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Abstract

While determining model complexity is an
important problem in machine learning,
many feature learning algorithms rely on
cross-validation to choose an optimal num-
ber of features, which is usually challenging
for online learning from a massive stream of
data. In this paper, we propose an incremen-
tal feature learning algorithm to determine
the optimal model complexity for large-scale,
online datasets based on the denoising au-
toencoder. This algorithm is composed of
two processes: adding features and merging
features. Specifically, it adds new features
to minimize the objective function’s resid-
ual and merges similar features to obtain a
compact feature representation and prevent
over-fitting. Our experiments show that the
proposed model quickly converges to the op-
timal number of features in a large-scale on-
line setting. In classification tasks, our model
outperforms the (non-incremental) denoising
autoencoder, and deep networks constructed
from our algorithm perform favorably com-
pared to deep belief networks and stacked de-
noising autoencoders. Further, the algorithm
is effective in recognizing new patterns when
the data distribution changes over time in the
massive online data stream.

1 Introduction

In recent years, there has been much interest in online
learning algorithms [1, 9, 29, 8] with the purpose of
developing an intelligent agent that can perform life-
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long learning in complex real environments. To that
end, many large-scale learning algorithms have also
been proposed. In particular, Support Vector Ma-
chines (SVMs) [5] have been one of the most popular
discriminative methods for large-scale learning which
includes selective sampling to reduce the number of
support vectors [4, 24] and incremental support vec-
tors to learn an SVM with a small number of examples
in the early phase of training [7, 23]. Typically, linear
SVMs are used in large-scale settings due to their ef-
ficient training as well as the scalability to large-scale
datasets. However, this approach is limited in that the
feature mapping has to be fixed during the training;
therefore, it cannot be adapted to the training data.

Alternatively, there are several methods for jointly
training the feature mapping and the classifier, such
as via multi-task learning [31, 6], transfer learning [2,
22, 17], non-parametric Bayesian learning [1, 10], and
deep learning [16, 3, 28, 27, 20]. Among these, we
are interested in deep learning approaches that have
shown promise in learning features from complex,
high-dimensional unlabeled and labeled data. Specif-
ically, we present a large-scale feature learning algo-
rithm based on the denoising autoencoder (DAE) [32].
The DAE is a variant of autoencoders [3] that extracts
features by adding perturbations to the input data and
attempting to reconstruct the original data. This pro-
cess learns features that are robust to input noise and
useful for classification.

Despite the promise, determining the optimal model
complexity, i.e., the number of features for DAE, still
remains a nontrivial question. When there are too
many features, for example, the model may overfit the
data or converge very slowly. On the other hand, when
there are too few features, the model may underfit due
to the lack of relevant features. Further, finding an op-
timal feature set size becomes even more difficult for
large-scale or online datasets whose distribution may
change over time, since the cross-validation may be
challenging given a limited amount of time or compu-
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tational resources.

To address this problem, we propose an incremental
algorithm to learn features from the large-scale online
data by adaptively incrementing the features depend-
ing on the data and the existing features, using DAE
as a basic building block. Specifically, new features
are added and trained to minimize the residual of the
objective function in generative tasks (e.g., minimizing
reconstruction error) or discriminative tasks (e.g., min-
imizing supervised loss function). At the same time,
similar features are merged to avoid redundant feature
representations. Experimental results show that our
incremental feature learning algorithms perform favor-
ably compared to the non-incremental feature learn-
ing algorithms, including the standard DAE, the deep
belief network (DBN), and the stacked denoising au-
toencoder (SDAE), on classification tasks with large
datasets. Moreover, we show that incremental feature
learning is more effective in quickly recognizing new
patterns than the non-incremental algorithms when
the data distribution (e.g., the ratio of labels) is highly
non-stationary.

2 Preliminaries

In this paper, we use the denoising autoencoder [32]
as a building block for incremental feature learning.
Based on the idea that good features should be robust
to input corruption, the DAE tries to recover the input
data x from encoded representation f(x̃) of corrupted
data x̃ via a decoding function g(h). More precisely,
there are four components in the DAE:

• A conditional distribution q(x̃|x), that stochasti-
cally perturbs input x to a corrupted version x̃.

• An encoding function f(x̃) ≡ h ∈ RN , which gives
a representation of input data x.

• A decoding function g(h) ≡ x̂ ∈ RD, which re-
covers the data from the representation h.

• A differentiable cost function L(x) computes the
dissimilarity between input and reconstruction.

Throughout the paper, we consider a case in which the
input and the hidden variables are binary (or bounded
between 0 and 1), i.e., x ∈ [0, 1]D and h ∈ [0, 1]N . As
described in [32], we consider the conditional distribu-

tion q(x̃|x) =
∏D
i=1 q(x̃i|xi) that randomly sets some

of the coordinates to zeros. By corrupting the input
elements, the DAE attempts to learn informative rep-
resentations that can successfully recover the missing
coordinates to reconstruct the original input data. In
other words, the DAE is trained to fill in the missing
values introduced by corruption.

