrows, where each arrow indicates

the orientation of the body part.

the number of hypotheses per part is large, our new BB al-

gorithm is an order of magnitude faster than state-of-the-

art Cluster Pursuit (CP) method [21] in solving the exact

MAP inference problem. Moreover, by extending a state-

of-the-art tree model [16] to a loopy model, the estimation

accuracy can be significantly improved (up to 5% for lower

arm) on Buffy [7] and Stickmen [5] datasets. Finally, our

method can exactly solve the MAP inference problem on

the StretchableModels [18] (which contains a few hundreds

of variables) in just a few minutes, and achieves superior

performance on a number of video sequences best repre-

sented by the pre-trained model (see Sec. 5.2).

In the following sections, we first describe the related

work in Sec. 2. Then, we formulate the human pose estima-

tion problem as the Maximum a Posteriori (MAP) inference

problem over a Markov Random Field (MRF) in Sec. 3, and

introduce our BB method and the efficient data structure in

Sec. 4. Finally, we show experimental results in Sec. 5.

2. Related Work

Tree-models for human pose estimation have been intro-

duced in [6] and extended to improve the robustness of part

detectors [1, 13, 5] and the discriminative power of the pair-

wise relations [15, 13, 29, 22]. Andriluka et al. [1] show

that boosting classifiers can be used to detect parts very ro-

bustly, and the detections can be used by the tree models to

improve the overall pose estimation accuracy. Sapp et al.

[15] propose to use a pair-wise feature that depends on the

image appearance (e.g., color, contour, segmentation, etc.)

to enhance the discriminative power. Yang and Ramanan

[29], and Sun and Savarese [22] use the concept of part-

type (i.e., parts with specific orientation or foreshortening)

to model pair-wise relations of a pair of part-types instead

of a pair of parts. In this way, the pair-wise relations can

capture co-occurrence of parts with specific orientation or

foreshortening.

Loopy models have been successfully employed to solve

human pose estimation problem. Interactions between

many pairs of parts have been incorporated by [9, 26, 14]

in order to encode information such as self-occlusion and

color similarity of symmetric parts. As a result, the problem

of over-counting evidence is mitigated. Wang et al. [28] and

Zhu et al. [31] propose hierarchical models of parts across

multiple scales such that parts at a lower level of the hierar-

chy are grouped into parts at a higher level of the hierarchy.

In particular, Wang et al. [28] show that parts at a higher

level of hierarchymight be easier to detect in isolation since

they possess very distinctive appearance features (e.g., the

whole human body is easier to detect than the hands).

A few works have been proposed to solve the MAP in-

ference problem exactly for loopy models using efficient

search algorithms. Tian and Sclaroff [25] propose an effi-

cient BB algorithm for a tree model augmentedwith two ad-

ditional pair-wise relations between left-right legs. The BB

search is efficient since it only takes constant time to evalu-

ate the bounds, this enabling the solution of problems with

a large number of states. Notice, however, that the tight-

ness of such bound guarantees efficient search only when

the energy originated from the additional pair-wise relations

is small (Fig.7 in [25]). This makes it hard for [25] to solve

a model with many pair-wise interactions. Bergtholdt et al.

[3] convert the inference problem over a fully connected

model into a shortest path problem and propose an effi-

cient A∗ search method for solving it. The main drawback

of the A∗ search is that the branching factor of the search

tree equals the number of states per variable (i.e., number

of part location hypothesis). As a result, the method re-

lies on a greedy procedure for pruning part hypotheses to

ensure that the search problem is tractable. Cluster pur-

suit [21] is an alternative exact inference algorithm which

searches for higher-order constraints to tighten the gap be-

tween approximated solution and optimal solution. How-

ever, since the time complexity of the algorithm is propor-

tional to the number of part hypotheses to the power of the

order of the constraints (i.e., number of variables involved in

the constraints), the algorithm becomes prohibitively slow

for problems with a large number of part hypotheses.

3. The Human Pose Estimation Problem

A loopy model is capable of capturing many pair-wise

interactions of parts and can be modeled as pair-wise

Markov Random Fields (MRFs). We define a MRFs model

over a graphG = {N , E} with a set of nodes (variables)N
and a set of edges (pair-wise interactions) E as follows,

f(h;Θ) =
∑

i∈N

θui (hi) +
∑

ij∈E

θ
p
ij(hi, hj) , (1)

where h = (h1, . . . , h|N |) is a set of part hypotheses hi,
Θ = {θui ; i ∈ N} ∪ {θpij ; ij ∈ E} is the set of unary poten-
tials θui and pair-wise potentials θ

p
ij . The human pose esti-

mation problem is equivalent to the Maximum a Posteriori

(MAP) inference problem which finds the best assignment

h
MAP ∈ HN maximizing f(h;Θ). HN denotes the joint

hypotheses spaceH1 ×H2 · · · ×H|N | and hi ∈ Hi, where

|N | is the number of nodes in set N .

Exact MAP inference over MRFs with large induced

width is NP-hard [19]. Many approximate inference al-

gorithms, such as loopy belief propagation [12] or gener-

alized BP [30], have been proposed to obtain an efficient

but non-optimal solution. Other approaches propose to re-

lax the model into models which can be easily solved, such

as star or tree models [27, 18]. We follow this intuition

and relax the model into a mixture of star-models (Sec 3.1).

