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Abstract
There has been much interest in unsupervised learning of 
hierarchical generative models such as deep belief networks 
(DBNs); however, scaling such models to full-sized, high-
dimensional images remains a difficult problem. To address 
this problem, we present the convolutional deep belief net-
work, a hierarchical generative model that scales to realistic 
image sizes. This model is translation-invariant and sup-
ports efficient bottom-up and top-down probabilistic infer-
ence. Key to our approach is probabilistic max-pooling, a 
novel technique that shrinks the representations of higher 
layers in a probabilistically sound way. Our experiments 
show that the algorithm learns useful high-level visual fea-
tures, such as object parts, from unlabeled images of objects 
and natural scenes. We demonstrate excellent performance 
on several visual recognition tasks and show that our model 
can perform hierarchical (bottom-up and top-down) infer-
ence over full-sized images.

1. INTRODUCTION
Machine learning has been highly successful in tackling 
many real-world artificial intelligence and data mining prob-
lems, such as optical character recognition, face detection, 
autonomous car driving, data mining of biological data, and 
Web search/information retrieval. However, the success of 
machine learning systems often requires a large amount of 
labeled data (which is expensive to obtain) and significant 
manual feature engineering. These feature representations 
are often hand-designed, require significant amounts of 
domain knowledge and human labor, and do not generalize 
well to new domains. Therefore, it is desirable to be able to 
develop feature representations automatically while using a 
small amount of labeled data.

Given these issues, we consider the problem of learn-
ing feature representations from unlabeled data, which 
we call unsupervised feature learning. Here, we are inter-
ested in primarily using unlabeled data because we can 
easily obtain a virtually unlimited amount of unlabeled 
data via the Internet. In fact, even though we do not have 
labels, there often exist rich structures in unlabeled data. 
For example, if we look at images of a specific object (e.g., 
a face), we can easily discover high-level structures such 
as object parts (e.g., face parts). Given natural images, we 

may be able to discover low-level structures such as edges, 
as well as high-level structures such as corners, local cur-
vatures, and shapes. The main assumption of unsuper-
vised feature learning is that such structures in unlabeled 
data can be useful in machine learning tasks. For example, 
if the input data have structures generated from specific 
object classes (e.g., cars vs. faces), then discovering class-
specific patterns (e.g., car wheels or face parts) will be 
useful for classification, possibly combined with a small 
amount of labeled data. Similarly, even simple image fea-
tures (e.g., edges or corners) learned from unlabeled natu-
ral images can be useful for object recognition tasks that 
deal with completely unrelated images. In  this context, 
how can we discover such useful high-level features from 
unlabeled data?

In recent years, “deep learning” approaches have gained 
significant interest as a way of building hierarchical rep-
resentations from unlabeled data.2, 10, 15, 26, 28 Deep architec-
tures attempt to learn hierarchical structures and seem 
promising in learning simple concepts first and then suc-
cessfully building up more complex concepts by composing 
the simpler ones together. Specifically, deep architectures 
consist of feature detector units arranged in layers. Lower 
layers detect simple features and feed into higher layers, 
which in turn detect more complex features. In particu-
lar, the DBN10 is a multilayer generative model where each 
layer encodes statistical dependencies among the units in 
the layer below, and it can be trained to (approximately) 
maximize the likelihood of its training data. DBNs have 
been successfully used to learn high-level structures in a 
wide variety of domains, including handwritten digits10 and 
human motion capture data.31 We build upon the DBN in 
this paper because we are interested in learning a genera-
tive model of images that can be trained in a purely unsu-
pervised manner.

While DBNs have been successful in controlled domains, 
scaling them to realistic-sized (e.g., 200 × 200 pixel) images 
remains challenging for two reasons. First, images are high-
dimensional, so the algorithms must scale gracefully and be 
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computationally tractable even when applied to large images. 
Second, objects can appear at arbitrary locations in images; 
thus, it is desirable that representations be invariant at least 
to local translations of the input. We address these issues by 
incorporating translation invariance. Like LeCun et al.17 and 
Grosse et al.,7 our algorithm learns feature detectors shared 
among all locations in an image because a feature detector 
that captures useful information in one part of an image can 
pick up the same information elsewhere. Thus, our model 
can represent large images using a small number of feature 
detectors.