The DAE perturbs the input x to x̃ and maps it to the
hidden representation, or abusing notation, the feature

h through the encoding function defined as follows:

h = f(x̃) = sigm(Wx̃ + b),

where W ∈ RN×D is a weight matrix, b ∈ RN is a
hidden bias vector, and sigm(s) = 1

1+exp(−s) is the

sigmoid function. Then, we reconstruct x̂ ∈ [0, 1]D

from h using the decoding function:

x̂ = g(h) = sigm(WTh + c),

where c ∈ RD is an input bias vector. Here, we implic-
itly assumed tied weights for encoding and decoding
functions, but we can consider separate weights as well.

In this work, we use cross-entropy as a cost function:

L(x) = H(x, x̂) = −
D∑

i=1

xi log x̂i + (1− xi) log(1− x̂i)

Finally, the objective is to learn model parameters that
minimize the cost function

{Ŵ, b̂, ĉ} = arg min
W,b,c

∑

j

L(x(j)),

and this can be optimized by gradient descent (or con-
jugate gradient, L-BFGS, etc.) with respect to all pa-
rameters for encoding and decoding functions.

3 Incremental Feature Learning

In many cases, the number of hidden units N is fixed
during the training of DAE and the optimal value
is determined by cross-validation. However, cross-
validation is computationally prohibitive and often in-
feasible for large datasets. Furthermore, it may not
perform well when the distribution of training data
significantly changes over time.

To address these issues, we present an adaptive feature
learning algorithm that can handle large-scale datasets
without explicitly performing cross-validation over the
number of features on the whole dataset. In detail, our
incremental feature learning algorithm is composed of
two key processes: (1) adding new feature mappings to
the existing feature set and (2) merging parts of the ex-
isting feature mappings that are considered redundant.
We describe the details of the proposed algorithm in
this section.

3.1 Overview

The incremental feature learning algorithm addresses
the following two issues: (1) when to add and merge
features and (2) how to add and merge features. To
deal with these problems systematically, we define an
objective function to determine when to add or merge
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Algorithm 1 Incremental feature learning

repeat
Compute the objective L(x) for input x.
Collect hard examples into a subset B (i.e., B ←
B ∪ {x} if L(x) > µ).
if |B| > τ then

Select 2∆M candidate features and merge them
into ∆M features (Section 3.3).
Add ∆N new features by greedily optimizing
with respect to the subset B (Section 3.2).
Set B = ∅ and update ∆N and ∆M .

end if
Fine-tune all the features jointly with in current
batch of data (i.e., optimize via gradient descent
with respect to all parameters).

until convergence

features and how to learn the new features. Specif-
ically, we form a set B which is composed of hard
training examples whose objective function values are
greater than a certain threshold (µ) and use these ex-
amples as input data to greedily initialize the new fea-
tures. However, some of the collected hard examples
may be irrelevant to the task of interest. Therefore,
we only begin adding features when there are enough
examples collected in B (i.e., |B| > τ). In our im-
plementation, we set µ as the average of the objective
function values for recent 10,000 training examples;
the τ was set also to 10,000. These values were not
tuned. Note that it is not atypical to use 10,000 ex-
amples for training when using conjugate gradient or
L-BFGS (e.g., [21]).

After incrementing new features (i.e., initializing new
features and adding them to the feature set), we jointly
train all features with the upcoming training exam-
ples. Note that our feature learning algorithm still
optimizes the original objective function for the train-
ing data, and the subset B is used only for initializ-
ing the feature increments. The overall algorithm is
schematically shown in Figure 1, and a pseudo-code is
provided in Algorithm 1. In the following section, we
will describe adding new features and merging simi-
lar existing features based both on the generative and
discriminative objective functions.

Notations. In this paper, we denote D for input di-
mension, N for the number of (existing) features, and
K for the number of class labels. Based on these no-
tations, the parameters for generative training are de-
fined as the (tied) weight matrix W ∈ RN×D, the
hidden bias b ∈ RN , and the input bias c ∈ RD. Sim-
ilarly, the parameters for discriminative training are
composed of the weight matrix Γ ∈ RK×N between
hidden and output units, the output bias ν ∈ RK , as

well as the weight matrix W and the hidden bias b.
We use θ to denote all parameters {W,b, c,Γ,ν}.
For incremental feature learning, we use N to denote
new features and O to denote existing or old features.
For example, fO(x̃) ≡ hO ∈ [0, 1]N represents an en-
coding function with existing features, and fN (x̃) ≡
hN ∈ [0, 1]∆N denotes an encoding function with
newly added features. A combined encoding function
is then written as fO∪N (x̃) = [hO; hN ] ∈ [0, 1]N+∆N .
Likewise, θO refers to the existing parameters, i.e.,
{WO,bO, c,ΓO,ν}, and θN = {WN ,bN , c,ΓN ,ν}
denotes the parameters for new features.