This is useful since the MAP solution of a mixture of star-

models can be obtained efficiently in time quadratically pro-

portional to the number of states (O(H2)). Notice, however,
that the MAP solution of the relaxed model is unlikely to be

the same as the MAP solution of the original loopy model.

The key property that we prove in Sec 3.1 is that, when cer-

tain constraints (Eq. 3) are satisfied, the value of the MAP

solution of the relaxed model is an upper bound of the value

of the MAP solution of the original loopy model. This up-

per bound can be used by our newly proposed BB algorithm

(Sec. 4) to find a MAP solution of the original loopy model.

In Sec. 4, we describe the branching strategy of the newly

proposed BB algorithm, and further introduce an efficient

Branch-Max-Tree (BMT) data structure (Fig. 2) and an ef-

ficient Opportunistic Branch Max Search (OBMS) routine

(Algorithm 5) to reduce the average time complexity of cal-

culating the bound from O(H2) to O(Q log2H), where Q
is typically smaller than the number of states H .

3.1. Mixture of Star-Models

A complex loopy MRF can be relaxed into a mixture of
star-models {Gi; i ∈ N}. We define Gi as a star-model
consisting of node i and all its neighbours Ni according
to the original graph G. In Gi, the only unary potential is
θui (hi) and the pair-wise potential on edge ji is βji(hj , hi)
(Fig. 1c). The relaxed model becomes

f
R(h, ;Θu

,B) =
∑

i∈N

λi(hi;HN) (2)

=
∑

i∈N

(θui (hi) +
∑

j∈Ni

max
ĥj∈Hj

βji(ĥj , hi)) ,

where B = {βji(hj , hi); (i, j) ∈ E} is the set of new

pair-wise potentials, and λi(hi;HN) is the max-marginal
value over j ∈ Ni in Gi. The advantage of the relaxed

model is that the MAP inference is equivalent to the MAP

inference over each star-modelGi (i.e., by calculating h
∗
i =

argmaxhi∈Hi
λi(hi;HN) separately for all i ∈ N), which

can be done very efficiently using dynamic programming.

In order to relate the relaxedmodel to the original model,

we further enforce the following constraints for (i, j) ∈
E , ∀hi, hj ,

βji(hj , hi) + βij(hi, hj) = θ
p
ij(hi, hj) . (3)

Using Eq. 3, we show that the function value of the relaxed
model (Eq. 2) can be expressed as an upper bound of the

function value of the original model (Eq. 1) for any h:

f
R(h;Θu

,B) =
∑

i∈N

(θui (hi) +
∑

j∈Ni

max
ĥj∈Hj

βji(ĥj , hi))

≥
∑

i∈N

(θui (hi) +
∑

j∈Ni

βji(hj , hi))

= f(h;Θ) . (4)

Consequently, fR(h∗;Θu,B) (for any B satisfying
Eq. 3) is an upper bound of the function value of the
MAP assignment f(hMAP ;Θ) since fR(h∗;Θu,B) ≥
fR(hMAP ;Θu,B) ≥ f(hMAP ;Θ) where h

∗ =
(h∗1, . . . , h

∗
|N|) is a MAP assignment of the mixture of star-

models. Ideally, the gap between the upper bound and
the value of the MAP assignment (i.e., fR(h∗;Θu,B) −
f(hMAP ;Θ)) measures the tightness of the bound. How-
ever, such gap cannot be measured since the MAP assign-
ment is unknown. Instead, we propose to measure the tight-
ness of the bound by calculating the difference between the
upper bound and the lower bound. The lower bound can be
obtained in constant time as

LB(h∗) = f(h∗;Θ) =
∑

i∈N

θ
u
i (h

∗
i) +

∑

ij∈E

θ
p

ij(h
∗
i , h

∗
j)

=
∑

i∈N



θ
u
i (h

∗
i) +

∑

j∈Ni

βji(h
∗
j , h

∗
i)



 , (5)

following the definition of hMAP and Eq. 3.

There is a strong connection between our relaxed model

and Linear Programming (LP) relaxation. Globerson and

Jaakkola [8] derive a first-order Linear Programming (LP)

relaxation, which intuitively can be interpreted as a mixture

of star-models. This connection can be used to select B

efficiently. For instance, B can be computed using the MP

algorithm [8] (see more detail in our technical report [23]).

4. Inference

The MAP inference problem over a loopy model is hard

since i) the hypothesis space HN is large, ii) typical meth-

ods, such as dynamic programming, which work well on

tree-models, cannot be applied due to the complicated pair-

wise relationships. We follow the intuition that many hy-

potheses are unlikely to be theMAP assignment. Hence, we

propose a novel BB algorithm (Algorithm 1) which system-

atically searches for the MAP solution. At each step of the

BB algorithm, the hypothesis space which is most likely to

contain the MAP solution is branched into two subspaces,

and the “likelihood” of each subspace is measured. Hy-

pothesis subspaces are ranked according to the “likelihood”

so that the hypothesis space which is most likely to con-

tain the MAP solution is further branched during the next

step. In such a way, the algorithm will avoid evaluating

hypothesis spaces that are unlikely to contain the MAP so-

lution. During the search, the upper bound of the value of

the MAP assignment is used as the “likelihood” to guide

Algorithm 1 Our Proposed Branch and Bound algorithm

1: Do Prep(True) (See Algorithm 2).