This paper presents the convolutional deep belief network, 
a hierarchical generative model that scales to full-sized 
images. We also present probabilistic max-pooling, a novel 
technique that allows higher-layer units to cover larger 
areas of the input in a probabilistically sound way. To the 
best of our knowledge, ours is the first unsupervised, trans-
lation-invariant deep learning model that scales to realistic 
image sizes and supports full probabilistic inference. The 
first, second, and third layers of our network learn edge 
detectors, object parts, and objects, respectively. We show 
that these representations achieve excellent performance 
on several visual recognition tasks and allow hidden object 
parts to be inferred from high-level object information.

2. PRELIMINARIES

2.1. Restricted Boltzmann machines
In this section, we briefly review the restricted Boltzmann 
machine (RBM) and DBN models.

The RBM is a two-layer, bipartite, undirected graphical 
modela with a set of binary hidden random variables (units) 
h of dimension K, a set of (binary or real-valued) visible 
random variables (units) v of dimension D, and symmet-
ric connections between these two layers represented by a 
weight matrix W ∈ RD × K. (See Figure 1 for an illustration of 
the RBM.) Intuitively, the RBM can be viewed as a Markov 
Random Field that tries to represent the input data (visible 
units) with latent factors (hidden units). Here, the weights 
encode a statistical relationship between the hidden nodes 
and visible nodes. For example, the weights between the 
jth hidden node (hj ) and all visible nodes are denoted as jth 
“basis” vector, and hj are assigned to 1 with high probabil-
ity whenever the input data match the jth basis vector (see 
Equation 4). The formal probabilistic semantics for an RBM 
is defined by its energy function as follows:

	 � (1)

where Z is a normalization constant. If the visible units are 
binary valued, the energy function can be defined as

	 � (2)

where bj are hidden unit biases ( b ∈ RK ) and ci are visible 
unit  biases (c ∈ RD). If the visible units are real-valued, 
we can define the energy function by adding a quadratic term 
to make the distribution well defined:

	 � (3)

The above energy function defines a joint probability dis-
tribution and conditional probability distribution. From 
the energy function, it is clear that the hidden units are 
conditionally independent of one another given the visible 
layer, and vice versa. In particular, the units of a binary hid-
den layer (conditioned on the visible layer) are independent 
Bernoulli random variables as follows:

	 � (4)

where  is the sigmoid function. Similarly, if the 
visible layer is binary-valued, the visible units (conditioned 
on the hidden layer) are independent Bernoulli random vari-
ables as follows:

	 � (5)

If the visible layer is real-valued, the visible units (condi-
tioned on the hidden layer) are independent Gaussians with 
diagonal covariance as follows:

	 � (6)

where N (.,.) is a Gaussian distribution. Therefore, we can 
perform efficient block Gibbs sampling by alternately sam-
pling each layer’s units (in parallel) given the other layer. We 
will often refer to a unit’s expected value as its activation.

The RBM is a generative model, so, in principle, its 
parameters can be optimized by performing stochastic 
gradient descent on the log-likelihood of training data. 
Unfortunately, computing the exact gradient of the log-like-
lihood is intractable. Instead, one typically uses the contras-
tive divergence approximation,8 which has been shown to 
work well in practice.

2.2.  Deep belief networks
The RBM by itself is limited in what it can represent. Its 
real power emerges when RBMs are stacked to form a DBN, 
a generative model consisting of many layers. In a DBN, 

v1 v2 v3

h1 h2

Figure 1. An example RBM with three visible units (D = 3) and two 
hidden units (K = 2). See text for details.

a  See Koller and Friedman14 for background on undirected graphical mod-
els. In short, the undirected graphical models denote probabilistic models 
whose joint probability can be written as the product of non-negative poten-
tial functions, as in Equations 1–3.
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each layer comprises a set of binary or real-valued units. 
Two adjacent layers have a full set of connections between 
them, but no two units in the same layer are connected. 
Hinton et  al.10 proposed an efficient algorithm for train-
ing DBNs, by greedily training each layer (from lowest to 
highest) as an RBM using the previous layer’s activations 
as inputs.

For example, once a layer of the network is trained, the 
parameters Wij, bj, ci’s are frozen and the hidden unit values 
(given the data) are inferred. These inferred values serve 
as the input data used to train the next higher layer in the 
network. Hinton et al.10 showed that by repeatedly apply-
ing such a procedure, one can learn a multilayered DBN. In 
some cases, this iterative greedy algorithm can be shown to 
be optimizing a variational lower-bound on the data like-
lihood, if each layer has at least as many units as the layer 
below. This greedy layer-wise training approach has been 
shown to provide a good initialization for parameters for the 
multilayered network.

