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   Abstract - It has been known in the literature that 
system sensitivity increases sharply as the trajectory 
approaches the boundary of the region of attraction 
(ROA) while the trajectory does not exhibit such a sharp 
behavior.  The relationship between sensitivity and 
stability of a nonlinear dynamic system such as the power 
system is investigated in this paper.  In this context the 
role of the principal singular surface (PSS) also becomes 
significant.  The principal singular surface is defined as a 
set of points enclosing the origin and where the Jacobian  
of the system evaluated at these points is singular.  As the 
trajectory evolves, the Jacobian of the flow becomes 
singular at a point on the PSS and a sharp increase in 
trajectory sensitivity is observed.  The mode of instability 
(MOI) can thus be defined very early during a faulted 
trajectory in most cases.  A technique is also proposed 
using the norm of trajectory sensitivity vector at two 
points and then extrapolating it to estimate the critical 
parameter of interest which may be clearing time, 
mechanical power, etc.   
 
   Keywords: trajectory sensitivities, power system 
stability, principal singular surface 
 

1   INTRODUCTION 
 
   Trajectory sensitivities have been used widely in 
adaptive control, parameter identification, etc. [1,2].  Its 
application to different aspects of power system 
stability is relatively new [3, 4].  Its main advantage is 
that it can handle any order of complexity in terms of 
modeling, such as differential-algebraic equations 
(DAE), discrete events coupled to DAE models, and 
hybrid systems as well [5].  In power systems when 
incorporating relay dynamics or tap changing 
transformer models, we get a DAE model with discrete 
events.  Trajectory sensitivity becomes a useful tool 
since conventional stability analysis tools are 
inapplicable.   In this paper we restrict to power 
systems represented by a system of differential 
equations (DE) only. 
   The concept of principal singular surface (PSS) was 
first introduced in [6] to assess the equilibrium analysis 
of power systems using classical model of the 
synchronous machine.  In [7] the intersection of the 
PSS and the faulted trajectory was used to define a 
search direction for the starting point of a minimization 
process to compute the controlling u.e.p using the 
Davidon-Fletcher-Powell method.  The PSS is the 
inflexion point in the potential energy plot and the 
Jacobian is the Hessian of the potential energy function.  
Thus the PSS is a function of only machine angles and 

the network parameters.  As the trajectory crosses the 
PSS, and if the system is stable, the eigenvalue will 
cross the imaginary axis again to come back to the left 
half plane, and the sensitivity will decrease.  This 
process may be repeated for a number of times before 
the system eventually comes to the steady state.  When 
the trajectory crosses the PSS, the machines with high 
sensitivities can be identified as the critical machines 
and thus the mode of instability (MOI) can be identified 
very early.  If the system is unstable, the trajectory may 
cross the PSS before or after the ROA depending on 
system loading.  In such a case the use of PSS has 
limited value.  In the earlier literature, the MOI concept 
has been used in an intuitive manner while using the 
transient energy function technique successfully [8].  If 
the PSS crossing point is within the ROA, this point 
may give an early indication of the mode of instability 
(MOI). 
   In this paper we seek to explore the connection 
between sensitivity, PSS and ROA in a multi-machine 
context.  Motivation through a single machine infinite 
bus (SMIB) system will be presented to illustrate the 
fact that depending on the system conditions, the 
crossing of ROA may occur before or after the PSS 
crossing.  This depends on the loading of the generator 
in the SMIB system case and to the stressed nature of 
the system in the case of multi-machine system.  The 
three-machine case is used to illustrate this point 
further. 
   A technique is proposed using the norm of trajectory 
sensitivity vector at two points and then extrapolating it 
to estimate the critical parameter of interest [9].  The 
critical parameters chosen are the generation power and 
clearing time of circuit breakers.  This method will be 
validated on a 50-machine system. 
 

2   THEORY 
 
   The m-machine classical model in relative rotor angle 
notation can be represented by a set of DE’s as 
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   The notation is standard in the literature [8] and the 
mth-machine is taken as the reference machine.  The 
faulted and post-fault systems have the same structure 
except for different values of ijC  and ijD .   
   Equations (1) and (2) are written in state space form 
as  
 

),( λxfx =  (3) 
 
where T

mm
T

mxxx ]......[]...[ 111121 −− == ααωω and λ  
is a parameter of interest such as mechanical input 
power, line reactance, clearing time, etc.  In this paper 
we choose λ to be mechanical input power or the fault 
clearing time. 
 