2: SetHN as initial solution space and set a priority queue Q to empty.

3: Do (h∗, UB)=GetBound(HN) (Use Algorithm 6 to Ef�ciently eval-

uate Eq. 2).

4: Set GLB = LB(h∗) (In Eq. 5).

5: Insert (HN , UB,h∗) into Q.
6: while true do

7: (ĤN , GUB,h∗) = pop(Q) (Get the branch with the global up-
per bound).

8: if ĤN 6⊂ HN then

9: Do Prep(False) .

10: end if

11: SetHN = ĤN .

12: if |GUB −GLB| ≤ ε then

13: Return h∗.

14: else

15: Do (H1
N ,H2

N) = branching(HN ,h∗) (Branching Strategy

(algo. 3)).

16: Do (h∗
1, UB1)=GetBound(H1

N).

17: Do (h∗
2, UB2)=GetBound(H2

N).

18: GLB =max(LB(h∗
1),LB(h

∗
2),GLB) (Get global LB).

19: Insert (H1
N , UB1,h

∗
1) and (H

2
N , UB2,h

∗
2) into Q.

20: end if

21: end while

the search. Branch-and-bound [10] is guaranteed to reach

the MAP solution when the most likely hypothesis space

has zero gap between the upper and lower bound. Notice

that the upper bound in Eq. 2 satisfies the zero gap require-

ment since, when the hypothesis space for each node i con-

tains one single part hypothesis (i.e., Hi equals to {hi}),
fR(h;Θu,B) = f(h,Θ) according to Eq. 4. Therefore, in
the worst case, the BB search will stop when the most likely

hypothesis space contains only one hypothesis. We describe

the branching strategy in Sec. 4.1 and introduce the efficient

bound calculation algorithm (Algorithm 6) in Sec. 4.2.

4.1. Branching Strategy

At each step of the BB algorithm (line 15 in Algorithm

1), the hypothesis space which is most likely to contain

the MAP solution is branched into two subspaces. The

hypothesis space is split by splitting the hypothesis space

of a selected variable. Notice that the hypothesis space

of the variable is split geometrically since we order the

hypotheses so that geometrically nearby part hypotheses

are also nearby in the ordered list (line 3 in Algorithm

3). Inspired by Batra et al. [2] and similarly to [24], we

use a scoring function that we call Node-wise Primal Dual

Gap (NPDG) as a cue to select the variable for branching

(line 2 in Algorithm 3). Notice that the upper bound in

Eq. 2 is already the sum of node-wise upper bound λi(h
∗
i),

Algorithm 2 Preprocessing: Prep(InitF lag)

1: for i ∈ N do

2: set BMTi.Set({λi(hi) : hi ∈ Hi}).

3: if InitFlag then

4: for hi ∈ Hi do

5: for j ∈ Ni do

6: Set BMTji(hi).Set({βji(hj , hi) : hj ∈ Hj}).

7: end for

8: end for

9: end if

10: end for

Algorithm 3 Branching Strategy (H1
N ,H2

N) =branching(HN ,h∗)

1: Input: HN = 〈H1 × · · · × HN 〉; h
∗ = (h∗

1 , . . . , h
∗
N).

2: Select Hi∗ where i
∗ = argmaxi∈V δi(h∗

i) (See Sec. 4.1).
3: SupposeHi∗ = [hj . . . hk] (States are in a �xed order)
4: Set H1

i∗ = [hj . . . h⌊0.5(j+k)⌋]; H
2
i∗ = [h⌊0.5(j+k)⌋+1 . . . hk]

(Split roughly in half).

5: Set H1
N = 〈H1 × · · · × H1

i∗ · · · × HN 〉; H2
N = 〈H1 × · · · ×

H2
i∗ · · · × HN 〉.

6: Output: H1
N andH2

N .

where h∗i = argmaxhi∈Hi
(λi(hi)). Similarly, the lower

bound in Eq. 5 is also the sum of node-wise lower bound

λ̂i(h
∗) = θui (h

∗
i) +

∑
j∈Nj

βji(h
∗
j , h

∗
i). We define NPDG

as δi(h
∗) = λi(h

∗
i) − λ̂i(h

∗). Here, δi(h
∗
i) is always non-

negative since

λi(h
∗
i) = θui (h

∗
i) +

∑

j∈N(i)

max
hj∈Hj

βji(hj , h
∗
i)

≥ θui (h
∗
i) +

∑

j∈N(i)

βji(h
∗
j , h

∗
i) = λ̂i(h

∗).(6)

Moreover,
∑

i∈V δi(h
∗
i) = 0 implies that the exact solution

is found, since by definition the sum of NPDG is the gap

(i.e.,
∑

i∈V δi(h
∗
i) = fR(h∗, ;Θu,B)−f(h∗, ;Θ)). These

properties suggest that we should select the variable with

the largest NPDG to greedily reduce the gap.

4.2. Efficient Bound

We observed that finding the maximum value over a

branch of a 1D array is the most common operation while

finding the MAP assignment in Eq. 2. In particular, this

operation appears when computing:

• max
ĥj∈Hj

βji(ĥj , hi) needs to be calculated for all pairs of

(j, i) ∈ E and all hypotheses hi ∈ Hi. Hence, the overall time

complexity is O(EH2), where E is the number of edges and H is

the number of states (per node). Notice that every β is a constant

value.

