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Abstract

A great deal of research has focused on al-
gorithms for learning features from unla-
beled data. Indeed, much progress has been
made on benchmark datasets like NORB and
CIFAR by employing increasingly complex
unsupervised learning algorithms and deep
models. In this paper, however, we show that
several simple factors, such as the number of
hidden nodes in the model, may be more im-
portant to achieving high performance than
the learning algorithm or the depth of the
model. Specifically, we will apply several off-
the-shelf feature learning algorithms (sparse
auto-encoders, sparse RBMs, K-means clus-
tering, and Gaussian mixtures) to CIFAR,
NORB, and STL datasets using only single-
layer networks. We then present a detailed
analysis of the effect of changes in the model
setup: the receptive field size, number of hid-
den nodes (features), the step-size (“stride”)
between extracted features, and the effect
of whitening. Our results show that large
numbers of hidden nodes and dense fea-
ture extraction are critical to achieving high
performance—so critical, in fact, that when
these parameters are pushed to their limits,
we achieve state-of-the-art performance on
both CIFAR-10 and NORB using only a sin-
gle layer of features. More surprisingly, our
best performance is based on K-means clus-
tering, which is extremely fast, has no hyper-
parameters to tune beyond the model struc-
ture itself, and is very easy to implement. De-
spite the simplicity of our system, we achieve
accuracy beyond all previously published re-
sults on the CIFAR-10 and NORB datasets
(79.6% and 97.2% respectively).
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1 Introduction
Much recent work in machine learning has focused on
learning good feature representations from unlabeled
input data for higher-level tasks such as classification.
Current solutions typically learn multi-level represen-
tations by greedily “pre-training” several layers of fea-
tures, one layer at a time, using an unsupervised learn-
ing algorithm [11, 8, 18]. For each of these layers a
number of design parameters are chosen: the number
of features to learn, the locations where these features
will be computed, and how to encode the inputs and
outputs of the system. In this paper we study the ef-
fect of these choices on single-layer networks trained by
several feature learning methods. Our results demon-
strate that several key ingredients, orthogonal to the
learning algorithm itself, can have a large impact on
performance: whitening, large numbers of features,
and dense feature extraction can all be major advan-
tages. Even with very simple algorithms and a sin-
gle layer of features, it is possible to achieve state-of-
the-art performance by focusing effort on these choices
rather than on the learning system itself.

A major drawback of many feature learning systems
is their complexity and expense. In addition, many
algorithms require careful selection of multiple hyper-
parameters like learning rates, momentum, sparsity
penalties, weight decay, and so on that must be cho-
sen through cross-validation, thus increasing running
times dramatically. Though it is true that recently in-
troduced algorithms have consistently shown improve-
ments on benchmark datasets like NORB [16] and
CIFAR-10 [13], there are several other factors that af-
fect the final performance of a feature learning sys-
tem. Specifically, there are many “meta-parameters”
defining the network architecture, such as the recep-
tive field size and number of hidden nodes (features).
In practice, these parameters are often determined by
computational constraints. For instance, we might use
the largest number of features possible considering the
running time of the algorithm. In this paper, how-
ever, we pursue an alternative strategy: we employ
very simple learning algorithms and then more care-
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fully choose the network parameters in search of higher
performance. If (as is often the case) larger repre-
sentations perform better, then we can leverage the
speed and simplicity of these learning algorithms to
use larger representations.

To this end, we will begin in Section 3 by describing
a simple feature learning framework that incorporates
an unsupervised learning algorithm as a “black box”
module within. For this “black box”, we have im-
plemented several off-the-shelf unsupervised learning
algorithms: sparse auto-encoders, sparse RBMs, K-
means clustering, and Gaussian mixture models. We
then analyze the performance impact of several dif-
ferent elements in the feature learning framework, in-
cluding: (i) whitening, which is a common pre-process
in deep learning work, (ii) number of features trained,
(iii) step-size (stride) between extracted features, and
(iv) receptive field size.