3.2 Adding features

In this section, we describe an efficient learning algo-
rithm for adding features with different types of objec-
tive functions. The basic idea for efficient training is
that only the new features and corresponding parame-
ters θN are trained to minimize the objective function
while keeping θO fixed. In the following subsections,
we expand on the different training criteria, such as
generative, discriminative, and hybrid objectives.

3.2.1 Generative training

A generative objective function measures an average
reconstruction error between the input x and the re-
construction x̂. The cross-entropy function, assum-
ing that the input and output values are both within
interval [0, 1], is used as an objective function. The
optimization problem is posed as:

min
WN ,bN

1

|B|
∑

i∈B
Lgen(x(i)), (1)

where Lgen(x) = H(x, x̂). For incremental feature
learning, the DAE optimizes the new features to re-
construct the data x from the corrupted data x̃. The
encoding and decoding functions for the new features
can be written as:

hN = sigm(WN x̃ + bN ), (2)

x̂ = sigm(WT
NhN + WT

OhO + c). (3)

The key idea here is that, although the output x̂ de-
pends on both new features hN and old features hO as
described in equation (3), the training of incremental
feature θN that minimizes the residual of the objec-
tive function is still highly efficient because θO is fixed
during the training. From another point of view, we
can interpret WT

OhO as a part of the bias. Thus, we
can rewrite equation (3) as:

x̂ = sigm(WT
NhN + cd(hO)), (4)

where cd(hO) ≡ WT
OhO + c is viewed as a dynamic

decoding bias. Since the parameters for existing fea-
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… …Hidden (feature) layer

Input layer

(e.g. pixel values)

Merging similar features
Incrementing 

features

…

… …

Figure 1: Illustration of single layer incremental feature learning. During the training, our incremental feature
learning algorithm optimizes the parameters of new features (the orange units and the blue units on the right),
while holding the other features (yellow units outside the dotted blue box on the left). The orange units are
incremental features, and the blue unit is the merged feature from the similar existing features depicted as yellow
units in the dotted blue box. See text for details.

tures and the corresponding activations are not chang-
ing during the training of new features, we compute hO
once and recall the cd(hO) repeatedly for each train-
ing example without additional computational cost. In
this way, we can efficiently optimize the new parame-
ters greedily via stochastic gradient descent.

3.2.2 Discriminative training

A discriminative objective function computes an av-
erage classification loss between the actual label y ∈
[0, 1]K and the predicted label ŷ ∈ [0, 1]K . More pre-
cisely, the cross-entropy is used as a performance mea-
sure and we pose an optimization problem as follows:

min
WN ,bN ,ΓN

1

|B|
∑

i∈B
Ldisc(x(i),y(i)), (5)

where Ldisc(x,y) = H(y, ŷ(x)). Note that the label y
is a binary vector with a softmax unit that allows one
element to be 1 out of K dimensions for K-way classi-
fication problem (i.e., yk = 1 if and only if the example
is in the k-th class). Formally speaking, the discrim-
inative model predicts ŷ as a posterior probability of
class labels via the softmax activation function

ŷ = softmax(ν + ΓOfO(x̃) + ΓN fN (x̃)), (6)

where softmax(a)k = exp(ak)∑
k′ exp(ak′ ) , k = 1, ...,K for a ∈

RK . A similar interpretation for ν+ΓOfO(x̃), as in the
generative training, is possible, and therefore, we can
efficiently train the new parameters {WN ,bN ,ΓN }
using gradient descent.

3.2.3 Hybrid training

Considering the discriminative model as a single objec-
tive function has a risk of overfitting. As a remedy, we
can use a hybrid objective function that combines the
discriminative and generative loss function as follows:

Lhybrid(x,y) = Ldisc(x,y) + λLgen(x). (7)

In hybrid objective function, we further normalize
both loss functions with respect to their target dimen-

sions. In our experiments, we found that any value of
λ ∈ [0.1, 0.4] gave roughly the best performance.

3.3 Merging features

As described in the previous section, incremental fea-
ture mappings can be efficiently trained to improve
the generative and discriminative objectives for on-
line datasets. However, monotonically adding features
could potentially result in many redundant features
and overfitting. To deal with this problem, we con-
sider merging similar features to produce more com-
pact feature representations, which can mitigate the
problem of overfitting as well.

Our merging process is done in two steps: we select a
pair of candidate features and merge them to a single
feature. Detailed descriptions are given below:

• Select a set of candidate features to be merged,
M = {m1,m2} ⊂ O, and replace fO by fO\M
(i.e., remove m1-th and m2-th features from O).

• Add a new feature mapping fN that replaces the
merged features (See also Section 3.2).

The candidate feature pair and the new feature map-
ping can be determined by solving the following opti-
mization problem:

min
θN ,M

1

|B|
∑

i∈B
Lhybrid(x(i),y(i)). (8)

However, optimizing (8) jointly with respect to θN
andM is computationally expensive because the com-
plexity of an exhaustive search over all pairs of can-
didate features increases quadratically in the number
of features. As an approximation, we decompose the
original optimization problem into a two-step process,
where we first find the most similar feature pair for
merging candidates, and then solve the optimization
problem with θN only. In addition to being efficient
in training, this approximate optimization process also
minimizes the upper bound of the objective function
in equation (8). The process is described below:
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• Find a pair of features whose distance is minimal:
M̂ = arg min{m1,m2}d(Wm1 ,Wm2).