• h∗
i = argmaxhi∈Hi

λi(hi;HN) needs to be calculated for all

nodes i ∈ N . Hence, the overall time complexity isO(NH), where
N is the number of nodes and H is the number of states (per node).

Notice that λi(hi;HN) is a function of the hypothesis space (HN)

in the branch (i.e., not a constant value).

Since both computations will be repeatedly used in all

branching steps, it is critical that they are implemented ef-

ficiently. In the following, we propose a data structure to

efficiently find the maximum over a branch of a 1D array.

Branch-Max-Tree (BMT). The key idea of the BMT is

to utilize a one-time preprocessing step to speed up the

querying operation which is supposed to be repeated multi-

ple times. Given an Array A[1 . . .H], a Branch-Max-Tree

(BMT) is set up (denoted byBMT .Set(A) in Fig. 2) in or-

der to efficiently answer queries of the form maxk∈HA[k]
(denoted by BMT.max(H) in Fig. 2). As illustrated in

Fig. 2, all nodes keep the pointer to the maximum value of

its children nodes in the BMT . The tree is set up in time

and memory usage both linearly proportional to the size of

the array. Once the tree is set up, the maximum value of a

A=[10 8 -1 5]

BMT.Set (A)

BMT.Max({0…3})* = N(0).v*=10

BMT.Max({2…3}) *= N(2).v*=5

Queries: 10 8 -1 5

10 5

10
N(b) ; b=0…6 - nodes

 accessed by branch index b

N.p - Parent Pointer

N.lc - Le! Child Pointer

N.rc - Right Child Pointer

N.v - pointer to the max value

N.b - branch index

Node Structure:
b=0

b=1 b=2

b=3 b=4 b=5 b=6

v*

lc rc

p

Figure 2: Illustration of the Branch-Max-Tree (BMT). The left panel

shows an example of aBMT set up from a simple ArrayAwith only 4 el-

ements. Notice that each node in the tree caches a pointer to the max value

of its child nodes, and the max value is shown for illustration purposes. The

top-right panel shows the data structure of a node used to construct BMT .

The bottom-right panel shows that once BMT is built, each branch max

query can be converted to a constant time look up from the corresponding

node. Notice that the superscript ∗ denotes pointer dereferencing.

branch H can be simply looked up (in constant time) from

a node in BMT , where all its succeeding leaf-nodes fully

coverH. The requirement of using BMT is that the values

of the array A must be fixed.

Now we show the computation ofmax
ĥj∈Hj

βji(ĥj , hi)

can be sped up by using BMT. Since βji(ĥj , hi) for a spe-

cific hi is a constant 1D array, max
ĥj∈Hj

βji(ĥj , hi) can

be obtained in O(1) time, once the BMT (denoted by

BMTji(hi)) is set up at the beginning of the BB algorithm

in O(H) time. Hence, in line 1 of Algorithm 1, a set of

pair-wise BMTs (i.e.,{BMTji(hi);hi ∈ Hi, (j, i) ∈ E})
are set up in O(EH2) total time to speed up the query time
computation, where E is the number of edges in the CRF.

Notice that, in our earlier work [24], the computation is cast

into a Range Maximum Query (RMQ) problem [4]. In this

work, a simpler BMT data structure is used since the ranges

(branches) are predefined according to the branching strat-

egy in Algorithm 3. Most importantly, the second com-

putation (argmaxhi∈Hi
λi(hi;HN)) cannot be handled by

RMQ, but can be handled by BMT as described below.

When A has been changed, the BMT needs to be re-

set from scratch so that no speed-up is achieved. Hence,

computing argmaxhi∈Hi
λi(hi;HN) cannot be sped up by

directly using the BMT . However, we observed that the

value of λi(hi;HN) for different hypotheses are distributed
in a large range (Fig. 3(a)). Most importantly, if we com-

pare λi(hi;HN) in one branch with its child branch, we

find that the maximal few hypotheses do not change much

(Fig. 3(b)). This suggest that the maximal few hypotheses

of one branch are likely to be the maximal few hypothe-

ses of its child branch as well. Intuitively, we only need

to find the maximum hypothesis among these few hypothe-

ses. Therefore, we propose an Opportunistic Branch Max

Search (OBMS) routine to speed up the computation.

Opportunistic Branch Max Search (OBMS). Instead of

only knowing the Array A[1 . . . H], now we assume that

its element-wise upper bound AU [1 . . .H] (i.e., A[h] ≤
AU [h]; ∀h) is also given. The opportunistic strategy to find
maxh∈HA[h] for any branch H is to test if the maximizer

(i.e., hU∗ = argmaxh∈HA
U [h]) of AU is also the maxi-

More Likely

Less Likely

(a)Parent Branch

1000

2000

3000

4000

5000

6000

Order
0 2000 4000 6000

−
0
.3
5

−
0
.2
5

−
0
.1
5

−
0
.0
5

V
a

lu
e

s

Sorted Hypotheses
0 2000 4000 6000

−
0
.3
5

−
0
.2
5

−
0
.1
5

−
0
.0
5

Sorted Hypotheses

0 10 20 30 40 50 60 70 80 90 100

Top 100

(b)Child Branch

ZOOM IN

Figure 3: Motivation for the Opportunistic Branch Max Search (OBMS).