3. ALGORITHM
Both RBMs and DBNs ignore the 2D structure of images, so 
weights that detect a given feature must be learned sepa-
rately for each location. This redundancy makes it difficult 
to scale these models to full images. One possible way of 
scaling up is to use massive parallel computation, such as 
using GPUs, as shown in Raina et al.25 However, this method 
may still suffer from having a huge number of parameters. 
In this section, we present a new method that scales up 
DBNs using weight-sharing. Specifically, we introduce 
our model, the convolutional DBN (CDBN), where weights 
are shared among all locations in an image. This model 
scales well because inference can be done efficiently using 
convolution.

3.1. Notation
For notational convenience, we will make several sim-
plifying assumptions. First, we assume that all inputs to 
the algorithm are NV × NV images, even though there is no 
requirement that the inputs be square, equally sized, or even 
2D. We also assume that all units are binary-valued, while 
noting that it is straightforward to extend the formulation 
to the real-valued visible units (see Section 2.1). We use * to 
denote convolution,b and • to denote an element-wise prod-
uct followed by summation, i.e., A • B = tr AT B. We place a 
tilde above an array (Ã) to denote flipping the array horizon-
tally and vertically.

3.2. Convolutional RBM
First, we introduce the convolutional RBM (CRBM). 
Intuitively, the CRBM is similar to the RBM, but the weights 
between the hidden and visible layers are shared among all 
locations in an image. The basic CRBM consists of two lay-
ers: an input layer V and a hidden layer H (corresponding to 
the lower two layers in Figure 2). The input layer consists of 

an NV × NV array of binary units. The hidden layer consists 
of K groups, where each group is an NH × NH array of binary 
units, resulting in NH

2 K hidden units. Each of the K groups 
is associated with a NW × NW filter (NW  ∆= NV − NH + 1); the filter 
weights are shared across all the hidden units within the 
group. In addition, each hidden group has a bias bk and all 
visible units share a single bias c.

We define the energy function E(v, h) as

�(7)

Using the operators defined previously,

	 � (8)

As with standard RBMs (Section 2.1), we can perform block 
Gibbs sampling using the following conditional distributions:

	 � (9)

	 � (10)

where σ (.) is the sigmoid function.c Gibbs sampling forms 
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling
To learn high-level representations, we stack CRBMs into a 
multilayer architecture analogous to DBNs. This architec-
ture is based on a novel operation that we call probabilistic 
max-pooling.

In general, higher-level feature detectors need infor-
mation from progressively larger input regions. Existing 

Figure 2. Convolutional RBM with probabilistic max-pooling. For 
simplicity, only group k of the detection layer and the pooling layer are 
shown. The basic CRBM corresponds to a simplified structure with 
only visible layer and detection (hidden) layer. See text for details.
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b  The convolution of an m × m array with an n × n array (m > n) may result in 
an (m + n − 1) × (m + n − 1) array (full convolution) or an (m − n + 1) × (m − n + 1) 
array (valid convolution). Rather than inventing a cumbersome notation to 
distinguish between these cases, we let it be determined by context.

c  For the case of real-valued visible units, we can follow the standard formula-
tion as in Section 2.1 and show that

	 � (11)
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translation-invariant representations (e.g., convolutional 
networks) often involve two kinds of alternating layers: 
“detection” layers, where responses are computed by 
convolving a feature detector with the previous layer, and 
“pooling” layers, which shrink the representation of the 
detection layers by a constant factor. More specifically, 
each unit in a pooling layer computes the maximum acti-
vation of the units in a small region of the detection layer. 
Shrinking the representation with max-pooling allows 
higher-layer representations to be invariant to small trans-
lations of the input and reduces the computational burden.

Max-pooling was intended only for deterministic and 
feed-forward architectures,17 and it is difficult to perform 
probabilistic inference (e.g., computing posterior probabili-
ties) since max-pooling is a deterministic operator. In con-
trast, we are interested in a generative model of images that 
supports full probabilistic inference. Hence, we designed 
our generative model so that inference involves max-
pooling-like behavior.