• Add new features to θO\M by solving θ̂N =

arg minθN
1
|B|

∑
i∈B Lhybrid(x(i),y(i)).

Given the candidate features to merge, a newly added
feature can be trained via gradient descent as de-
scribed in the previous section. Unlike section 3.2,
however, we initialize the new feature parameters as
a weighted average (i.e., linear combination) of two
candidate feature parameters for faster convergence as

θN =

∑
x∈B P (hm1

|x; θm1
)θm1

+ P (hm2
|x; θm2

)θm2∑
x∈B P (hm1 |x; θm1) + P (hm2 |x; θm2)

.

3.4 General formulations

In this section, we discuss variations of our algorithm
given four criteria: (1) encoding and decoding func-
tions of DAE depending on the type of input data, (2)
discriminative objectives, (3) distance functions for de-
termining merged candidates, and (4) an extension to
a deep incremental network.

Encoding and decoding functions. In previous
sections, we developed our algorithm based on sig-
moid functions for both encoder and decoder. How-
ever, other linear and non-linear functions (e.g., tanh,
linear, or rectified-linear) can be adapted. For exam-
ple, we can use a linear decoding function with a mean
squared error loss for real-valued input.

Discriminative training. In section 3.2.2, we used a
softmax classifier with cross-entropy for discriminative
tasks. However, it can easily be generalized to other
classifiers. For example, SVM can be adopted to our
algorithm by defining a hinge-loss (primal objective of
the SVM) at the output layer of the network.

Merging process. We used cosine distance (normal-
ized inner product) for all the experiments. Alterna-
tively, we can consider other similarity functions, such
as KL divergence, intersection kernel, and Chi-square
kernel, to select candidate features to merge. Further-
more, we note that in addition to our merging tech-
nique as described in Sec. 3.3, other merging meth-
ods or pruning techniques, such as “forward search,”
“backward search,” or pruning infrequently activated
features, can be used to reduce model complexity.

Deep incremental network. The proposed incre-
mental learning method can be readily adapted to deep
architectures. For example, we can train the deep in-
cremental network that determines the optimal feature
set size of multiple layers in a greedy way by fixing the
number of features in the lower layers and increment-
ing the features only at the top-layer sequentially.

4 Connection to Boosting and
Related Work

In this section, we provide a comparison between in-
cremental feature learning and boosting algorithms be-
cause they share similar motivations and properties.
Boosting (e.g., [18, 13, 30, 25, 15, 14, 33]) is a learning
framework that trains a single strong learner from a
set of weak learners. Incremental feature learning and
boosting algorithms are similar in that they add weak
learners (or feature mapping corresponding to newly-
added hidden units in the context of feature learning)
to improve the existing classifiers. However, incremen-
tal feature learning determines the number of feature
increments based on the performance, while typical
boosting methods introduce the pre-determined num-
ber of weak learners at each stage. Further, the merg-
ing process makes our algorithm robust to overfitting
and to be more adaptive to the online stream of data
whose distribution (e.g., data or class labels) may fluc-
tuate over time, since it removes the redundant weak
learners effectively.

Importantly, the weak learners in boosting algorithms
are typically used as classifiers (for predicting class la-
bels); whereas in our setting, they can be feature map-
pings to improve classification performance or to learn
representations from input data, which makes our
algorithm flexibly applicable to unsupervised, semi-
supervised, or self-taught learning [26] settings. Sim-
ilar to our approach, Chen et al. [11] presented an
incremental feature learning algorithm, called boosted
sparse coding, that adds a single feature at a time us-
ing sparse coding objectives. Our incremental learning
algorithm is different in that (1) we add multiple fea-
tures at a time based on several performance criteria
(i.e., generative/discriminative/hybrid objectives); (2)
we have a merging process that helps avoid overfit-
ting; and (3) we optimize the whole network (i.e., via
fine-tuning) after initializing new features.

In addition to boosting, our model is also related to
cascade correlation [12]. A cascade correlation neu-
ral network adds a new hidden unit as a new layer at
each step, which will depend on all previously added
units. Thus, a cascade correlation neural network can-
not effectively learn a large number of hidden units
(which would mean a very deep network). However,
in our proposed model, all hidden units (assuming one
hidden-layer model) can be independently computed
given input data, which makes our training more ef-
ficient. In addition, instead of simply adding hidden
units, our model is more adaptive to the input data
by adding or merging features. In our experiments,
the cascade correlation neural network performed well
with dozens of hidden units; however, in more compli-
cated tasks, our model always outperformed the cas-
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cade correlation by a large margin.