Panel (a) shows the sorted λi(hi) value (y axis) for each hypothesis (x-

axis) of the parent branch, where colors from blue to red represent the

order from large to small values. Panel (b) shows the sorted λi(hi) value
(y axis) for each hypothesis (x-axis) of the child branch, where the same

color-code according to the order obtained in its parent branch is used. We

clearly see that the top few hypotheses are mostly all blue. This implies

that the top few hypotheses are very similar across the parent and child

branches.

mizer of A. This can be done by checking whether the con-

dition A[hU∗] ≥ AU [h] is satisfied for all h ∈ H \ hU∗. If

the condition is not satisfied, we can update the upper bound

AU [hU∗] = A[hU∗] and test the maximizer of the updated
AU∗ iteratively until the condition is satisfied. Using this

opportunistic strategy, we avoid evaluating all elements in

H which costs O(|H|).

In the OBMS routine, it is critical to obtain hU∗ =
argmaxh∈HA

U [h] and update AU [h] very efficiently. At
the first glance, a priority queue seems to be a good data

structure. This can be set up in O(|H|) time, but effi-

ciently queried in O(1) time and updated in O(log2 |H|)
time. However, since we need to query for hU∗ =
argmaxh∈HA

U [h]multiple times in the BB search for dif-

ferent branchesH, a priority queue needs to be set up from

scratch for each branch. Therefore, no speed-up is achieved.

Efficient BMT Update. We propose to set up a BMT

for AU [h]. A bottom-up procedure (Algorithm 4) ef-

ficiently updates the nodes in BMT along the path

from the leaf-node corresponding to the updated element

to the node corresponding to the branch (denoted by

BMT .update(H, hU∗, A[hU∗])). The time complexity is

O(log2 |H|) (the same as the priority queue) since the up-
date follows a single path in the BMT . The same BMT

can be used for any query with branch Ĥ which is the sub-

set ofH. However, for other queries, the BMT needs to be

reset from scratch with complexity O(|Ĥ|) (line 9 in Algo-
rithm 1).

Algorithm 4 Ef�cient Update Procedure for BMT :

BMT .update(H,h,v)

1: Input: H speci�es the branch to be updated; h speci�es the leaf-node

where the update starts; v is the new updated value.

2: Set br = b(H) to be the branch index for the whole branch; bl =
b({h}) to be the branch index of the leaf-node; the working node
Nw = N(bl).p to be the parent of the leaf-node.

3: Update N(bl).v
∗ = v .

4: while Nw.b 6= br do

5: if Nw.lc.v∗ > Nw.rc.v∗ then

6: Update Nw.v = Nw.lc.v .

7: else

8: Update Nw.v = Nw.rc.v .

9: end if

10: SetNw = Nw.p .

11: end while

Algorithm 5 Opportunistic Branch Max

Search:(h∗ , v) =OBMS(HN ,i)

1: Input: HN speci�es the branch, i specify the node index.

2: Set h∗=NULL .

3: while true do

4: Set ĥ = BMTi.max(Hi) .

5: if h∗ 6= ĥ then

6: Set v = θu
i
(ĥ) .

7: for j ∈ Ni do

8: Set v = v + BMTji(ĥ).max(Hj) .
9: end for

10: Set BMTi.update(Hi, ĥ, v) .

11: h∗ = ĥ .

12: else

13: break.

14: end if

15: end while

16: Return v.

Now we show that computation of

argmaxhi∈Hi
λi(hi;HN) can be sped up by using

OBMS. By careful inspection, we found that λi(hi;HN)
is the upper bound of λi(hi; ĤN) when ĤN is a subset of

HN . This is because

max
hj∈Ĥj

βji(hj , hi) ≤ max
hj∈Hj

βji(hj , hi); Ĥj ⊂ Hj . (7)

is true for all hi and (j, i) ∈ E . Given such a prop-

erty, we set up a BMTi for λi(hi; ĤN) (in the pre-

processing step) and use OBMS to efficiently calculate

argmaxhi∈Ĥi
λi(hi; ĤN) for all i ∈ N . The routine takes

O(NQ log2 Ĥi) ≤ O(NQ log2H) instead of O(NĤi) ≤
O(NH), where Q is the number of trials in the OBMS and

N is the number of nodes in the CRF. Typically Q << H

since we observed that the order of the top few hypotheses

are not changing much (Fig. 3(b)). The OBMS routine is

shown in Algorithm 5.

In summary, we propose to pre-process the data structure

before BB search inO(EH2+NH) time to reduce the time
to calculate the bound from O(EH2) to O(NQ log2H)
when a sub-branch is explored and O(NH) otherwise. No-
tice that the overall time complexity of the algorithm also

depends on the number of BB iterations B. Hence, the

overall average time complexity becomesO(BNH) (when
only BMT is used) and O(B1NQ log2H + B2NH) <
O(BNH) (when both BMT and OBMS are used), where

B2 is the number of times BMT needs to be re-initialized

(line 9 of Algorithm 1) and B1 + B2 = B. The time com-

plexity of Cluster Pursuit (CP) method [21] is O(CPHq),
where P is the number of message passing iterations, q is

the size of the clusters pursued, andC is the number of clus-

ters with size q. Therefore, our BB algorithm is faster than

CP when BN < CPHq−1 is satisfied. In our experiment,

Algorithm 6 Get Bounds: (h∗, UB)=GetBound(HN)

1: set UB = 0.
2: De�nte h∗ = (h∗

1
, . . . , h∗

|N|
).