It will turn out that whitening, large numbers of fea-
tures, and small stride lead to uniformly better perfor-
mance regardless of the choice of unsupervised learning
algorithm. On the one hand, these results are some-
what unsurprising. For instance, it is widely held that
highly over-complete feature representations tend to
give better performance than smaller-sized represen-
tations [32], and similarly with small strides between
features [21]. However, the main contribution of our
work is demonstrating that these considerations may,
in fact, be critical to the success of feature learning
algorithms—potentially more important even than the
choice of unsupervised learning algorithm. Indeed, it
will be shown that when we push these parameters to
their limits that we can achieve state-of-the-art perfor-
mance, outperforming many other more complex algo-
rithms on the same task. Quite surprisingly, our best
results are achieved using K-means clustering, an algo-
rithm that has been used extensively in computer vi-
sion, but that has not been widely adopted for “deep”
feature learning. Specifically, we achieve the test accu-
racies of 79.6% on CIFAR-10 and 97.2% on NORB—
better than all previously published results.

We will start by reviewing related work on feature
learning, then move on to describe a general feature
learning framework that we will use for evaluation in
Section 3. We then present experimental analysis and
results on CIFAR-10 [13] as well as NORB [16] in Sec-
tion 4.

2 Related work

Since the introduction of unsupervised pre-training [8],
many new schemes for stacking layers of features
to build “deep” representations have been proposed.
Most have focused on creating new training algo-
rithms to build single-layer models that are composed
to build deeper structures. Among the algorithms

considered in the literature are sparse-coding [22, 17,
32], RBMs [8, 13], sparse RBMs [18], sparse auto-
encoders [7, 25], denoising auto-encoders [30], “fac-
tored” [24] and mean-covariance [23] RBMs, as well as
many others [19, 33]. Thus, amongst the many com-
ponents of feature learning architectures, the unsuper-
vised learning module appears to be the most heavily
scrutinized.

Some work, however, has considered the impact of
other choices in these feature learning systems, es-
pecially the choice of network architecture. Jarret
et al. [11], for instance, have considered the impact
of changes to the “pooling” strategies frequently em-
ployed between layers of features, as well as different
forms of normalization and rectification between lay-
ers. Similarly, Boureau et al. have considered the im-
pact of coding strategies and different types of pooling,
both in practice [3] and in theory [4]. Our work fol-
lows in this vein, but considers instead the structure of
single-layer networks—before pooling, and orthogonal
to the choice of algorithm or coding scheme.

Many common threads from the computer vision lit-
erature also relate to our work and to feature learning
more broadly. For instance, we will use the K-means
clustering algorithm as an alternative unsupervised
learning module. K-means has been used less widely
in “deep learning” work but has enjoyed wide adoption
in computer vision for building codebooks of “visual
words” [5, 6, 15, 31], which are used to define higher-
level image features. This method has also been ap-
plied recursively to build multiple layers of features [1].
The effects of pooling and choice of activation func-
tion or coding scheme have similarly been studied for
these models [15, 28, 21]. Van Gemert et al., for in-
stance, demonstrate that “soft” activation functions
(“kernels”) tend to work better than the hard assign-
ment typically used with visual words models.

This paper will compare results along some of the same
axes as these prior works (e.g., we will consider both
’hard’ and ’soft’ activation functions), but our conclu-
sions differ somewhat: While we confirm that some
feature-learning schemes are better than others, we
also show that the differences can often be outweighed
by other factors, such as the number of features. Thus,
even though more complex learning schemes may im-
prove performance slightly, these advantages can be
overcome by fast, simple learning algorithms that are
able to handle larger networks.

3 Unsupervised feature learning
framework

In this section, we describe a common framework used
for feature learning. For concreteness, we will focus
on the application of these algorithms to learning fea-
tures from images, though our approach is applicable
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to other forms of data as well. The framework we use
involves several stages and is similar to those employed
in computer vision [5, 15, 31, 28, 1], as well as other
feature learning work [16, 19, 3].

At a high-level, our system performs the following
steps to learn a feature representation:

1. Extract random patches from unlabeled training
images.

2. Apply a pre-processing stage to the patches.

3. Learn a feature-mapping using an unsupervised
learning algorithm.

Given the learned feature mapping and a set of labeled
training images we can then perform feature extraction
and classification:

1. Extract features from equally spaced sub-patches
covering the input image.

2. Pool features together over regions of the input
image to reduce the number of feature values.

3. Train a linear classifier to predict the labels given
the feature vectors.

We will now describe the components of this pipeline
and its parameters in more detail.