5 Experimental Results

5.1 Experimental setup

We evaluate the performance of the proposed learning
algorithm on the large-scale extended datasets based
on the MNIST variation and rect-images datasets.1

The MNIST variation dataset is composed of digit im-
ages with different variation types, such as rotation,
random, or image background, and their combination.
For rect-images dataset, each image contains a single
rectangle with different aspect ratios filled with an im-
age that is different from its background image. Since
the original datasets have a limited number of training
examples, we extended the dataset sizes to 1 million.
Samples from these datasets are shown in Figure 2. We
note that our extended datasets are more challenging
since we used more diverse background images (ran-
domly selected from 2000 images from CIFAR-10 [19]),
whereas the original MNIST variation datasets used
background patches extracted from 20 images down-
loaded from the internet. (See supplementary material
for further discussion about the datasets.)

In all experiments, we used a 20% corruption rate
for the DAE, and we implemented all algorithms via
Jacket GPU library running on nVidia GTX 470. For
optimization, we used L-BFGS2 with a minibatch size
of 1,000, since a similar setting has shown good per-
formance in training autoencoders without tuning the
learning rate [21]. For all feature learning algorithms,
we trained features by pre-training on the first 12,000
training examples, followed by supervised fine-tuning
in an online setting.

For incremental feature learning, the number of feature
increments ∆N t and the number of merged features
∆Mt at time t are adaptively determined by moni-
toring performance. In this study, we mainly consid-
ered two types of update rules. With the first type of
update rule, when the performance of current online
data batch is far from the convergence, we increase
∆N t to accelerate. On the other hand, if the perfor-
mance difference between two consecutive batches is
very small, we regard it as a convergence and reduce
∆N t to decelerate the pace. To balance the model, we
keep ∆Mt proportional to ∆N t during updates. Al-
ternatively, with the second type of update rule, we
considered a combination of AIC and BIC to control
the number of features. This way, the model starting
with a large number of features can still recover from
potential overfitting by penalizing the model complex-

1http://www.iro.umontreal.ca/~lisa/twiki/bin/
view.cgi/Public/MnistVariations

2http://www.di.ens.fr/~mschmidt/Software/

(a) bg-img-1M (b) bg-rand-1M (c) rot-1M

(d) rot-img-1M (e) rect-img-1M

Figure 2: Samples from the extended MNIST datasets
and the extended rect dataset.

ity. Note that all results reported in this section are
based on the latter update rule.

We also evaluated the classification accuracy with
other variants of update rules (for ∆N & ∆M) and
found that the performance was fairly robust to the
choice of update rules. For more details about select-
ing the number of incremental and merged features,
see the supplementary material.

5.2 Evaluation on generative criteria

In this experiment, we compare our algorithm to the
non-incremental DAE in generative criteria. Specifi-
cally, we tested on the bg-img-1M dataset and show
the online reconstruction error and the number of fea-
tures over training time in Figure 3(a) and 3(b), re-
spectively. We report the results with 400, 500, 600
and 800 initial features for both incremental and non-
incremental learning. In addition, we report the re-
sult of non-incremental learning with 1200 features,
which is approximately the optimal feature set size
obtained from incremental feature learning. In Fig-
ure 3(b) and 3(c), we observe that the incremental
feature learning algorithm could find an approximately
optimal number of features regardless of its initial fea-
ture set size, and it led to the smaller or comparable
reconstruction error compared to its non-incremental
counterpart.

5.3 Evaluation on discriminative criteria

To evaluate discriminative performance of our algo-
rithm, we ran experiments using a hybrid objective
function, a combination of generative and discrim-
inative objective functions (with λ = 0.2). First,
we compare the classification performance of the in-
cremental feature learning algorithm with that of its
non-incremental counterpart on bg-img-1M dataset.
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Figure 3: (a,d) Test (online) reconstruction error and classification error (on the bg-img-1M dataset) of in-
cremental (IncMDAE) and non-incremental DAE. (b,e) The number of features for incremental learning with
generative and hybrid criteria. (c,f) Test reconstruction error and classification error at convergence. The
numbers in parentheses refer to the initial number of features.

Similar to section 5.2, we report the classification er-
rors in Figure 3(d) using 400, 500, 600 and 800 ini-
tial features for both incremental and non-incremental
algorithms and additionally plot the result of non-
incremental learning with 1000 features. Overall, as
Figure 3(d), 3(e) and 3(f) indicate, we observed trends
similar to the results using the generative criteria. Fig-
ure 3(d) and 3(f) shows that incremental DAEs find an
approximately optimal number of features (regardless
of the initial feature set sizes) while achieving con-
sistently lower classification errors compared to those
from non-incremental counterparts.