   The sensitivity model is given as 
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xf and λf are time varying matrices and are evaluated 
along the trajectories.  The entries of the Jacobian xf  
are calculated as follows.  For i=1,…, m; j=1,…, m; 
k=1,…,m-1; n=1,…,m-1 
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   Consider the Jacobian xf  of (3) in the region 

παπ <<− i .  One can define the principal singular 
surface for both the faulted and post-fault systems.  But 

for a large system there is not much difference between 
the two.  In the special case for the SMIB system, both 
the faulted and post-fault systems have the same PSS, 
namely, the lines corresponding to 2/π± .   Hence, we 
consider only the PSS of the post-fault system in this 
paper.  As the trajectories evolve with time, the 
Jacobian becomes singular at a point where one or more 
eigenvalues cross the imaginary axis.  At the crossing 
of the PSS the rotor angles with high sensitivities are 
the machines likely to go unstable.  The group of 
machines corresponding to highest sensitivities at the 
exit point will become unstable ultimately if the fault 
was sustained longer than the critical clearing time.  
Thus we develop an early test for detecting the MOI. 
 

3   SMIB SYSTEM 
 
   A single machine infinite bus (SMIB) system (Fig. 1) 
is used to illustrate the concepts of PSS and sensitivity 
phase plane behavior.  The three phase fault is assumed 
to occur at the terminal of the machine at t = 0 and 
cleared at t = tcl. 
 
 
 
 
 
 
 
 
 
 
 
 
                Figure 1:  Single machine infinite bus
 
   The system can be described by the swing
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   The corresponding sensitivity model is 
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where the parameter λ  in this case is cho
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a high value of PM the faulted trajectory will cross the 
ROA before it crosses the PSS even for a lower value 
of tcl as shown in Fig. 3.  The critical value of PM at 
which the crossing of PSS occurs before ROA is 
derived in the appendix.  This value satisfies the 
inequality PM  < 0.3942Pem (Fig. 2). 
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         Figure 2:  PSS crossing before ROA (low value of PM), 
                            tcl = 0.224 s. 
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          Figure 3:  PSS crossing after ROA (high value of PM), 
                             tcl = 0.126 s. 
 
 

4   THREE-MACHINE SYSTEM 
 
   In this section we extend the concepts of SMIB 
system to a 3-machine system case.  Fig. 4 shows the 
result for the nominal loading case and the system is 
stable.  In this case the PSS crossing occurs before the 
ROA crossing.  The ‘+’ sign indicates the fault clearing 
instant.  The u.e.p. in this case is also shown in Fig. 4 
and its value is )2035.3,4033.1(),( 21 =αα .  Fig. 5 
shows the result for the unstable case where the system 
loading is increased by 40% of the nominal case.  In 
this case the PSS crossing occurs after the ROA 
crossing.  The u.e.p. in this case is 

)9698.2,7333.1(),( 21 =αα .  From Fig. 5 one can 

observe that the machines associated with 311 δδα −=  
and 322 δδα −=  are the critical machines. 
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         Figure 4:  The PSS crossing occurs before the ROA 
                            crossing (nominal case). 
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        Figure 5:  The PSS crossing occurs after the ROA 
                           crossing (increased system loading case).  
 
 

5   PROCEDURE TO DETECT THE MOI 
 
   A procedure is proposed to detect the MOI based on 
sensitivities at the PSS crossing point assuming that the 
PSS is crossed before the ROA is crossed.  For a given 
fault we generate the trajectory sensitivities of the rotor 
angles with respect to the mechanical input powers.  

This will be the (m-1)×  (m-1) matrix 
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= 1,…, m-1.   Sensitivity of the rotor angle is generally 
high with respect to its own mechanical input power.  
Thus it is sufficient to examine only the diagonal terms 
of the sensitivity matrix.  By examining the sensitivities 
we can identify the machines likely to go unstable, i.e., 
the group of machines with high sensitivities at the PSS 
crossing point.  The procedure is illustrated with the 50-



machine system [8].  A self-clearing fault is simulated 
at bus 66 and cleared at tcl = 0.15 s.  The system is 
stable, and the diagonal terms of the sensitivity matrix S 
are calculated and shown in Fig. 6.  From this figure it 
can be verified that the group of machines with high 
sensitivities will likely go unstable if the fault is not 
cleared soon enough.  These machines are 1-22, 24-27, 
and 33-35.  Although the entire time domain simulation 
is given, it is sufficient to examine the sensitivities at 
the PSS crossing (marked with + sign) in Fig. 6.  
Examination of numerical values of sensitivities at the 
PSS crossing does not show a clear break between the 
critical machines and the rest of the machines.  At the 
same time the trend for the machines with high 
sensitivities to go unstable is always displayed.  This is 
verified by simulation with tcl slightly greater than tcr as 
shown in Fig. 7. 
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   Figure 6:  Sensitivities of relative rotor angles (tcl = 0.15 s). 
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   Figure 7:  Relative rotor angles with tcl slightly greater than 
                     tcr = 0.166 s. 
 