3.1 Feature Learning

As mentioned above, the system begins by extract-
ing random sub-patches from unlabeled input images.
Each patch has dimension w-by-w and has d channels,1

with w referred to as the “receptive field size”. Each
w-by-w patch can be represented as a vector in RN of
pixel intensity values, with N = w · w · d. We then
construct a dataset of m randomly sampled patches,
X = {x(1), ..., x(m)}, where x(i) ∈ RN . Given this
dataset, we apply the pre-processing and unsupervised
learning steps.

3.1.1 Pre-processing

It is common practice to perform several simple nor-
malization steps before attempting to generate fea-
tures from data. In this work, we assume that every
patch x(i) is normalized by subtracting the mean and
dividing by the standard deviation of its elements. For
visual data, this corresponds to local brightness and
contrast normalization.

After normalizing each input vector, the entire dataset
X may optionally be whitened [10]. While this process

1For example, if the input image is represented in
(R,G,B) colors, then it has three channels.

is commonly used in deep learning work (e.g., [24]) it is
less frequently employed in computer vision. We will
present experimental results obtained both with and
without whitening to determine whether this compo-
nent is generally necessary.

3.1.2 Unsupervised learning

After pre-processing, an unsupervised learning algo-
rithm is used to discover features from the unlabeled
data. For our purposes, we will view an unsupervised
learning algorithm as a “black box” that takes the
dataset X and outputs a function f : RN → RK that
maps an input vector x(i) to a new feature vector of
K features, where K is a parameter of the algorithm.
We denote the kth feature as fk. In this work, we will
use several different unsupervised learning methods2 in
this role: (i) sparse auto-encoders, (ii) sparse RBMs,
(iii) K-means clustering, and (iv) Gaussian mixtures.
We briefly summarize how these algorithms are em-
ployed in our system.

1. Sparse auto-encoder: We train an auto-
encoder with K hidden nodes using back-
propagation to minimize squared reconstruction
error with an additional penalty term that en-
courages the units to maintain a low average ac-
tivation [18, 7]. The algorithm outputs weights
W ∈ RK×N and biases b ∈ RK such that the
feature mapping f is defined by:

f(x) = g(Wx + b), (1)

where g(z) = 1/(1 + exp(−z)) is the logistic
sigmoid function, applied component-wise to the
vector z.

There are several hyper-parameters used by the
training algorithm (e.g., weight decay, and target
activation). These parameters were chosen using
cross-validation for each choice of the receptive
field size, w.3

2. Sparse restricted Boltzmann machine: The
restricted Boltzmann machine (RBM) is an undi-
rected graphical model with K binary hidden
variables. Sparse RBMs can be trained using
the contrastive divergence approximation [9] with
the same type of sparsity penalty as the auto-
encoders. The training also produces weights

2These algorithms were chosen since they can scale up
straight-forwardly to the problem sizes considered in our
experiments.

3Ideally, we would perform this cross-validation for ev-
ery choice of parameters, but the expense is prohibitive for
the number of experiments we perform here. This is a ma-
jor advantage of the K-means algorithm, which requires no
such procedure.
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W and biases b, and we can use the same fea-
ture mapping as the auto-encoder (as in Equa-
tion (1))—thus, these algorithms differ primarily
in their training method. Also as above, the nec-
essary hyper-parameters are determined by cross-
validation for each receptive field size.

3. K-means clustering: We apply K-means clus-
tering to learn K centroids c(k) from the input
data. Given the learned centroids c(k), we con-
sider two choices for the feature mapping f . The
first is the standard 1-of-K, hard-assignment cod-
ing scheme:

fk(x) =

{
1 if k = arg minj ||c(j) − x||22
0 otherwise.

(2)

This is a (maximally) sparse representation that
has been used frequently in computer vision [5].
It has been noted, however, that this may be too
terse [28]. Thus our second choice of feature map-
ping is a non-linear mapping that attempts to be
“softer” than the above encoding while also keep-
ing some sparsity:

fk(x) = max {0, µ(z)− zk} (3)

where zk = ||x−c(k)||2 and µ(z) is the mean of the
elements of z. This activation function outputs
0 for any feature fk where the distance to the
centroid c(k) is “above average”. In practice, this
means that roughly half of the features will be set
to 0. This can be thought of as a very simple form
of “competition” between features.