For more extensive evaluation, we tested the incremen-
tal feature learning algorithms with merging (IncM-
DAE) and without merging (IncDAE) on the extended
datasets. In addition, we evaluated (non-incremental)
1-layer DAE, linear SVM, and online multiclass LP-
Boost [30]. All algorithms were tested in an online
manner (i.e., evaluating on the next mini-batch of ex-
amples that had not previously been seen during train-
ing). As Table 1 shows, both the 1-layer incremental
feature learning algorithm with merging (IncMDAEl1)
and without merging (IncDAEl1) outperformed linear
SVM, DAEl1 and online multiclass LPBoost. The re-
sults suggest that, although it is similar to boosting,
our method can effectively use both unlabeled data
and labeled data (via pre-training followed by super-

vised/hybrid fine-tuning). In addition, IncMDAE con-
sistently achieved classification performance similar to
or better than IncDAE, suggesting that the merging
process is effective at maintaining the balance between
specificity and robustness by learning less redundant
features.

We also evaluated deep network extensions of our al-
gorithm and compared against the deep belief net-
work (referred to as “DBNl1−3”) and the stacked de-
noising autoencoder (referred to as “SDAEl1−3”) that
both contained 3 layers. For both the DBN and the
SDAE, the number of hidden units for each layer was
selected out of {500, 1000, 2000} via cross-validation.
As shown in Table 1, the deep incremental networks
(IncMDAEl1,2 and IncMDAEl1−3) performed favor-
ably compared to these standard deep networks. The
results suggest that our incremental DAE can be a
useful building block in learning deep networks.

5.4 Evaluating on non-stationary
distributions

One challenge in online learning is to fit the model
to the data whose distribution fluctuates over time.
In this section, we perform an experiment to see how
well the incremental learning algorithm can adapt to
the online stream of data as compared to its non-
incremental counterpart.
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Dataset rot-bg-img-1M rot-1M bg-rand-1M bg-img-1M rect-img-1M

linear SVM 55.17 ± 0.45 24.02 ± 0.33 19.17 ± 0.33 29.24 ± 0.46 33.18 ± 0.38

DAEl1 38.51 ± 0.45 10.23 ± 0.35 7.94 ± 0.24 7.65 ± 0.30 24.27 ± 0.31
OMCLPBoost 42.11 ± 0.04 12.02 ± 0.02 7.22 ± 0.03 10.29 ± 0.09 29.51 ± 0.13

DBNl1−3 30.01 ± 0.31 8.00 ± 0.31 6.27 ± 0.35 9.20 ± 0.19 16.36 ± 0.31

SDAEl1−3 30.13 ± 0.25 7.76 ± 0.35 6.22 ± 0.33 7.56 ± 0.31 13.20 ± 0.30

IncDAEl1 35.50 ± 0.41 10.28 ± 0.23 7.00 ± 0.10 7.20 ± 0.17 18.50 ± 0.34

IncMDAEl1 35.41 ± 0.49 8.20 ± 0.38 6.90 ± 0.33 6.37 ± 0.28 14.15 ± 0.32

IncMDAEl1,2 29.04 ± 0.45 6.60 ± 0.33 6.14 ± 0.30 6.20 ± 0.31 9.28 ± 0.44

IncMDAEl1−3 27.60 ± 0.40 6.80 ± 0.44 6.30 ± 0.26 5.24 ± 0.34 9.89 ± 0.54

Table 1: Test (online) error for classification tasks on large-scale datasets. The best performing methods for each
dataset (within the standard errors) are shown in bold.
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Figure 4: Effects of non-stationary data distribution on bg-img-1M dataset. (a) An example non-stationary
distribution (of class labels) generated from a Gaussian Process. (b) Average test (online) classification error.
(c) Standard deviation of the test (online) classification error.

We generated training data using bg-img-1M dataset
whose label distribution changes over time; the ratio
of labels at time t was randomly assigned for each class

via ratiok(t) = exp{ak(t)}∑K
j=1 exp{aj(t)} , k = 1, ...,K, where

ak(t) is a random curve generated by Gaussian process
(an example class distribution is shown in Figure 4(a)).
We report results averaged over 5 random trials.

Figure 4 shows the mean and the standard deviation
of test classification error on the fluctuating bg-img-
1M dataset. Our incremental learning model shows a
significantly lower mean classification error. Further-
more, in Figure 4(c), the low standard deviations of
errors achieved by the IncMDAE models imply that
our algorithm is more robust and can rapidly adapt to
the fluctuating distribution. This result suggests that
the incremental feature learning could be an effective
training method for online learning with challenging
non-stationary data distributions.

6 Conclusion

In this paper, we proposed an incremental feature
learning algorithm based on denoising autoencoders.
The proposed algorithm can learn good feature rep-
resentations from large datasets by incrementing and
merging features. Further, this algorithm can be used

to avoid expensive cross-validation in selecting the
number of features in large datasets. Our experimen-
tal results suggest that (1) incremental feature learning
provides an efficient way to learn from large datasets
by starting with a small set of initial features, and
automatically adjusting the number of features as the
training proceeds; (2) the proposed algorithm leads
to comparable or lower reconstruction and classifica-
tion errors than its non-incremental counterparts; (3)
the incremental learning algorithm outperforms other
state-of-the-art methods on large online datasets; and
(4) incremental feature learning is more adaptive and
robust to highly non-stationary input distributions.
We believe our approach holds promise in develop-
ing scalable feature learning algorithms for large-scale
datasets.
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1 Discussion of the Update Rules

We introduce the update rules that were considered in
this work and discuss the robustness of each update
rule in relation to its hyperparameters.

