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Abstract—Increased market penetration of plug-in electric
vehicles (PEVs) will enable a shift in the transportation sector
towards more sustainable energy options. However, PEV battery
charging represents a significant additional burden on power
systems, especially at the distribution level where the radial
structure of the network may accentuate the effects of load vari-
ations. Furthermore, uncoordinated PEV charging could cause
transformers to regularly operate beyond their thermal limits,
increasing their likelihood of failure. Coordinated charging, based
on distributed control methods, has been proposed as a means
of mitigating voltage fluctuations and transformer overloads.
Recent research can be divided into two categories: studies into
the effects of static PEV loads on distribution networks, and
development of control algorithms that vary PEV charging to
accomplish specific goals. This paper combines these two ideas by
analyzing distribution network load flow dynamics in response
to a large population of coordinated PEVs. An IEEE 34-node
distribution test feeder is simulated in conjunction with a fleet of
PEVs under Additive-Increase Multiplicative-Decrease (AIMD)
control. The resulting scheme ensures that all loads are satisfied,
while controlling PEV demand to meet secondary considerations
such as voltage regulation and transformer capacity limits.
However, detrimental oscillations may develop under certain
conditions. The paper investigates the cause of these unwanted
variations.

I. INTRODUCTION

Sales of plug-in electric vehicles (PEVs) are on the rise, and
will comprise a significant portion of the light-vehicle fleet in
the coming decades. Through the use of on-board batteries
charged by connections to the terrestrial power system, PEVs
can shift a portion of the transportation sector’s energy use off
oil products, potentially reducing greenhouse gas emissions.
However, placing a larger burden on the electrical grid is not
without consequences, as the system is already operated close
to limits and issues of stability and power quality may emerge
with even moderate PEV penetration levels.

At the transmission level, the near-term consequences of
large-scale PEV adoption may include higher generation ca-
pacity requirements if aggregate vehicle charging coincides
with peaks in background demand [1]. Although the PEV
portion may be only a fraction of the total system load,
any increase in the maximum system demand necessitates
investment in costly peaker plants. Research efforts [2]–[4]
in this area have attempted to shift PEV loading to off-peak
hours, often termed valley-filling, using distributed control

techniques, while others [5], use real-time pricing strategies
to accomplish a similar objective.

At the distribution level, charging PEVs on the grid can have
adverse effects on localized portions of the circuit. Existing
electric vehicle supply equipment (EVSE) can already provide
battery charging power in excess of the per-household peak
in most residential areas. This unplanned additional load can
cause voltage dips and reactive power imbalances across the
network [6], [7]. Furthermore, the additional power require-
ments may decrease the lifetime of distribution transformers
servicing the load [8], and these effects tend to be exponential
as the transformer exceeds its rated power capacity [9].

Recent research on charging algorithms has focused on
mitigating undesirable effects at the distribution level, with
several papers combining analysis of charging scheme ef-
fectiveness from a controls perspective with simulations of
the resulting power dynamics. Work in [10] applied a utility
function method to prevent voltage dips and line overloading
on realistic low-voltage networks. Other researchers have used
queuing formulations [11] to dispatch PEV charging while
maintaining grid stability. Another approach detailed in [12]
proposes utilizing vehicle chargers for reactive power balance
in order to bolster voltage sags in high PEV penetration
networks. On-line linear programming techniques have also
been applied [13].

This paper extends previous work by examining a low-
voltage test circuit, the IEEE 34-node network, in conjunc-
tion with a fleet of electric vehicles under additive-increase
multiplicative-decrease (AIMD) control. Unlike similar charg-
ing schemes, AIMD has the ability to provide decentralized,
coordinated control with a minimal investment in compu-
tational and communication equipment. While others [14]
have focused on power regulation at the substation level, the
emphasis of this work is on preventing thermal overload of
individual distribution transformers using temperature-based
AIMD control, and the distribution-level power system dy-
namics that result when PEVs are charged in this manner.

The remainder of the paper is organized as follows. Sec-
tion II discusses the theory behind the AIMD algorithm and its
application to the PEV charging problem. Section III explains
the parameters used in simulations. Section IV examines
simulation results including voltage quality and transformer
temperature. Section V looks at the conditions under which
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Fig. 1. Schema of the AIMD algorithm in practice. As participants join
the network, their rate of use evolves additively until a global limit is reach,
at which point a capacity event is triggered, reducing the usage rate of all
participants multiplicatively. In perpetuity, all participants converge to the
same utilization pattern.

thermal overload can arise, and Section VI concludes the
paper.