We refer to these in our results as K-means
(hard) and K-means (triangle) respectively.

4. Gaussian mixtures: Gaussian mixture models
(GMMs) represent the density of input data as a
mixture of K Gaussian distributions and is widely
used for clustering. GMMs can be trained using
the Expectation-Maximization (EM) algorithm as
in [1]. We run a single iteration of K-means to ini-
tialize the mixture model.4 The feature mapping
f maps each input to the posterior membership
probabilities:

fk(x) =
1

(2π)d/2|Σk|1/2
·

exp
(
−1

2
(x− c(k))>Σ−1

k (x− c(k))
)

where Σk is a diagonal covariance and φk are the
cluster prior probabilities learned by the EM al-
gorithm.

4When K-means is run to convergence we have found
that the mixture model does not learn features substan-
tially different from the K-means result.

3.2 Feature Extraction and Classification

The above steps, for a particular choice of unsuper-
vised learning algorithm, yield a function f that trans-
forms an input patch x ∈ RN to a new representation
y = f(x) ∈ RK . Using this feature extractor, we now
apply it to our (labeled) training images for classifica-
tion.

3.2.1 Convolutional extraction

Using the learned feature extractor f : RN → RK ,
given any w-by-w image patch, we can now compute
a representation y ∈ RK for that patch. We can thus
define a (single layer) representation of the entire im-
age by applying the function f to many sub-patches.
Specifically, given an image of n-by-n pixels (with d
channels), we define a (n − w + 1)-by-(n − w + 1)
representation (with K channels), by computing the
representation y for each w-by-w “subpatch” of the
input image. More formally, we will let y(ij) be the K-
dimensional representation extracted from location i, j
of the input image. For computational efficiency, we
may also “step” our w-by-w feature extractor across
the image with some step-size (or “stride”) s greater
than 1. This is illustrated in Figure 1.

3.2.2 Classification

Before classification, it is standard practice to re-
duce the dimensionality of the image representation
by pooling. For a stride of s = 1, our feature mapping
produces a (n−w+1)-by-(n−w+1)-by-K representa-
tion. We can reduce this by summing up over local re-
gions of the y(ij)’s extracted as above. This procedure
is commonly used (in many variations) in computer
vision [15] as well as deep feature learning [11].

In our system, we use a very simple form of pooling.
Specifically, we split the y(ij)’s into four equal-sized
quadrants, and compute the sum of the y(ij)’s in each.
This yields a reduced (K-dimensional) representation
of each quadrant, for a total of 4K features that we
use for classification.

Given these pooled (4K-dimensional) feature vectors
for each training image and a label, we apply standard
linear classification algorithms. In our experiments we
use (L2) SVM classification. The regularization pa-
rameter is determined by cross-validation.

4 Experiments and Analysis

The above framework includes a number of parameters
that can be changed: (i) whether to use whitening
or not, (ii) the number of features K, (iii) the stride
s, and (iv) receptive field size w. In this section, we
present our experimental results on the impact of these
parameters on performance. First, we will evaluate
the effects of these parameters using cross-validation
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Figure 1: Illustration showing feature extraction using a w-by-w receptive field and stride s. We first extract
w-by-w patches separated by s pixels each, then map them to K-dimensional feature vectors to form a new
image representation. These vectors are then pooled over 4 quadrants of the image to form a feature vector for
classification. (For clarity we have drawn the leftmost figure with a stride greater than w, but in practice the
stride is almost always smaller than w.)

on the CIFAR-10 training set. We will then report the
results achieved on both CIFAR-10 and NORB test
sets using each unsupervised learning algorithm and
the parameter settings that our analysis suggests is
best overall (i.e., in our final results, we use the same
settings for all algorithms).5

Our basic testing procedure is as follows. For each un-
supervised learning algorithm in Section 3.1.2, we will
train a single-layer of features using either whitened
data or raw data and a choice of the parameters K, s,
and w. We then train a linear classifier as described
in Section 3.2.2, then test the classifier on a holdout
set (for our main analysis) or the test set (for our final
results).