To simplify the notation, we consider a model with a vis-
ible layer V, a detection layer H, and a pooling layer P, as 
shown in Figure 2. The detection and pooling layers both 
have K groups of units, and each group of the pooling layer 
has NP × NP binary units. For each k ∈ {1, …, K}, the pooling 
layer P k shrinks the representation of the detection layer Hk 
by a factor of C along each dimension, where C is a small 
integer such as 2 or 3. In other words, the detection layer Hk 
is partitioned into blocks of size C × C, and each block a is 
connected to exactly one binary unit pk

a in the pooling layer 
(i.e., NP = NH /C). Formally, we define Ba ∆= , {(i, j ) : hij belongs 
to the block a}.

The detection units in the block Ba and the pooling unit 
pa are connected in a single potential which enforces the 
following constraints: at most one of the detection units 
may be on, and the pooling unit is on if and only if a detec-
tion unit is on. By adding this constraint, we can efficiently 
sample from the network without explicitly enumerating all 
2C2 configurations, as we show later. With this constraint, 
we can consider these C2 + 1 units as a single (softmax) ran-
dom variable which may take on one of C2 + 1 possible val-
ues: one value for each of the detection units being on, and 
one value indicating that all units are off.

We formally define the energy function of this simplified 
probabilistic max-pooling-CRBM as follows:

We now discuss sampling the detection layer H and the pool-
ing layer P given the visible layer V. Note that hidden units in 
group k receive the following bottom-up signal from layer V:

	 � (13)

Now, we sample each block independently as a multinomial 
function of its inputs. Suppose hk

i, j is a hidden unit contained 
in block a (i.e., (i, j ) ∈ Ba), the increase in energy caused by 

turning on unit hk
i, j is –I(hk

i, j) , and the conditional probability 
is given by

	 � (14)

	 � (15)

In our implementation, we sample the random variables 
{hk

i, j} and pk
a in each block a from a multinomial distribu-

tion, and this can be done in parallel since the blocks are 
disjoint (i.e., each hidden unit belongs to only one block). 
Sampling the visible layer V given the hidden layer H can 
be performed in the same way as described in Section 3.2 
(e.g., Equation 10 or 11).

3.4. T raining via sparsity regularization
Our model is overcomplete in that the size of the representa-
tion is much larger than the size of the inputs. In fact, since 
the first hidden layer of the network contains K groups of 
units, each roughly the size of the image, it is overcomplete 
roughly by a factor of K. In general, overcomplete models run 
the risk of learning trivial solutions, such as feature detectors 
representing single pixels. One common solution is to force 
the representation to be “sparse,” meaning only a tiny frac-
tion of the units should be active in relation to a given stimu-
lus. Following Lee et al.,18 we regularize the objective function 
(log-likelihood) to encourage each hidden unit group to have 
a mean activation close to a small constant. Specifically, we 
find that the following simple update (followed by contras-
tive divergence update) works well in practice:

	 � (16)

where p is a target sparsity, and each image is treated as a 
mini-batch. The learning rate for sparsity update is chosen 
as a value that makes the hidden group’s average activa-
tion (over the entire training data) close to the target spar-
sity, while allowing variations depending on specific input 
images. The overall training algorithm for the convolu-
tional RBM (with probabilistic max-pooling) is described in 
Algorithm 1.d

3.5. Convolutional deep belief network
Finally, we are ready to define the CDBN, our hierarchi-
cal generative model for full-sized images. Analogous 
to DBNs, this architecture consists of several max-pool-
ing-CRBMs stacked on top of one another. The network 
defines an energy function by summing the energy func-
tions for all the individual pairs of layers. Training is 
accomplished with the same greedy, layer-wise procedure 
described in Section 2.2: once a given layer is trained, its 
weights are frozen, and its activations are used as input 
for the next layer. There is one technical point about 
learning the biases for each intermediate hidden layer. 

d  To reduce the variance, we followed Hinton and Salakhutdinov11 by setting 
V n:= Ep(V|H (n–1) )[V|H(n−1))]; also, we used 1-step CD (Ncd = 1).
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Specifically, the biases of a given layer are learned twice: 
once when the layer is treated as the “hidden” layer of the 
CRBM (using the lower layer as visible units), and once 
when it is treated as the “visible” layer (using the upper 
layer as hidden units). We resolved this problem by sim-
ply fixing the biases with the learned hidden biases in 
the former case (i.e., using only the biases learned when 
treating the given layer as the hidden layer of the CRBM). 
However, we note that a potentially better solution would 
be to jointly train all the weights for the entire CDBN, 
using the greedily trained weights as the initialization 
(e.g., Hinton et al.10, 29).