II. ADDITIVE-INCREASE MULTIPLICATIVE-DECREASE
CONTROL

The AIMD algorithm was first proposed by Chiu and Jain
[15] as a means of maximizing throughput while manag-
ing congestion in constrained networks, originally applied to
communication links. The implementation is as follows. A
group of participants shares a common, constrained network
resource. At each time-step, participants increase their rate of
use of the global resource by a fixed additive amount α. This
process continues unabated until the common resource exceeds
its maximum limit. At this time a congestion event signal is
broadcast out, and each participant decreases its consumption
rate by a multiplicative factor β. This process is illustrated in
Figure 1.

The AIMD algorithm is appealing for several reasons.
Through adjustment of the parameters α and β, trade-offs can
be made between fairness (the equitable sharing of resources
among participants) and efficiency (the fraction of the total
available throughput that is being utilized), as well as be-
tween responsiveness (the time it takes the system to achieve
equilibrium) and smoothness (the size of the oscillations that
develop in steady state). Given the simple implementation and
adaptable operation, AIMD control has long been used for
regulating packet congestion on TCP/IP links.

More recently, investigators [16] proposed using AIMD as
a novel means of controlling PEV charging on a power con-
strained network. Under this scheme, vehicles start charging at
a low rate when first plugged into the power grid. The vehicles
on a particular feeder increase their individual charging rates
until they reach a local constraint dictated by the EVSE, or a
global power constraint on the substation feeder is reached, at

Fig. 2. The IEEE 34-node test feeder.

which point the vehicles decrease their power multiplicatively.
The advantage of an AIMD implementation is the reduced
communication and computation requirements, as the feeder
can simply monitor its power locally. The only information
broadcast to the participating PEVs is the occurrence of a
capacity event.

This work focuses on distribution level effects of AIMD
charging, specifically the adjustment of PEV charging rates
to limit aging in distribution transformers, which experience
rapid degradation when hot-spot temperatures exceed rated
values. Vehicles on a particular transformer increase their
charging rate additively until the transformer’s temperature
reaches a set limit, at which point PEVs are commanded
to decrease charging in a multiplicative fashion. The choice
of additive and multiplicative parameters affects coordinated
charging performance, as discussed in Section V.

III. SIMULATION SPECIFICATIONS

All simulations were undertaken using the IEEE 34-node
distribution test feeder, which represents a realistic rural dis-
tribution circuit [17]. This feeder layout is shown in Figure 2.
Current and voltage dynamics were calculated using the three-
phase radial power flow method developed in [18], which
uses a forward/backward iterative technique. This method
incorporates full three-phase dynamics, including inductive
coupling between lines and the existence of single phase
branching feeders that extend from the main feeder.

In order to streamline the simulation, the distributed loads
on the test feeder were converted to spot loads by dividing the
real and reactive power requirements equally between the two
ends of a given line. Capacitor banks were modeled as a shunt
capacitance at the relevant nodes. The two voltage regulators
present in the IEEE 34-node system are programmed to step
tap positions to regulate voltages. It is quite plausible that
the voltage variations induced by load control schemes may
interact with such voltage regulators, possibly resulting in
excessive tapping. However, to better understand the influence
of charger controls, it has been found helpful to decouple
regulator effects by holding tap positions constant for fifteen
minute intervals. Further work is required to determine a
tap update strategy that achieves good voltage regulation yet
prevents excessive tap-change operations.
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The electric vehicles on the network represent a fleet of
heterogeneous medium-range plug-in hybrids similar to the
Chevy Volt. Though the Volt has a listed battery capacity
of 16kWh [19], the effective portion that can be repeatedly
charged and discharged is only about half this total. As a result,
the simulations use battery sizes that vary randomly between
6 and 10 kWh. For the remained of the paper, effective state-
of-charge (SoC) refers to the capacity of the portion of the
battery which can be charged/discharged, and can vary from
0-100%. Vehicles arrive for nighttime charging with between
1-25% effective SoC. Existing Level II charging capabilities
for the EVSE servicing the car are a 240 V, 15 A connection
for a rated maximum power of 7.2 kW, with an efficiency of
η = 90%.

TABLE I
ELECTRIC VEHICLE CHARGING SPECIFICATIONS.