4.1 Visualization

Before we present classification results, we first show
visualizations of the learned feature representations.
The bases (or centroids) learned by sparse autoen-
coders, sparse RBMs, K-means, and Gaussian mix-
ture models are shown in Figure 2 for 8 pixel recep-
tive fields. It is well-known that autoencoders and
RBMs yield localized filters that resemble Gabor fil-
ters and we can see this in our results both when us-
ing whitened data and, to a lesser extent, raw data.
However, these visualizations also show that similar
results can be achieved using clustering algorithms.
In particular, while clustering raw data leads to cen-
troids consistent with those in [6] and [29], we see that
clustering whitened data yields sharply localized filters
that are very similar to those learned by the other al-
gorithms. Thus, it appears that such features are easy
to learn with clustering methods (without any param-
eter tweaking) as a result of whitening.

5To clarify: The parameters used in our final evaluation
are those that achieved the best (average) cross-validation
performance across all models: whitening, 1 pixel stride, 6
pixel receptive field, and 1600 features.
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Figure 3: Effect of whitening and number of bases (or
centroids).

4.2 Effect of whitening

We now move on to our characterization of perfor-
mance on various axes of parameters, starting with the
effect of whitening6, which visibly changes the learned
bases (or centroids) as seen in Figure 2. Figure 3 shows
the performance for all of our algorithms as a function
of the number of features (which we will discuss in the
next section) both with and without whitening. These
experiments used a stride of 1 pixel and 6 pixel recep-
tive field.

For sparse autoencoders and RBMs, the effect of
whitening is somewhat ambiguous. When using only
100 features, there is a significant benefit of whiten-
ing for sparse RBMs, but this advantage disappears
with larger numbers of features. For the clustering
algorithms, however, we see that whitening is a cru-
cial pre-process since the clustering algorithms cannot
handle the correlations in the data.7

6In our experiments, we use Zero-phase whitening [2]
7Our GMM implementation uses diagonal covariances
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(a) K-means (with and without whitening) (b) GMM (with and without whitening)

(c) Sparse Autoencoder (with and without whitening) (d) Sparse RBM (with and without whitening)

Figure 2: Randomly selected bases (or centroids) trained on CIFAR-10 images using different learning algorithms.
Best viewed in color.
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Clustering algorithms have been applied successfully
to raw pixel inputs in the past [6, 29] but these appli-
cations did not use whitened input data. Our results
suggest that improved performance might be obtained
by incorporating whitening.

4.3 Number of features

Our experiments considered feature representations
with 100, 200, 400, 800, 1200, and 1600 learned fea-
tures.8 Figure 3 clearly shows the effect of increasing

and K-means uses Euclidean distance.
8We found that training Gaussian mixture models with

more than 800 components was often difficult and always
extremely slow. Thus we only ran this algorithm with up
to 800 components.
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Figure 5: Effect of receptive field size.

the number of learned features: all algorithms gen-
erally achieved higher performance by learning more
features as expected.

Surprisingly, K-means clustering coupled with the “tri-
angle” activation function and whitening achieves the
highest performance. This is particularly notable since
K-means requires no tuning whatsoever, unlike the
sparse auto-encoder and sparse RBMs which require
us to choose several hyper-parameters for best results.

4.4 Effect of stride

The “stride” s used in our framework is the spacing
between patches where feature values will be extracted
(see Figure 1). Frequently, learning systems will use
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a stride s > 1 because computing the feature map-
ping is very expensive. For instance, sparse coding
requires us to solve an optimization problem for each
such patch, which may be prohibitive for a stride of 1.
It is reasonable to ask, then, how much this compro-
mise costs in terms of performance for the algorithms
we consider (which all have the property that their
feature mapping can be computed extremely quickly).
In this experiment, we fixed the number of features
(1600) and receptive field size (6 pixels), and vary the
stride over 1, 2, 4, and 8 pixels. The results are shown
in Figure 4. (We do not report results with GMMs,
since training models of this size was impractical.)

The plot shows a clear downward trend in performance
with increasing step size as expected. However, the
magnitude of the change is striking: for even a stride
of s = 2, we suffer a loss of 3% or more accuracy,
and for s = 4 we lose at least 5%. These differences
can be significant in comparison to the choice of algo-
rithm. For instance, a sparse RBM with stride of 2
performed comparably to the simple hard-assignment
K-means scheme using a stride of 1—one of the sim-
plest possible algorithms we could have chosen for un-
supervised learning (and certainly much simpler than
a sparse RBM).