1.1 Update rule based on heuristics

Roughly speaking, this update rule is based on the
following idea: increase the number of feature incre-
ments when the performance improves (i.e., the model
is not at optimum), and decrease the number of feature
increments when there is minimal or no performance
improvement (i.e., the model has converged). From
this intuition, we consider the following update rule
(referred to as “update rule I”):

∆N t+1 =


∆N t + 1,

b∆N t/2c ,
∆N t,

et
et−1

< (1− ε1)
et

et−1
> (1− ε2)

otherwise

, (1)

∆Mt = dγ∆N te , (2)

where ∆Nt is the number of feature increments, ∆Mt

is the number of merged features, and et is the objec-
tive function value for recent 10,000 training examples
at time t.

We have four hyperparameters ε1, ε2, γ,∆N0 in this
rule. It is quite evident from equation (1) that ε1
and ε2 adjust the pace of feature increments, where we
accelerate by decreasing ε1 or increasing ε2, and vice
versa. Further, we can control the rate of convergence
by tuning γ and ∆N0. Ideally, these hyperparameters
should be determined through cross-validation, which
makes the algorithm quite complicated. However, we
found through several controlled experiments that the
proposed update rule is fairly insensitive to the selec-
tion of hyperparameters. For example, given the rea-
sonable value of γ = 0.5 and ∆N0 = 20, the incremen-
tal feature learning with update rule I resulted in com-
parable classification accuracies for ε1 ∈ [0.005, 0.05]

Algorithm 1 Update rule II

Given a batch of data (e.g., 10, 000 examples),
repeat

Add k new features and compute the validation
performance.

until the validation performance decreases
Merge ∆Mt=dγ∆N te features.

and ε2 ∈ [0, 0.02] (e.g., within 1% difference on bg-
img-1M dataset).

1.2 Alternative update rules

Although the update rule I has shown robustness to its
hyperparameters, the learning algorithm with many
hyperparameters is generally difficult to use since it
requires additional efforts in finding their correct val-
ues. In this section, we consider two alternatives that
involve fewer hyperparameters.

Before we discuss about the update rules, we first de-
scribe how we performed validation in online setting.
At each iteration, we take the current batch of on-
line data for training and the next two batches of data
for validation and testing, where the first one is used
for validation, and the second one is used for testing.
Specifically, after updating the parameters with the
current “training” batch, then these three batches are
shifted by one (i.e., in the next iteration, “testing”
batch becomes “validation” batch, “validation” batch
becomes “training” batch, and we fetch the next batch
for “testing”). In other words, each batch is used first
for testing, then for validation, and finally for training.
This ensures that our training and validation proce-
dure does not give any unfair advantage to the online
testing performance.

The first approach is to select ∆N t that minimizes the
objective function value (i.e., classification error) given
a current data batch. For example, at each iteration,
we keep adding k features until the validation classi-
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Algorithm 2 Update rule III

Given a batch of data, add one feature and compute
the validation performance.
if the validation performance decreases then

Remove the newly added feature.
end if

fication accuracy begins to decrease. We denote this
method as an update rule II. We also evaluated with
γ = 0.5 for the update rule II.

The update rule III is motivated by the forward stage-
wise additive models [2, 3], which shares a similar fla-
vor with AdaBoost [1]. In update rule III, we train
with a single new feature at each iteration and deter-
mine whether to keep the feature based on the perfor-
mance without merging process.

In our experiments, the update rules II and III showed
similar classification performance to that of the update
rule I (e.g., classification errors within 1% difference for
bg-img-1M dataset), which assures that the proposed
incremental feature learning algorithm is fairly robust
to several variants of update rules.

1.3 Update rule based on information
criteria

Finally, we introduce an update rule using an approx-
imate Bayesian method (e.g., regularizing with Akaike
Information Criterion (AIC) or Bayesian Information
Criterion (BIC)) that penalize on the model complex-
ity. To be more specific, we describe the updating
procedures as follows:

1. At each batch of online data, propose q differ-
ent models for the number of feature increments
{(∆N,∆M)i}qi=1 and initialize them.

2. Evaluate the objective function penalized by ei-
ther of the following information criterion penalty
for each proposed model (described in more detail
below):

AIC : Lhybrid(x,y) +M (3)

BIC : Lhybrid(x,y) +
1

2
M logN, (4)

where M is the number of adjustable parameters
(proportional to the number of features) and N is
the number of training examples in each batch.

3. Accept the model with the best validation perfor-
mance.

We used q = 3 and set {(∆N,∆M)i}qi=1 as constant
values for our experiments. In step 2, we adaptively
switch between the AIC and BIC penalties to acceler-

(a) (b)

Figure 1: Visualizations of the learned filters using (a)
IncMDAE and (b) DAE on bg-rand-1M dataset

ate the convergence based on the following idea: de-
pending on our decision in the previous iteration, if
we have chosen to increase the number of features, we
select the AIC penalty, which is weaker than the BIC
penalty since it doesn’t depend on the number of train-
ing examples; in a similar manner, we select the BIC
penalty if we have picked the model that decreases the
number of features in the previous step.