Battery size Between 6 and 10 kWh

Initial state-of-charge 1-25%

Maximum charging rate 7.2 kW

Charging efficiency (η) 90%

Power factor 1.0 (unity)

These simulations investigate an overnight charging sce-
nario. The specified background (non-PEV) load on the system
wanes overnight, with load values scaled proportional to a
sample Midwest ISO demand curve. The given IEEE 34-node
values for system load were matched to the peak of the demand
curve, and nighttime values were adjusted accordingly. Electric
vehicles were assumed to arrive randomly with a uniform
distribution between 9pm and 12am. In order to capture the
full overnight charging profile of the PEVs, the total simulation
runs in 1 minute time-steps for the ten hour period from 9pm
to 7am to reflect typical charging patterns.

The total IEEE-34 load is divided by an assumed mean
peak household load of 1.75 kW, for a total of 1294 individual
residences. PEV penetration levels listed for some of the sim-
ulations are based off of this figure, ex. 25% PEV penetration
corresponds to 323 vehicles on the network.

Each node has a number of 25 kVA single-phase trans-
formers apportioned appropriately to meet normal daytime
demand. For instance, a node with 60 kVA aggregate load on
its A-phase would be assigned three 25 kVA transformers, and
each would serve a background load of 20 kVA. The amount
of spare capacity on each transformer for PEV charging
therefore varies randomly from node to node. The total vehicle
population was then assigned randomly to the transformers
on the network, with a fixed maximum number of PEVs per
transformer to avoid unrealistic buildup on a single piece of
equipment.

The temperature dynamics are derived using a first-order
differential equation model of a thermal mass, where the
transformer is heated by i2R losses and cooled by the ambient
temperature, as in [21]. Thermal dynamics are specified in
Kelvin, and the AIMD algorithm engages whenever the total

current through the transformer would result in a steady-state
temperature above 120◦C (or 393◦K).

The IEEE 34-node network is long and lightly loaded, which
can on occasion lead to convergence issues with some power
flow solvers, although this concern did not arise during the
loading scenarios studied.

IV. SIMULATION RESULTS

A. Sample Case

The main goal of temperature-based AIMD control is to
keep the 25 kVA transformers that service residential loads
from exceeding their hot-spot temperature, while providing as
much power as possible to the connected electric vehicles in
a fair and efficient manner. Simulations were undertaken to
assess control performance, with these objectives met in most
cases. As an example, Figures 3 and 4 show respectively the
charging profile of all PEVs attached to Transformer #1 at
node 860 and the temperature of this transformer. Initially,
only one PEV is connected to the transformer, and even though
it charges at the maximum rate of 7.2 kW, the transformer
temperature actually drops due to the significant nighttime
drop-off in background load. However, as more PEVs begin
to charge, increasing the current through the transformer, its
temperature begins to increase towards its specified maximum.
AIMD control sends out the first congestion event at the 68th
minute to reduce the charging rate of all attached vehicles.

The average charging rate of each PEV continues to de-
crease until all vehicles have arrived. Shortly after this point
the charging rates converge to a common pattern and enter
a period of regular, repeated oscillations. This persists until
vehicles begin to complete charging. As the PEVs disconnect,
the average charging rate per vehicle increases, causing the
remaining cars to finish even faster. Eventually, so few vehicles
are connected that they can all charge at full power once again,
and the temperature of the transformer begins to drop. The
final result is a group of fully charged vehicles and reduced
thermal stress on the distribution transformer.

In this example, all the vehicles achieve unity state-of-
charge well before the given deadline. However, situations
can arise where this is not feasible. The initial background
load for the A-phase of node 860 is 51 kVA, which is
split equally among three 25 kVA transformers at 17 kVA
each, leaving 8 kVA of available charging capacity. Available
capacity increases further as the nighttime background demand
wanes. However, if background peak demand at this node was
slightly below 50 kVA, for instance, and only two transformers
were assigned to service the load, then the power available to
charge the electric vehicles could be inadequate for the given
charging-time constraint. In such cases, no form of control
could charge all of the vehicles in time without violating
transformer hot-spot temperature limits. The distribution utility
would have no option other than to install a new transformer.
In these situations, AIMD gives priority to distribution trans-
former health, but still provides a way maximize throughput
to the vehicle loads within this constraint.
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Fig. 3. Charging rates of each electric vehicle attached to Transformer #1
on node 860 A-phase. Vehicles arrive at randomly determined times and draw
power until their batteries are fully charged. The AIMD algorithm engages
whenever the current through Transformer #1 exceeds rated value.

Fig. 4. Load and temperature data for Transformer #1 temperature at node
860 A-phase. Total load (solid line) includes background demand (dash-
dot line) and the sum of the charging profiles from Figure 3. Temperature
dynamics are derived from this load and the equations in [21]. The AIMD
algorithm succeeds in maintaining transformer temperature below the imposed
thermal limit.