4.5 Effect of receptive field size

Finally, we also evaluated the effect of receptive field
size. Given a scalable algorithm, it’s possible that
leveraging it to learn larger receptive fields could al-
low us to recognize more complex features that cover
a larger region of the image. On the other hand, this
increases the dimensionality of the space that the al-
gorithm must cover and may require us to learn more
features or use more data. As a result, given the same
amount of data and using the same number of features,
it is not clear whether this is a worthwhile investment.
In this experiment, we tested receptive field sizes of
6, 8, and 12 pixels. For other parameters, we used
whitening, stride of 1 pixel, and 1600 bases (or cen-
troids).

The summary results are shown in Figure 5. Overall,
the 6 pixel receptive field worked best. Meanwhile, 12
pixel receptive fields were similar or worse than 6 or
8 pixels. Thus, if we have computational resource to
spare, our results suggest that it is better to spend it on
reducing stride and expanding the number of learned
features.

Unfortunately, unlike for the other parameters, the re-
ceptive field size does appear to require cross valida-
tion in order to make an informed choice. Our ex-
periments do suggest, though, that even very small
receptive fields can work well (with pooling) and are
worth considering. This is especially important if re-
ducing the input size allows us to use a smaller stride

Table 1: Test recognition accuracy on CIFAR-10
Algorithm Accuracy
Raw pixels (reported in [13]) 37.3%
3-Way Factored RBM (3 layers) [24] 65.3%
Mean-covariance RBM (3 layers) [23] 71.0%
Improved Local Coord. Coding [33] 74.5%
Conv. Deep Belief Net (2 layers) [14] 78.9%
Sparse auto-encoder 73.4%
Sparse RBM 72.4%
K-means (Hard) 68.6%
K-means (Triangle) 77.9%
K-means (Triangle, 4000 features) 79.6%

Table 2: Test recognition accuracy (and error) for
NORB (normalized-uniform)

Algorithm Accuracy (error)
Conv. Neural Network [16] 93.4% (6.6%)
Deep Boltzmann Machine [26] 92.8% (7.2%)
Deep Belief Network [20] 95.0% (5.0%)
(Best result of [11]) 94.4% (5.6%)
Deep neural network [27] 97.13% (2.87%)
Sparse auto-encoder 96.9% (3.1%)
Sparse RBM 96.2% (3.8%)
K-means (Hard) 96.9% (3.1%)
K-means (Triangle) 97.0% (3.0%)
K-means (Triangle, 4000 features) 97.21% (2.79%)

or more features which both have large positive impact
on results.

4.6 Final classification results

We have shown that whitening, a stride of 1 pixel,
a 6 pixel receptive field, and a large number of fea-
tures works best on average across all algorithms for
CIFAR-10. Using these parameters we ran our full
pipeline on the entire CIFAR-10 training set, trained
a SVM classifier and tested on the standard CIFAR-10
test set. Our final test results on the CIFAR-10 data
set with these settings are reported in Table 1 along
with results from other publications. Quite surpris-
ingly, the K-means (triangle) algorithm attains very
high performance (77.9%) with 1600 features. Based
on this success, we sought to improve the results fur-
ther simply by increasing the number of features to
4000. Using these features, our test accuracy increased
to 79.6%.

Based on our analysis here, we have also run each of
these algorithms on the NORB “normalized uniform”
dataset. We use all of the same parameters as for
CIFAR-10, including the 6 pixel receptive field size.
The results are summarized in Table 2. Here, all of
the algorithms achieve very high performance. Again,
K-means with the “triangle” activation achieves the
highest performance. When using 4000 features as for
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Table 3: Test recognition accuracy on STL-10
Algorithm Accuracy
Raw pixels 31.8% (±0.62%)
K-means (Triangle 1600 features) 51.5% (±1.73%)

CIFAR, we achieve 97.21% accuracy. We note, how-
ever, that the other results are very similar regardless
of the algorithm used. This suggests that the main
source of performance here is from our choice of net-
work structure, not from the particular choice of un-
supervised learning algorithm.