As seen from the Figure 3 in the main paper, the incre-
mental learning algorithm with this update rule con-
verges to a similar number of features regardless of
the initial number of features. Moreover, they also re-
sult in similar classification accuracies within 1% dif-
ference.

2 Visualization of the Filters

For qualitative evaluation, we visualize sets of fil-
ters learned using incremental and non-incremental
DAEs on bg-rand-1M datasets. As Figure 1(a) shows,
most of the filters learned using IncMDAE captured
meaningful “pen-stroke” bases, whereas the filters
learned using the baseline DAE are typically noisy
(Figure 1(b)). They are similar to the background
patterns of the training examples and contain only a
few pen-stroke bases. We believe that these visualized
filters partially reveal the reason our model achieved
less significant improvement in incremental learning
over the non-incremental counterpart in the genera-
tive performance measure (reconstruction error) than
in the discriminative criteria (classification error). In
fact, the reconstruction error can be easily reduced by
simply adding more hidden units in the DAE (i.e., by
learning more background patterns), as suggested by
Figure 1(b). However, our incremental feature learn-
ing method learns new features from the most difficult
subset of the data; in classification tasks, this sub-
set consists of misclassified examples. Therefore, the
new features learned from these difficult examples help
learning a better decision boundary, and our model can
outperform the baseline model in classification.
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Extended datasets MNIST variation datasets

Foreground digits randomly sampled from MNIST-
8M (with deformations)

selected from MNIST

Background images randomly sampled from a subset of
2,000 images from CIFAR-10

randomly sampled from a set of 20
images downloaded from the inter-
net

Foreground rectan-
gles (rect-img-1M)

randomly extracted (with random
widths and heights) from a disjoint
subset of another 2,000 images from
CIFAR-10

one of the same 20 images down-
loaded from the internet except the
one used for background

Table 1: Comparison between extended and original dataset

Model DBN-3 SAE-3 SDAE-3
dataset Ext. Orig. Ref. [6] Ext. Orig. Ref. [6] Ext. Orig. Ref. [6]

rot-bg-img 60.90 48.19 47.39 66.47 52.97 51.93 61.09 46.12 44.49
rot 25.29 10.81 10.30 29.08 11.06 10.30 27.02 10.66 10.29

bg-rand 15.51 7.30 6.73 20.11 13.19 11.28 17.07 10.39 10.38
bg-img 24.97 18.24 16.31 32.20 24.07 23.00 24.07 17.14 16.68
rect-img 33.25 23.16 22.50 34.16 25.11 24.05 32.07 21.68 21.59

Table 2: Classification errors of baseline methods on several datasets

* Extended (Ext.): The performance of the models implemented on the datasets with 10,000 training examples and 50,000

test examples (same number of examples in MNIST variation dataset) sampled from our extended datasets.

* Original (Orig.): The performance of the models implemented on MNIST variation and rect-img datasets.

* Reference (Ref.): The performance of the models reported in [6] on MNIST variation and rect-img datasets.

3 Extended MNIST Variation
Datasets

The large-scale dataset used in the paper was extended
from the original benchmark1 introduced in [6] based
on a similar process. However, the details are not iden-
tical to the previously published datasets. Here, we
clarify the differences in Table 1.

To generate bg-img-1M, bg-rand-1M, rot-1M and rot-
bg-img-1M datasets, we randomly selected 1 million
digit images from MNIST-8M dataset [5] and ap-
plied corresponding variations; for bg-img-1M and rot-
bg-img-1M, we randomly selected 2,000 images from
CIFAR-10 dataset [4] and set them as a background;
for bg-rand-1M, we used uniform random noise as a
background; for rot-1M and rot-bg-img-1M, each digit
was rotated at a random angle.

For rect-img-1M, we generated 1 million rectangular
shapes with random width and height on top of ran-
domly selected 2,000 images (background) and then
filled the rectangular shapes with another randomly
selected 2,000 images (foreground). All the foreground
and background images were from CIFAR-10 dataset.

As Table 1 suggests, the extended MNIST variation
dataset involves more diverse background images and
deformed digits. To assess the datasets’ difficulty, we
test DBN-3, SAE-3 and SDAE-3 on both the original

1http://www.iro.umontreal.ca/~lisa/twiki/bin/
view.cgi/Public/MnistVariations

MNIST variation benchmark and the extend dataset
with the limited number of training and testing exam-
ples as the original dataset (i.e., 10,000 for training and
50,000 for testing). The summary results are shown in
Table 2. Our implementations of the existing baseline
models are comparable to [6] with a small performance
difference. Moreover, given the same amount of train-
ing and testing data, we can see that the extended
dataset is more challenging than the original bench-
mark datasets.
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