3.6. Hierarchical probabilistic inference
Once the parameters have all been learned, we compute the 
network’s representation of an image by sampling from the 
joint distribution over all of the hidden layers conditioned 
on the input image. To sample from this distribution, we use 
block Gibbs sampling, where each layer’s units are sampled 
in parallel (see Sections 2.1 and 3.3).

To illustrate the algorithm, we describe a case with one 
visible layer V, a detection layer H, a pooling layer P, and 
another, subsequently higher detection layer H′. Suppose H′ 
has K′ groups of nodes, and there is a set of shared weights 
G = {G 1,1, …, G K,K′} where G k, is a weight matrix connecting 
pooling unit Pk to detection unit H ′. The definition can be 
extended to deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each of 
the groups in the detection layers and interaction terms 
between V and H and between P and H′:e

	 � (20)

To sample the detection layer H and pooling layer P, note 
that the detection layer Hk receives the following bottom-up 
signal from layer V:

	 � (21)

and the pooling layer P k receives the following top-down signal 
from layer H′:

	 � (22)

Now, we sample each of the blocks independently as a mul-
tinomial function of their inputs, as in Section 3.3. If (i, j) ∈ 
Ba, the conditional probability is given by

	 � (23)

	 � (24)

As an alternative to block Gibbs sampling, mean-field (e.g., 
Salakhutdinov et al.30) can be used to approximate the 
posterior distribution. In all our experiments except for 
Section  4.5, we used the mean-field approximation to esti-
mate the hidden layer activations given the input.f

3.7. Discussion
Our model used undirected connections between layers. 
This approach contrasts with Hinton et al.,10 which used 
undirected connections between the top two layers, and 
top-down directed connections for the layers below. Hinton 
et al.10 proposed approximating the posterior distribution 
using a single bottom-up pass. This feed-forward approach 
can often effectively estimate the posterior when the image 
contains no occlusions or ambiguities,g but the higher lay-
ers cannot help resolve ambiguities in the lower layers. This 
is due to feed-forward computation, where the lower layer 
activations are not affected by the higher layer activations. 
Although Gibbs sampling may more accurately estimate 
the posterior, applying block Gibbs sampling would be dif-
ficult because the nodes in a given layer are not condition-
ally independent of one another given the layers above and 
below. In contrast, our treatment using undirected edges 
enables combining bottom-up and top-down information 
more efficiently, as shown in Section 4.5.

In our approach, probabilistic max-pooling helps to 
address scalability by shrinking the higher layers. Moreover, 
weight-sharing (convolutions) speeds up the algorithm further. 

e  To avoid clutter, we removed all the terms that do not depend on h and p.

f  We found that a small number of mean-field iterations (e.g., five iterations) 
sufficed.
g  In our experiments, this feed-forward approximation scheme also resulted 
in similar posteriors of the hidden units and classification performance in 
most cases.

Algorithm 1 A training algorithm for the convolutional RBM

 � repeat {over the training data (e.g., a set of training images)}
    Set V (0) := V (e.g., set the current image as a mini-batch)
  �  Compute the posterior Q(0) ∆= P(H|V (0)) (Equations 14 

and 15).
    Sample H(0) from Q(0).
    for n = 1 to Ncd do
      Sample V n from P(V|H (n−1)) (Equation 10 or 11).c

   �   Compute the posterior Q(n) ∆= P(H|V n) (Equations 14 
and 15).

      Sample H (n) from Q (n).
    end for

Update weights and biases with contrastive divergence 
and sparsity regularization:

	 � (17)

	 � (18)

	 � (19)

  until convergence
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For example, convolutions between K filters and an input 
image are more efficient both in memory and time than 
repeating K NH

2 times of inner products between the input 
image and each of the basis vectors (without weight shar-
ing). As a result, inference in a three-layer network (with 
200  × 200 input images) with weight-sharing but without 
max-pooling is about 10 times slower. Without weight-
sharing, it is more than 100 times slower.