3: for i ∈ N do

4: Get (h∗
i , vi) =OBMS(HN ,i).

5: Set UB = UB + vi.

6: end for

7: Return (h∗, UB).

Buffy Stickmen

Parts Ours F Ours 13 Ours 7 CPS Ours F CPS

Head 99.15 99.15 99.15 99.15 99.44 99.17

Torso 99.57 99.57 99.57 99.57 99.72 99.72

RUA 95.30 93.59 93.16 95.30 82.50 82.22

LUA 92.31 92.31 92.31 91.88 80.28 81.67

RLA 63.25 59.83 60.26 59.83 56.94 54.44

LLA 64.53 62.39 61.97 59.83 53.89 51.94

Table 1: Pose estimation accuracy of different variants of our models

compared to CPS on Buffy and PASCAL Stickmen datasets. Ours F, Ours

13, and Ours 7 denote our fully connected model, the model with 13 pair-

wise relationships (full model excluding 2 relationships of symmetric arm

pairs), and the model with 7 pair-wise relationships (tree model with 2

additional symmetric arm relationships), respectively.

we empirically demonstrate that our method is faster than

CP method whenH is large (a few hundred), which implies

BN < CPHq−1.

5. Experiments

We evaluated performances and computational effi-

ciency of our algorithm applied on loopy models and com-

pare it against: i) existing tree-based models; 2) state-of-

the-art inference algorithms. The first comparison is against

the state-of-the-art tree model introduced by [16]. In order

to guarantee a fair comparison with [16] we extend the cas-

cade pictorial structure (CPS) [16] into a loopy model by

capturing pair-wise part relationships other than the kine-

matic constraints. Notice that the same features, types of

classifiers, and learning procedures are used to build and

train the loopy model. We show that: i) the loopy model

achieves better accuracy than the baseline tree model, ii)

our proposed BB approach on the loopy model is much

faster (74 times) than another state-of-the-art exact infer-

ence algorithm [21]. Furthermore, we show our novel BB

algorithm can efficiently and exactly solve problems even

with hundreds of variables. This analysis was done by using

the Stretchable Models (SM) [18] to estimate human body

joint locations across multiple frames (up to 30 frames). We

conducted all the experiments on a 64-bit 16-Core Intel(R)

Xeon(R) 2.40GHz CPU with 48GB RAM, the algorithms

are implemented in single thread C++, and the time reported

is in cpu-time (via the c++ clock() function).

5.1. Extended CPS Model

CPS is an upper body tree model with 6 articulated parts
(i.e., head, torso, left/right-upper-arms, and left/right-lower-
arms) which are parametrized by the location (x, y) and ori-
entation (µ) of the part (i.e., h = (x, y, µ)). The model
achieves impressive performances by capturing more so-
phisticated pair-wise relationships than just geometric re-
lationships using segmentation, contour, shape, and color
features. In the CPS model, 5 decision-tree-based classi-
fiers are trained to predict the strength of pair-wise relation-
ships given the features. On top of the existing 5 classifiers,
we further train 10 additional decision-tree-based classifiers
and extend the model into a fully connected pair-wise model
(i.e., a loopymodel). Since now all the classifiers are trained
independently, we treat the responses of the classifiers as
the featuresΨ and assume all potentials are linearly related
to a set of model parameters such that the overall model is

10^−1 10^0 10^1 10^2 10^3 10^4
10^−1

10^0

10^1

10^2

10^3

10^4

our time(sec)

C
P

 t
im

e
(s

e
c)

Hard Problems

Figure 4: Scatter plot for the time
comparison between the CP method

(y axis) and our methods (x axis) on

the Buffy dataset. Green indicates re-

sults of our approach without OBMS

and red indicates results of our full

BB approach. The two percentages

on top of figure indicate how many

times our two approaches are faster

than the CP respectively.

linearly related to the parameters as:

f(h;w, I) =
∑

i∈N

w
T
i ψi(hi, I) +

∑

ij∈E

w
T
ijψij(hi, hj , I) , (8)

where w = {wi, . . . , wij , . . . } is the set of all model pa-

rameters, ψi(hi, I) and ψij(hi, hj , I) are the unary and

pair-wise features, respectively, and I is the image informa-

tion. For conciseness, we define f(h;w, I) = w
T
Ψ(h, I),

wherew,Ψ(.), and h are in the concatenated vector forms.

The model is learned using the max-margin formulation

(see technical report [23]).

We conduct experiment on both Buffy [7] and PASCAL

Stickmen [5] dataset following the same experiment setup

in [16]. The pose estimation performance is shown in Per-

centage of Correct Parts (PCP) for each part in Table 1. We

report the CPS performance reproduced by the public avail-

able code released by Sapp et al. [16]. We also explore the

effect of the connectivity of the model by training two sub-

models with 13 and 7 pair-wise interactions on the Buffy

dataset. Our fully connected model (“Ours F” in Table 1)

outperforms the sub-models and CPS for most parts on both

datasets. Moreover, our method achieves an average PCP

of 85.7% which is significantly better than another fully-

connected model [26] (67.6%) and on par with the state-

of-the-art method [29] (89.1%) on the Buffy dataset. We

also compare the time efficiency of different variants of our

methods against a state-of-the-art Cluster Pursuit (CP) ex-

act inference method. Notice that we calculate the bound

in Eq. 2 by setting β = 0.5θ in this experiment, since it is
more costly to do message passing to search for β at the be-