Finally, we also ran our system on the new STL-10
dataset9. This dataset uses higher resolution (96x96)
images, but allows many fewer training examples (100
per class), while providing a large unlabeled train-
ing set—thus forcing algorithms to rely heavily on ac-
quired prior knowledge of image statistics. We applied
the same system as used for CIFAR on downsampled
versions of the STL images (32x32 pixels). In this
case, the performance is much lower than on the com-
parable CIFAR dataset on account of the small la-
beled datasets: 51.5% (±1.73%) (compared to 31.8%
(±0.62%) for raw pixels). This suggests that the
method proposed here is strongest when we have large
labeled training sets as with NORB and CIFAR.

5 Discussion

Our results above may seem inexplicable considering
the simplicity of the system—it is not clear, on first
inspection, exactly what in our experiments allows us
to achieve such high performance compared to prior
work. We believe that the main explanation for the
performance gain is, in fact, our choice of network pa-
rameters since almost all of the algorithms performed
favorably relative to previous results.

Each of the network parameters (feature count, stride
and receptive field size) we’ve tested potentially con-
fers a significant benefit on performance. For instance,
large numbers of features (regardless of how they’re
trained) gives us many non-linear projections of the
data. Unlike simple linear projections, which have lim-
ited representational power, it is well-known that us-
ing extremely large numbers of non-linear projections
can make data closer to linearly separable and thus
easier to classify. Hence, larger numbers of features
may be uniformly beneficial, regardless of the training
algorithm.

The dramatic impact of changes to the stride parame-
ter may be partly explained by the work of Boureau [4].
By setting the stride small, a larger number of sam-
ples are incorporated into each pooling area which was
shown both theoretically and empirically to improve
results. It is also likely that high-frequency features

9http://cs.stanford.edu/∼acoates/stl10

(edges) are more accurately identified using a dense
sampling.

Finally, the receptive field size, which we chose by
cross-validation appears to be important as well. It
appears that large receptive fields result in a space
that is simply too large to cover effectively with a
small number of nonlinear features. For instance, be-
cause our features often include shifted copies of edges,
increasing the receptive field size also increases the
amount of redundancy we can expect in our filters.
This caveat might be ameliorated by training convo-
lutionally [19, 16, 12]. Note that small receptive fields
might also increase the number of samples used in
pooling and thus have a small effect similar to using a
smaller stride.

6 Conclusion

In this paper we have conducted extensive experiments
on the CIFAR-10 dataset using multiple unsupervised
feature learning algorithms to characterize the effect
of various parameters on classification performance.
While confirming the basic finding that more features
and dense extraction are useful, we have shown more
importantly that these elements can, in fact, be as im-
portant as the unsupervised learning algorithm itself.
Surprisingly, we have shown that even the K-means
clustering algorithm—an extremely simple learning al-
gorithm with no parameters to tune—is able to achieve
state-of-the-art performance on both CIFAR-10 and
NORB datasets when used with the network parame-
ters that we have identified in this work. We’ve also
shown more generally that smaller stride and larger
numbers of features yield monotonically improving
performance, which suggests that while more complex
algorithms may have greater representational power,
simple but fast algorithms can be highly competitive.

References

[1] A. Agarwal and B. Triggs. Hyperfeatures multi-
level local coding for visual recognition. In Euro-
pean Conference on Computer Vision, 2006.

[2] A. Bell and T. J. Sejnowski. The ‘independent
components’ of natural scenes are edge filters. Vi-
sion Research, 37, 1997.

[3] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce.
Learning mid-level features for recognition. In
CVPR, 2010.

[4] Y. Boureau, J. Ponce, and Y. LeCun. A theo-
retical analysis of feature pooling in visual recog-
nition. In International Conference on Machine
Learning, 2010.

[5] G. Csurka, C. Dance, L. Fan, J. Willamowski, and
C. Bray. Visual categorization with bags of key-



Adam Coates, Honglak Lee, Andrew Y. Ng

points. In ECCV Workshop on Statistical Learn-
ing in Computer Vision, 2004.

[6] L. Fei-Fei and P. Perona. A Bayesian hierarchical
model for learning natural scene categories. In
Computer Vision and Pattern Recognition, 2005.

[7] I. Goodfellow, Q. Le, A. Saxe, H. Lee, and A. Ng.
Measuring invariances in deep networks. In NIPS,
2009.