In contemporary work that was done independently of 
ours, Desjardins and Bengio4 and Norouzi et al.21 also applied 
convolutional weight-sharing to RBMs. Our work, however, 
developed more sophisticated elements such as probabilis-
tic max-pooling to make the algorithm more scalable.

In another contemporary work, Salakhutdinov and 
Hinton29 proposed an algorithm to train Boltzmann machines 
with layer-wise connections (i.e., the same topological struc-
ture as in DBNs, but with undirected connections). They called 
this model the deep Boltzmann machine (DBM). Specifically, 
they proposed algorithms for pretraining and fine-tuning 
DBMs. Our treatment of undirected connections is closely 
related to DBMs. However, our model is different from theirs 
because we apply convolutional structures and incorporate 
probabilistic max-pooling into the architecture. Although 
their work is not convolutional and does not scale to as large 
images as our model, we note that their pretraining algorithm 
(a modification of contrastive divergence that duplicates the 
visible units or hidden units when training the RBMs) or fine-
tuning algorithm (joint training of all the parameters using a 
stochastic approximation procedure32, 35, 37) can also be applied 
to our model to improve the training procedure.

4. EXPERIMENTAL RESULTS

4.1. Learning hierarchical representations from 
natural images
We first tested our model’s ability to learn hierarchical rep-
resentations of natural images. Specifically, we trained a 
CDBN with two hidden layers from the Kyoto natural image 
dataset.h The first layer consisted of 24 groups (or “bases”)i

of 10 × 10 pixel filters, while the second layer consisted of 
100 bases, each one 10 × 10 as well. Since the images were 
real-valued, we used Gaussian visible units for the first-
layer CRBM. The pooling ratio C for each layer was 2, so the 
second-layer bases covered roughly twice as large an area 
as the first-layer bases. We used 0.003 as the target sparsity 
for the first layer and 0.005 for the second layer.

As Figure 3 (top) shows, the learned first layer bases are 
oriented, localized edge filters; this result is consistent 
with much previous work.1, 9, 22, 23, 28, 33 We note that sparsity 
regularization during training was necessary to learn these 
oriented edge filters; when this term was removed, the algo-
rithm failed to learn oriented edges. The learned second 
layer bases are shown in Figure 3 (bottom), and many of 
them empirically responded selectively to contours, corners, 
angles, and surface boundaries in the images. This result is 
qualitatively consistent with previous work.12, 13, 18

4.2. Self-taught learning for object recognition
In the self-taught learning framework,24 a large amount of 
unlabeled data can help supervised learning tasks, even 
when the unlabeled data do not share the same class labels 
or the same generative distribution with the labeled data. In 
previous work, sparse coding was used to train single-layer 
representations from unlabeled data, and the learned rep-
resentations were used to construct features for supervised 
learning tasks.

We used a similar procedure to evaluate our two-layer 
CDBN, described in Section 4.1, on the Caltech-101 object 
classification task. More specifically, given an image from 
the Caltech-101 dataset,5 we scaled the image so that its 
longer side was 150 pixels and computed the activations 
of the first and second (pooling) layers of our CDBN. We 
repeated this procedure after reducing the input image 
by half and concatenated all the activations to construct 
features. We used an SVM with a spatial pyramid match-
ing kernel for classification, and the parameters of the 
SVM were cross-validated. We randomly selected 15 or 
30 images per class for training test and testing set, and 
normalized the result such that classification accuracy for 
each class was equally weighted (following the standard 
protocol). We report results averaged over 10 random tri-
als, as shown in Table 1. First, we observe that combin-
ing the first and second layers significantly improves the 

Figure 3. The first layer bases (top) and the second layer bases 
(bottom) learned from natural images. Each second layer basis 
(filter) was visualized as a weighted linear combination of the first 
layer bases.

h  Available at http: //www. cnbc. cmu.edu/cplab/data_kyoto.html
i  We will call one hidden group’s weights a “basis.”

Table 1. Test classification accuracy for the Caltech-101 data.