6   CRITICAL PARAMETER COMPUTATION 
USING SENSITIVITIES 

 
   In this section we propose a technique to compute the 
estimated value of critical parameter.  The technique 

involves computation of sensitivity at two values of the 
parameter and then extrapolating to obtain an estimate 
of the critical values.  This idea is similar to that of [10] 
where the critical value of a parameter is estimated 
using an extrapolation technique. 
 
6.1   Computation of critical clearing time 
   One possible measure of proximity to instability is 
through some norm of the sensitivity vector.  We 
propose the Euclidean norm of the sensitivity vector.  
We associate with each value of tcl the maximum value 
of the sensitivity norm along the trajectory.  The 
procedure to calculate the estimated value of tcr using 
the sensitivity norm is described as follows.  The 
sensitivity norm is computed for two different values of 
tcl, which are chosen to be less than tcr.  Here, the 
sensitivity norm for an m-machine system is defined as 
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   The plot of S for the 50-machine system when tcl = 
0.28 s is shown in Fig. 8. 
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            Figure 8:  The plot of S vs. time for tcl = 0.28 s. 
 
 
   The reciprocal of the maximum of S is calculated for 
each value of tcl, η = 1/max(S).  A straight line is then 
constructed through the two points ( )11 ,ηclt  and 
( )22 ,ηclt .  The estimated critical clearing time estcrt ,  is 
the intersection of the constructed straight line with the 
time-axis in the ( )η,clt -plane as shown in Fig. 9. 
   The measure η  is approximately linear only in the 
region near tcr where the sensitivities grow very quickly 
as tcl increases.  Therefore, if the two points are taken 
far away from tcr, the extrapolation will not give 
accurate results.  Based on experience one can choose 
the two values of tcl near tcr. 
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                       Figure 9:  Estimate of tcr. 
 
 
   The proposed technique was applied to the 50-
machine system to estimate the critical clearing time for 
the self-clearing fault at bus 58.  For illustrative 
purposes the result is shown in Fig. 10.  The actual 
clearing time is tcl = 0.315 s.  If the two values of tcl are 
chosen in the close range of tcr, the estimated value of 
tcr will be quite accurate.  As seen from Fig. 10, picking 
arbitrary values of tcl may give erroneous results.  Since 
computing sensitivities is computational extensive, 
choosing good values of tcl requires judgment and 
experience. 
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       Figure 10:  Estimate of tcr for 50-machine system. 
 
6.2   Computation of critical loading of generator 
(parameter PM) 
 
   The sensitivity norm technique is used in this section 
to estimate the critical value of generator loading, or 
equivalently, the mechanical input power PM.  As in the 
case of tcl, simulations for two values of PM are carried 
out.  The change in PM is distributed uniformly among 
all loads in the system, so that the loading of the rest of 
the generators is unchanged.  Conversely, if the system 
load increases uniformly, it is assumed to be taken up 
by this generator.  The sensitivity norm is calculated for 

the two specified values of PM and then extrapolated to 
obtain the estimated critical value of PM for the chosen 
generator.  The 50-machine system was used as a 
numerical example in applying the technique to 
estimate the critical input power for several machines in 
the system.  The self-clearing fault is simulated at bus 
58 and cleared at tcl = 0.15 s.  The result is shown in 
Table 1. 
 

Machine 
Number PM,est (pu) PM,act (pu) 

4 22.9 22.3 
5 17.0 16.5 
7 4.3 4.2 

12 10.0 9.6 
  
                 Table 1:  Estimate of critical input power. 
 
 

7   CONCLUSION 
 
   The trajectory sensitivity at the PSS crossing of multi-
machine power systems is used to detect the MOI in 
most cases.  The relationship between trajectory 
sensitivity, PSS, and MOI has been explored.  A 
method is proposed to estimate critical value of fault 
clearing time and mechanical input power using norm 
of the sensitivities at two points.  The use of PSS 
crossing to detect MOI requires that the PSS crossing 
occurs before the crossing of ROA.  Nevertheless, for 
systems satisfying that requirement, the proposed 
procedure provides a quick tool to detect the MOI. 
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APPENDIX 
 
   For the SMIB system described by (5), the system 
stability can be assessed by using the equal area 
criterion.  The following quantities are defined for 
power-angle curve of Fig. 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 11:  P
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   The system is stable if the accelerating area (A1) is 
smaller than the decelerating area (A2) or 
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   We seek to find the maximum value of PM such that 
for a fault cleared at 2/πδ =cl  corresponding to the 
PSS, the trajectory is still inside the ROA.  For this we 
substitute 2/πδ =cl into (A.1).  This results in 
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Substituting emM PP /sin 0 =δ  and 

20 )/(1cos emM PP−=δ  into (A.2) and rearranging 
yields 
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