[8] G. Hinton, S. Osindero, and Y. Teh. A fast learn-
ing algorithm for deep belief nets. Neural Com-
putation, 18(7):1527–1554, 2006.

[9] G. E. Hinton. Training products of experts by
minimizing contrastive divergence. Neural Com-
putation, 14:1771–1800, 2002.

[10] A. Hyvarinen and E. Oja. Independent compo-
nent analysis: algorithms and applications. Neu-
ral networks, 13(4-5):411–430, 2000.

[11] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and
Y. LeCun. What is the best multi-stage archi-
tecture for object recognition? In International
Conference on Computer Vision, 2009.

[12] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau,
K. Gregor, M. Mathieu, and Y. Lecun. Learning
convolutional feature hierarchies for visual recog-
nition. In Advances in Neural Information Pro-
cessing Systems, 2010.

[13] A. Krizhevsky. Learning multiple layers of fea-
tures from Tiny Images. Master’s thesis, Dept. of
Comp. Sci., University of Toronto, 2009.

[14] A. Krizhevsky. Convolutional Deep Belief Net-
works on CIFAR-10. Unpublished manuscript,
2010.

[15] S. Lazebnik, C. Schmid, and J. Ponce. Beyond
bags of features: Spatial pyramid matching for
recognizing natural scene categories. In Computer
Vision and Pattern Recognition, 2006.

[16] Y. LeCun, F. J. Huang, and L. Bottou. Learn-
ing methods for generic object recognition with
invariance to pose and lighting. In CVPR, 2004.

[17] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Effi-
cient sparse coding algorithms. In NIPS, 2007.

[18] H. Lee, C. Ekanadham, and A. Y. Ng. Sparse
deep belief net model for visual area V2. In NIPS,
2008.

[19] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng.
Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representa-
tions. In ICML, 2009.

[20] V. Nair and G. E. Hinton. 3D object recognition
with deep belief nets. In NIPS, 2009.

[21] E. Nowak, F. Jurie, and B. Triggs. Sampling
strategies for bag-of-features image classification.
In European Conference on Computer Vision,
2006.

[22] B. A. Olshausen and D. J. Field. Emergence
of simple-cell receptive field properties by learn-
ing a sparse code for natural images. Nature,
381(6583):607–609, 1996.

[23] M. Ranzato and G. E. Hinton. Modeling Pixel
Means and Covariances Using Factorized Third-
Order Boltzmann Machines. In Computer Vision
and Pattern Recognition, 2010.

[24] M. Ranzato, A. Krizhevsky, and G. E. Hinton.
Factored 3-way Restricted Boltzmann Machines
for Modeling Natural Images. In AISTATS 13,
2010.

[25] M. Ranzato, C. Poultney, S. Chopra, and Y. Le-
Cun. Efficient learning of sparse representations
with an energy-based model. In NIPS, 2007.

[26] R. Salakhutdinov and G. E. Hinton. Deep Boltz-
mann Machines. In AISTATS 12, 2009.

[27] R. Uetz and S. Behnke. Large-scale object recog-
nition with CUDA-accelerated hierarchical neural
networks. In Intelligent Computing and Intelli-
gent Systems, 2009.

[28] J. C. van Gemert, J. M. Geusebroek, C. J. Veen-
man, and A. W. M. Smeulders. Kernel codebooks
for scene categorization. In European Conference
on Computer Vision, 2008.

[29] M. Varma and A. Zisserman. A statistical
approach to material classification using image
patch exemplars. In IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2006.

[30] P. Vincent, H. Larochelle, Y. Bengio, and P. Man-
zagol. Extracting and composing robust features
with denoising autoencoders. In ICML, 2008.

[31] J. Winn, A. Criminisi, and T. Minka. Object cat-
egorization by learned universal visual dictionary.
In International Conference on Computer Vision,
2005.

[32] J. Yang, K. Yu, Y. Gong, and T. S. Huang. Lin-
ear spatial pyramid matching using sparse coding
for image classification. In Computer Vision and
Pattern Recognition, 2009.

[33] K. Yu and T. Zhang. Improved local coordinate
coding using local tangents. In International Con-
ference on Machine Learning, 2010.