Training size (per class) 15 30

CDBN (first layer) 53.2% ± 1.2% 60.5% ± 1.1%
CDBN (first + second layer) 57.7% ± 1.5% 65.4% ± 0.5%
Raina et al.24 46.6% —
Ranzato et al.27 — 54.0%
Mutch and Lowe20 51.0% 56.0%
Lazebnik et al.16 54.0% 64.6%
Zhang et al.38 59.0% ± 0.56% 66.2% ± 0.5%
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classification accuracy relative to the first layer alone. 
Overall, we achieve 57.7% test accuracy using 15 training 
images per class, and 65.4% test accuracy using 30 training 
images per class. Our result is competitive with state-of-
the-art results using a single type of highly specialized fea-
tures, such as SIFT, geometric blur, and shape-context.3, 

16, 38 In addition, recall that the CDBN was trained entirely 
from natural scenes, which are completely unrelated to 
the classification task. Hence, the strong performance of 
these features implies that our CDBN learned a highly gen-
eral representation of images.

We note that current state-of-the-art methods use mul-
tiple kernels (or features) together, instead of using a single 
type of features. For example, Gehler and Nowozin6 rve-
ported a better performance than ours (77.7% for 30 train-
ing images/class), but they combined many state-of-the-art 
features (or kernels) to improve performance. In another 
approach, Yu et al.36 used kernel regularization using a (pre-
viously published) state-of-the-art kernel matrix to improve 
the performance of their convolutional neural network 
model (achieving 67.4% for 30 training examples/class). 
However, we expect our features can also be used in both 
settings to further improve performance.

4.3. Handwritten digit classification
We also evaluated the performance of our model on the 
MNIST handwritten digit classification task, a widely used 
benchmark for testing hierarchical representations. We 
trained 40 first layer bases from MNIST digits, each 12 × 12 
pixels, and 40 second layer bases, each 6 × 6. The pooling 
ratio C was 2 for both layers. The first layer bases learned pen-
strokes that comprise the digits, and the second layer bases 
learned bigger digit-parts that combine the pen-strokes. We 

constructed feature vectors by concatenating the first and 
second (pooling) layer activations, and used an SVM for clas-
sification using these features. For each labeled training set 
size, we report the test error averaged over 10 randomly cho-
sen training sets, as shown in Table 2. For the full training 
set, we obtained 0.8% test error. Our result is comparable to 
the state of the art.27

4.4. Unsupervised learning of object parts
We now show that our algorithm can learn hierarchical 
object-part representations without knowing the position of 
the objects and the object-parts. Building on the first layer 
representation learned from natural images, we trained two 
additional CDBN layers using unlabeled images from single 
Caltech-101 categories. Training was performed on up to 100 
images, and testing was performed on images different than 
those in the training set. The pooling ratio for the first layer 
was set as 3. The second layer contained 40 bases, each 10 × 10,  
and the third layer contained 24 bases, each 14 × 14. The 
pooling ratio in both cases was 2. We used 0.005 as the target 
sparsity level in both the second and third layers. As shown in 
Figure 4, the second layer learned features that corresponded 
to object parts, even though the algorithm was not given any 
labels that specified the locations of either the objects or 
their parts. The third layer learned to combine the second 
layer’s part representations into more complex, higher-level 
features. Our model successfully learned hierarchical object-
part representations of most of the other Caltech-101 catego-
ries as well. We note that some of these categories (such as 
elephants and chairs) have fairly high intra-class appearance 
variation, due to deformable shapes or different viewpoints. 
Despite this variation, our model still learns hierarchical, 
part-based representations fairly robustly.

Table 2. Test error for MNIST dataset.

Labeled Training Samples 1,000 2,000 3,000 5,000 60,000

CDBN 2.62% ± 0.12% 2.13% ± 0.10% 1.91% ± 0.09% 1.59% ± 0.11% 0.82%
Ranzato et al.27 3.21% 2.53% — 1.52% 0.64%
Hinton and Salakhutdinov11 — — — — 1.20%
Weston et al.34 2.73% — 1.83% — 1.50%