ginning. Our method takes 0.28 hours in total to recognize

poses in the whole Buffy dataset which contains 249 test-
ing images. This is 74 times faster than CP method (20.83

hours). A scatter plot in Fig. 4 shows the time comparison

for each example. It shows that our method with OBMS

(red dots in Fig. 4) is faster than our method without OBMS

(green dots in Fig. 4) (on average 2.5 times faster). More-

over, we identify two groups of examples. The group on

the top is a set of hard examples since the CP method is

required to search for more complex constraints in order to

solve these problems. We observe that our method is faster

than CP in 88% of the images in the dataset. Moreover,

our BB algorithm requires less memory usage (on average

 1

60

61

62

63

64

65

66

Avg inference time (sec)

A
cc

u
ra

cy
 %

Lower Arms

 0.1 0.3 0.5 3

Figure 5: Trade-off
between accuracy (y

axis in PCP) and effi-

ciency (x axis in time)

of lower arms.

15 20 25 30 35 40

20

40

60

80

Pixel Error Threshold

A
cc

u
ra

cy
 %

Elbow, Ours
Elbow, SM
Wrist, Ours
Wrist, SM

20

40

60

80

15
Pixel Error Threshold

20 25 30 35 40

A
cc

u
ra

cy
 %

20

40

60

80

Pixel Error Threshold
20 25 30 35 40

A
cc

u
ra

cy
 %

15

Figure 6: Quantitative results on three sequences in the VideoPose2.0

testset that are best represented by the pre-trained model. The predicted

joint location is correct if its distance between the ground truth location is

smaller than the specified pixel error threshold (x-axis). In the first col-

umn, both methods (our method and Stretchable Models (SM)) only detect

half of the elbows. In the second sequence (Center), our method achieves

almost consistently ∼ 10% better wrist accuracy than SM does. In the last

sequence (Right), our method obtains better accuracy when the pixel error

threshold is small for both elbow and wrist.

640MB) than the CP method (on average 7GB).

We also explore the trade-off between the pose estima-

tion accuracy and inference time by allowing our method

to stop early (increasing ǫ in line 12 of Algorithm 1). As

shown in Fig. 5, when we allow approximate inference to

run on average for 1.5 sec, the algorithm already reaches the

same performance as the exact inference algorithm which

takes 4.5 sec on average. Typical results of both the loopy
model and the original tree model [16] on both Buffy and

Stickmen datasets are shown in Fig. 7.

5.2. Stretchable Model (SM)

Sapp et al. [18] propose the Stretchable Model (SM)

which models 6 body joint locations in each frame and cap-

tures interactions within frames as well as across consecu-

tive frames. Since no existing methods can solve exact in-

ference efficiently on such a large loopy model (∼200 vari-
ables and a few hundred states per variable), they propose

multiple inference techniques to solve the joint estimation

problem: A) exact inference on relaxed models, B) approx-

imate inference on a full model (dual decomposition). Their

experimental results on VideoPose2.0 dataset [17] show that

(A) is both more efficient and accurate than (B). In this ex-

periment, we first use message passing to select the best

β in order to avoid having much looser upper bound. We

show that our BB algorithm can be directly applied to ex-

actly infer the MAP solution over their pre-trained model.

13 out of 18 test sequences are solved within 20 minutes

(on average 5.546 minutes). On the other hand, a dual de-
composition approximate inference algorithm [8] can only

solve 4 out of 18 problems. Moreover, CP method can only

solve the same 4 problems even within one hour. Interest-

ingly, although our method solves MAP estimation exactly,

our method achieves similar elbow prediction accuracy but

∼ 5% lower wrist prediction accuracy. Our result and Sapp

et al.’s conclusion suggest that the pre-trained model is not

representing the video sequences well. Indeed, we discover

that the learned model typically assigns much lower values

to the ground truth assignments than it does with the values

of the MAP assignments (on average 60% smaller). This

means that the model often does not agree with the ground

truth assignments. For example, in the first test sequence,

the values of the MAP, Sapp et al.’s approximate inference,

and the ground truth assignments are 20755, 17901, 9257,

Torso
Upper Arms
Lower Arms
Head

Ours Sapp et al. Ours Sapp et al. Ours Sapp et al.
B

u
�

y
S

ti
ck

m
e

n
V

id
e

o
P

o
se

2

Figure 7: Typical results from Buffy, Pascal Stickmen, and VideoPose2

datasets shown in Stickmen representation from top to bottom, respec-

tively. In each set of results, we show our result on the left and the Sapp et

al.’s result on the right.

respectively. The value of the ground truth assignment is

closer to the value of Sapp et al.’s approximate inference

assignment than to the value of the MAP assignment. We

follow this observation and select the top 3 sequences where

the value of the ground truth assignment is closer to value

of the MAP assignment with respect to the absolute differ-

ence between the values of the ground truth and Sapp et

al.’s approximate inference assignments. In these cases, ex-

act inference obtained by our method achieves comparable

or superior accuracy (Fig. 6). Typical estimated body joint

locations are shown in Fig. 7. This suggests that a better set

of model parameters must be learned to fully demonstrate

the power of the loopy model.