B. Voltage Dynamics

In addition to the car charging dynamics, it is important
to ensure that AIMD-induced variations in power levels do
not cause unacceptable voltage oscillations. AIMD control is
designed to synchronize vehicle charging rates in a pattern
of slow increases in power (the additive stage) followed by a
rapid decrease (the multiplicative stage), and these dynamics
have corresponding effects on voltage levels, which in a radial
distribution network may already be close to their limits.

A sample voltage profile for node 860 is shown in Figure 5,
which displays the three phase voltages over the entirety
of nighttime charging. Since control occurs in one minute
intervals, voltage oscillations vary on the same time scale. In
this example, there are a total of 24 vehicles charging on the
transformers attached to the three phases of node 860, and with
a PEV penetration level of 15%, 194 total cars on the network.

Fig. 5. Voltage oscillations under AIMD regulation with a 15% PEV
penetration level. Tap changes occur as nighttime demand falls, independent
of vehicle loading.

Despite the size of the vehicle population, the amplitude
of the resulting voltage variations is minimal. Ignoring tap
changes, the largest minute-to-minute voltage variation in this
simulation is less than 0.005 per unit. Moreover, there is no
discernible pattern in the variations, as the minute-to-minute
voltage profile fluctuates arbitrarily. Over hour long timescales,
there is a general upward trend in voltage due to decreasing
background load, but this phenomena occurs regardless of
coordinated vehicle charging.

The lack of more problematic voltage variations is due
to several factors. First, although all of the vehicles on one
transformer eventually synchronize in a shared pattern of
charging, the other transformers on the network have different
available power capacities, randomized vehicle arrival times
and charging requirements. The variations in load capability
along with the heterogeneous vehicle fleet lead to different
charging patterns at each transformer, and the net effect is
a canceling out of much of the variations in power (and
corresponding changes in voltage) from one time step to the
next.

Furthermore, each transformer has only a fixed amount
of available power for vehicle charging, and although this
capacity increases somewhat as the nighttime background load
decreases, this nonetheless limits the amount of power that can
oscillate on the system. Consequently, charging variations have
less of an effect than might be expected, especially at lower
vehicle population levels.

To illustrate this point, a series of simulations was run
to determine the largest difference in voltage between two
successive steps at any node (excluding tap change events).
The results are shown in Table II, which records the worst-
case voltage fluctuations after 100 simulations for several PEV
penetration levels.

This sensitivity analysis shows that as the PEV popula-
tion increases, both average and absolute worst-case voltage
variations tend to increase in magnitude, likely because there
are more cars per transformer and correspondingly larger
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TABLE II
MAXIMUM NODAL VOLTAGE VARIATIONS FOR RANDOMIZED PEV

POPULATIONS OVER 100 SIMULATIONS.

PEV % Average worst-case Absolute worst-case Node

10 0.0083 p.u. 0.0145 p.u. 846, Aφ

25 0.0089 p.u. 0.0163 p.u. 840, Aφ

40 0.0109 p.u. 0.0167 p.u. 840, Aφ

55 0.0133 p.u. 0.0230 p.u. 840, Aφ

multiplicative power drops (and voltage rises). Furthermore,
voltage deviations become increasingly acute as vehicle pen-
etrations levels rise. This non-linear relationship is due to the
presence of background demand. At low vehicle populations,
the continually-varying PEV charging load represents a small
proportion of aggregate system demand, and variability is min-
imal. However, larger vehicle populations result in a significant
proportion of load being adjustable, leading to a more erratic
voltage profile.

V. DETRIMENTAL VARIATIONS LEADING TO THERMAL
OVERLOAD

Using AIMD-based control allows electric vehicles to re-
ceive their required energy while allocating the load in such
a manner that the transformers servicing the vehicles are pre-
vented from overheating. However, under certain conditions,
the transformer temperature can actually rise past the specified
hot-spot limit. This section examines the causes of thermal
overload and possible solutions to mitigate this phenomenon.

For simplicity, assume that background demand on a partic-
ular transformer is constant and thus the total power available
for PEV charging is also constant. In this situation, every
additional vehicle that plugs into the network lowers the
average power delivered to each individual charger.