Figure 4. Columns 1–4: the second layer bases (top) and the third layer bases (bottom) learned from specific object categories. Column 5: the 
second layer bases (top) and the third layer bases (bottom) learned from a mixture of four object categories (faces, cars, airplanes, motorbikes).
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Higher layers in the CDBN learn features that are not only 
higher level, but also more specific to particular object cat-
egories. We quantitatively measured the specificity of each 
layer by determining how indicative each individual feature is 
of object categories. (This setting contrasts with most work in 
object classification, which focuses on the informativeness of 
the entire feature set, rather than individual features.) More 
specifically, we considered three CDBNs trained on faces, 
motorbikes, and cars, respectively. For each CDBN, we tested 
the informativeness of individual features from each layer for 
distinguishing among these three categories. For each fea-
ture, we computed the area under the precision-recall curve 
(larger means more specific). In detail, for any given image, 
we computed the layer-wise activations using our algorithm, 
partitioned the activation into L × L regions for each group, 
and computed the q% highest quantile activation for each 
region and each group. If the q% highest quantile activation 
in region i was g, we then defined a Bernoulli random variable 
Xi, L, q with probability g of being 1. To measure the informa-
tiveness between a feature and the class label, we computed 
the mutual information between Xi, L, q and the class label. We 
report results using (L, q) values that maximized the average 
mutual information (averaging over i). Then for each feature, 
by comparing its values over positive and negative examples, 
we obtained the precision-recall curve for each classification 
problem. As shown in Figure 5, the higher-level representa-
tions are more selective for the specific object class.

We further tested if the CDBN can learn hierarchical 
object-part representations when trained on images from 
several object categories, rather than just one. We trained 
the second and third layer representations using unlabeled 
images randomly selected from four object categories (cars, 
faces, motorbikes, and airplanes). As shown in Figure 4 (far 
right), the second layer learns class-specific and shared 
parts, and the third layer learns more object-specific repre-
sentations. The training examples were unlabeled, so, in a 
sense, the third layer implicitly clusters the images by object 
category. As before, we quantitatively measured the specific-
ity of each layer’s individual features to object categories. 
Since the training was completely unsupervised, whereas 
the AUC-PR statistic requires knowing which specific 

object or object parts the learned bases should represent, 
we computed the conditional entropy instead. Specifically, 
we computed the quantile features g for each layer as previ-
ously described, and measured conditional entropy H(class 
|g  >  0.95). Informally speaking, conditional entropy mea-
sures the entropy of the posterior over class labels when 
a feature is active. Since lower conditional entropy corre-
sponds to a more peaked posterior, it indicates greater spec-
ificity. As shown in Figure 6, the higher-layer features have 
progressively less conditional entropy, suggesting that they 
activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford19 proposed that the human visual cortex 
can be modeled conceptually as performing “hierarchical 
Bayesian inference.” For example, imagine that you observe 
a face image with its left half in dark illumination, then you 
would still be able to recognize the face and further infer 
the darkened parts by combining the image with your prior 
knowledge of faces. In this experiment, we show that our 
model can tractably perform such (approximate) hierarchical 
probabilistic inference in full-sized images. More specifically, 
we tested the network’s ability to infer the locations of hidden 
object parts.

To generate examples for evaluation, we used Caltech-101 
face images (distinct from the ones the network was trained 
on). For each image, we simulated an occlusion by zero-
ing out the left half of the image. We then sampled from 
the joint posterior over all the hidden layers by performing 

Figure 7. Hierarchical probabilistic inference. For each column: 
(top) input image; (middle) reconstruction from the second layer 
units after single bottom-up pass, by projecting the second layer 
activations into the image space; (bottom) reconstruction from  
the second layer units after 20 iterations of block Gibbs sampling.
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Figure 5. (top) Histogram of the area under the precision-recall curve 
(AUC-PR) for three classification problems using class-specific 
object-part representations. (bottom) Average AUC-PR for each 
classification problem.
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Gibbs sampling. Figure 7 shows a visualization of these sam-
ples. To ensure that the filling-in required top-down infor-
mation, we compared with a control condition where only a 
single upward pass was performed.

In the control (upward-pass only) condition, since there 
is no evidence from the first layer, the second layer does 
not respond to the left side. However, with full Gibbs sam-
pling, the bottom-up inputs combine with the context pro-
vided by the third layer which has detected the object. This 
combined evidence significantly improves the second layer 
representation. Selected examples are shown in Figure 7. 
Our method may not be competitive to state-of-the-art face 
completion algorithms using significant prior knowledge 
and heuristics (e.g., symmetry). However, we find these 
results promising and view them as a proof of concept for 
top-down inference.

5. CONCLUSION
We presented the CDBN, a scalable generative model for 
learning hierarchical representations from un-labeled 
images, and showed that our model performs well in a vari-
ety of visual recognition tasks. We believe our approach 
holds promise as a scalable algorithm for learning hierarchi-
cal representations from high-dimensional, complex data.
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