6. Conclusion

We have shown that our efficient and exact inference al-

gorithm is 74 times faster than the state-of-the-art exact in-
ference algorithm [21]. This enables the possibility of learn-

ing and applying loopy models to solve the pose estimation

problem from a single image. We have shown that this does

yield superior results in estimating body parts (e.g., 5% im-

provement for lower arm over a state-of-the-art method).

We further show that our algorithm is general enough to

solve problems with both a large number of variables (∼
200) and hundreds of states per variable in just a few min-

utes. From the results of the stretchable model experiment,

we believe that learning parameters of complex models to

achieve accurate performance while maintaining inference

efficiency is an interesting future research direction.

Acknowledgements

We acknowledge the support of the ONR grant

N000141110389, ARO grant W911NF-09-1-0310, and the

Google Faculty Research Award.

References

[1] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited:

People detection and articulated pose estimation. In CVPR, 2009. 1,

2

[2] D. Batra, S. Nowozin, and P. Kohli. Tighter relaxations for MAP-

MRF inference: A local primal-dual gap based separation algorithm.

In AISTATS, 2011. 4

[3] M. Bergtholdt, J. Kappes, S. Schmidt, and C. Schnrr. A study of

parts-based object class detection using complete graphs. IJCV,

2009. 2

[4] O. Berkman and U. Vishkin. Recursive star-tree parallel data struc-

ture. SIAM Journal on Computing, 1993. 5

[5] M. Eichner and V. Ferrari. Better appearance models for pictorial

structures. In BMVC, 2009. 1, 2, 7

[6] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for

object recognition. IJCV, 2005. 1, 2

[7] V. Ferrari, M. M. Jimenez, and A. Zisserman. Progressive search

space reduction for human pose estimation. In CVPR, 2008. 1, 2, 7

[8] A. Globerson and T. Jaakkola. Fixing max-product: Convergent mes-

sage passing algorithms for MAP LP-relaxations. In NIPS, 2008. 3,

7

[9] H. Jiang and D. R. Martin. Global pose estimation using non-tree

models. In CVPR, 2008. 1, 2

[10] A. H. Land and A. G. Doig. An automatic method of solving discrete

programming problems. Econometrica, 1960. 1, 4

[11] R. Marinescu and R. Dechter. Best-first AND/OR search for graphi-

cal models. In AAAI, 2007. 1

[12] J. Pearl. Probabilistic reasoning in intelligent systems: networks of

plausible inference. Morgan Kaufmann, 1988. 3

[13] D. Ramanan. Learning to parse images of articulated bodies. In

NIPS, 2006. 1, 2

[14] X. Ren, A. C. Berg, and J. Malik. Recovering human body configu-

rations using pairwise constraints between parts. In ICCV, 2005. 1,

2

[15] B. Sapp, C. Jordan, and B. Taskar. Adaptive pose priors for pictorial

structures. In CVPR, 2010. 1, 2

[16] B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated

pose estimation. In ECCV, 2010. 1, 2, 6, 7

[17] B. Sapp, D. Weiss, and B. Taskar. Sidestepping intractable inference

with structured ensemble cascades. In NIPS, 2010. 7

[18] B. Sapp, D. Weiss, and B. Taskar. Parsing human motion with

stretchable models. In CVPR, 2011. 1, 2, 3, 6, 7

[19] S. E. Shimony. Finding maps for belief networks is NP-hard. Artifi-

cial Intelligence, 2008. 3

[20] L. Sigal and M. J. Black. Measure locally, reason globally:

Occlusion-sensitive articulated pose estimation. In CVPR, 2006. 1

[21] D. Sontag, T. Meltzer, A. Globerson, Y. Weiss, and T. Jaakkola.

Tightening LP relaxations for MAP using message-passing. In UAI,

2008. 1, 2, 6, 8

[22] M. Sun and S. Savarese. Articulated part-based model for joint object

detection and pose estimation. In ICCV, 2011. 1, 2

[23] M. Sun, M. Telaprolu, H. Lee, and S. Savarese. An efficient branch-

and-bound algorithm for optimal human pose estimation. Technical

report. http://www.eecs.umich.edu/ sunmin/. 3, 7

[24] M. Sun, M. Telaprolu, H. Lee, and S. Savarese. Efficient and exact

MAP-MRF inference using branch and bound. In AISTATS, 2012. 1,

4, 5

[25] T.-P. Tian and S. Sclaroff. Fast globally optimal 2D human detection

with loopy graph models. In CVPR, 2010. 2

[26] D. Tran and D. Forsyth. Improved human parsing with a full rela-

tional model. In ECCV, 2010. 1, 2, 7

[27] Y. Wang and G. Mori. Multiple tree models for occlusion and spatial

constraints in human pose estimation. In ECCV, 2008. 3

[28] Y. Wang, D. Tran, and Z. Liao. Learning hierarchical poselets for

human parsing. In CVPR, 2011. 1, 2

[29] Y. Yang and D. Ramanan. Articulated pose estimation using flexible

mixtures of parts. In CVPR, 2011. 1, 2, 7

[30] J. S. Yedidia, W. Freeman, and Y.Weiss. Understanding belief propa-

gation and its generalizations. Technical report, Mitsubishi Electrical

Research Laboratories, 2002. 3

[31] L. L. Zhu, Y. Chen, Y. Lu, C. Lin, and A. Yuille. Max margin

AND/OR graph learning for parsing the human body. In CVPR,

2008. 1, 2