Given n vehicles charging on one transformer and a max-
imum charge rate P , the total increase in power during each
additive step is n × α, and the amplitude of the subsequent
multiplicative drop in power is P × (1 − β). Eventually, if
enough vehicles charge simultaneously, the aggregate power
increase during the additive stage of load control exceeds the
decrease during the multiplicative stage. For a given P , α,
and β, this occurs when the number of vehicles exceeds the
constraint

n > P (1− β)/α

An example of this charging situation is shown in Figure 6,
in which twelve PEVs charge on Transformer #2 at node 820
A-phase. The corresponding transformer temperature profile
is shown in Figure 7. Using α = 0.25 kW and β = 0.7,
and given that Transformer #2 has 8 kW of spare capacity,
the equipment is only capable of handling nine cars before
thermal overload will occur. As can be seen from the detailed
inset, once all of the vehicles charge simultaneously, the
power increase from a single additive step surpasses the power
decrease made during the multiplicative step, and eventually
two multiplicative steps are called in a row to keep the power

Fig. 6. With enough electric vehicles on transformer #2 of node 820 A-
phase, the additive increase step exceeds the magnitude of the corresponding
multiplicative decrease step, leading to an average aggregate PEV charging
level that exceeds the transformer rating.

Fig. 7. The excess power through the transformer causes thermal overload.
Due to thermal inertia, this elevated temperature persists until several cars
complete charging around 475 minutes into the simulation.

below its limit. When this occurs, the average power delivered
to the transformer is greater than its rated kVA limit, and
the transformer overheats as a result. Additionally, given the
thermal inertia of the transformer, even once the power drops
below its rated capacity, the transformer temperature will take
an extended period to fall to an acceptable level. Therefore it
is important to prevent excessive power draw over the entire
time-frame.

There are several possibilities to address this issue. First,
one could simply limit the number of vehicles charging on
any one transformer. However, the limit may be relatively
small. Consider the transformers attached to node 820 A-
phase. Each has a spare capacity of 8 kW. If the AIMD
parameters α = 0.25 kW and β = 0.9 are used, then no
more than three vehicles could charge at this transformer. This
method would vastly under-utilize the charging capabilities of
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individual transformers.
A second approach would be to adjust the AIMD param-

eters in real-time in accordance with the number of vehicles
connected to a transformer. Decreasing the β parameter allows
more vehicles to plug in, but decreases the overall throughput
of power delivered to the cars. On the other hand, decreasing
the α parameter also accommodates more vehicles without
affecting overall throughput, but increases the time needed
for PEVs to initially reach full charging rate, and increases
the time taken for multiple cars to reach fair, synchronized
charging. Given that thermal overload conditions only occur
during synchronized charging, it makes sense to adjust the
additive parameter according to the number of vehicles on a
transformer.

This method would require additional communication and
computational infrastructure to assess the number of PEVs at
a particular transformer. Solving the optimization algorithm
could be accomplished off-line and then implemented as a
simple lookup table, where values of α and β were stored
for a particular number of vehicles and available power. This
would ensure that all the vehicles use the largest percentage
of available power possible without danger of violating trans-
former thermal limits.

VI. CONCLUSION

Plug-in electric vehicles (PEVs) represent a sizeable ad-
ditional load on power distribution systems. Due to the ra-
dial structure of these networks, this additional load could
potentially lead to voltage quality issues. Also, overloaded
distribution transformers will be vulnerable to thermal damage.
It is therefore imperative that large-scale PEV charging be ac-
companied by some form of coordinated control. The additive-
increase multiplicative-decrease (AIMD) algorithm has been
proposed as a possible method of regulating charging due to
its minimal computational and communication requirements.

This paper illustratese that AIMD control can be used
to limit the temperature of distribution transformers, thereby
protecting the health of these expensive devices. This control
method induces oscillations in the power consumption of
PEV chargers and hence in nodal voltages. It was therefore
important to assess the amplitude of those variations. This
was considered through simulation of a fleet of PEV charges
connected to the IEEE 34-node network during a nighttime
loading scenario.

Given randomized vehicle arrival times and initial battery
state-of-charge, the AIMD control algorithm was generally
capable of charging vehicles by their scheduled completion
times. The exception was when a transformer had very little
spare capacity due to excessive background load. It should
be noted though that in such cases no form of control would
have accomplished full charging without overheating the trans-
former. Under certain circumstances, transformer temperature
limits were exceeded when a large number of vehicles charged
with poorly adjusted AIMD control parameters. Modifying
these parameters to account for the number of vehicles guar-
antees that thermal constraints are never violated.

This material is based upon work supported by the De-
partment of Energy under Award Number DE-PI0000012,
through the Clean Energy Research Center - Clean Vehicle
Consortium.
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