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Abstract—Solution algorithms for the optimal power flow
(OPF) problem are well established for traditional electricity
networks. However, there is an increasing need for integrating
renewable sources and energy storage into electricity networks.
These newer devices have physical characteristics that require
modification of standard OPF algorithms. In particular, energy
storage devices introduce temporal coupling over the optimization
horizon. Also, the modeling of non-unity storage efficiency
requires complementarity conditions. This paper explores two
algorithms that extend OPF methods to incorporate energy
storage devices and wind generation. The first method is based
on the well-known AC-LP OPF method, while the second is
a quadratic program with DC power flow constraints. The
algorithms are demonstrated using several test cases that con-
sider a modified RTS-96 system. The performance of the two
algorithms is compared in terms of convergence properties and
quality/optimality of their respective solutions.

I. INTRODUCTION

The optimal power flow (OPF) problem has been well-
researched over the past few decades. The basic problem is
to optimally schedule generation in a power system whilst
ensuring power balance at all nodes, and satisfying network
voltage and power flow constraints. Several metrics can be
used to qualify an optimal solution, including minimal losses,
minimal cost of generation, or minimal change in operating
point from a baseline solution. Several solution methods
are available, including gradient methods, Newton’s method,
linear program (LP) OPF, and interior point methods. Such
methods are required as the standard OPF problem is nonlinear
[1, pp. 514-559].

Another common practice is to use the DC power flow to
cast the OPF problem as a quadratic program, as in [2]-[3].
The DC power flow introduces linear constraints that are an
approximation of the true AC power flow constraints. How-
ever, it has been demonstrated that under normal operating
conditions and with the traditional DC power flow assumptions
of negligible network resistance, flat voltage profile and small
angle differences, the DC power flow results generally fall
within an acceptable error compared to the AC power flow
solution [4]. Several variants of the DC OPF are available,
including hot-start, cold-start and incremental models [5]. The
linear network approximation ensures a simpler optimization
problem than a nonlinear AC OPF.
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Recently, semidefinite programming (SDP) techniques have
been applied to the OPF problem, as described in [6]. This
approach is advantageous compared to the other methods as it
is convex, and readily-available solvers exist for problems of
moderate size. Under certain conditions, the solution obtained
from this problem is globally optimal and satisfies the nonlin-
ear AC power flow equations [7]-[8]. Whilst an AC-feasible
solution is often obtained, there is no guarantee for arbitrary
networks. Also, for larger networks, the sparsity requirements
make this a much more complex optimization problem than
other methods [9].

As described, methods of solving the standard OPF problem
with traditional generation are well established. However, with
growing demand for more environmentally friendly energy
sources, there is an increasing need for integration of renew-
able generation in the current infrastructure. While presenting
many benefits, such renewable generation also poses many
challenges. In particular, renewable energy sources are inher-
ently variable, complicating network reliability and control.
This variability can be mitigated through the use of energy
storage, motivating the formulation of OPF problems that
incorporate storage [10]. The challenge with such problems
lies in the temporal coupling inherent in the dynamics of
storage devices. Additionally, when non-ideal efficiencies of
the charging and discharging of these devices are considered,
additional variables must be introduced and complementarity
between charging and discharging variables must be ensured.
Such a formulation for non-ideal efficiencies is given in [11];
a similar formulation to model storage is used in this paper.

The organization of this paper is as follows. In Section II,
two formulations of the OPF problem with storage and wind
are described; one is a DC OPF and the second is based on
an AC-LP OPF method. Section III addresses the comple-
mentarity issues that arise when adding storage devices with
non-ideal charging and discharging efficiencies. Two methods
for enforcing this complementarity condition are given and
compared with general forms of complementarity constraints.
Section IV describes the test cases used. Section V documents
the results of the methods on those test cases and assesses the
results in terms of quality of solution and convergence of the
algorithms. Conclusions are provided in Section VI.
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II. OPF FORMULATION

The general problem being solved in OPF formulations is
that of finding an optimal generation schedule, in terms of
cheapest cost of traditional generation. Two OPF formulations
follow, with both implementing storage devices and wind
power. The first is based on a traditional DC OPF with an
approximation for losses added. The second is based on the
AC-LP OPF. The following nomenclature is used for both
formulations.

Parameters:

G set of generation nodes
Ci(Pg,i) convex cost curve for each generator i ∈ G
D set of demand nodes
S set of storage nodes
W set of wind nodes
T set of time periods
N set of nodes in the network
dj(t) active power demand at node j ∈ D at time t ∈ T
Bi battery energy limit at node i ∈ S
Y system/network admittance matrix

Wmax
i (t) available wind at node i ∈ W at time t ∈ T
Li set of lines out of and connected to node i
xij reactance of line from node i to node j
Rij resistance of line from node i to node j
fmax
i−j maximum power flow in line from node i to node j
pmin
g,i min active power when generator at node i ∈ G in service
pmax
g,i max active power when generator at node i ∈ G in service

RDWN
i maximum ramp down limit on generator at node i ∈ G
RUP

i maximum ramp up limit on generator at node i ∈ G
Ts sampling time in storage dynamics model

ηc, ηd charging, discharging efficiencies of storage devices
btermi terminal value for storage at node i ∈ S
Rmax

c maximum charging of storage at node i ∈ S
Rmax

d maximum discharging of storage at node i ∈ S
L number of blocks in approximation of losses

∆θ length of each block in approximation of losses

Control Variables:

Pg,i(t) active power generation at node i ∈ G at time t ∈ T
ri(t) net battery active power at node i ∈ S at time t ∈ T
rc,i(t) battery active power charging at node i ∈ S at time t ∈ T
rd,i(t) battery active power discharging at node i ∈ S at time t ∈ T
bi(t) battery energy at node i ∈ S at time t ∈ T
Pw,i(t) wind curtailment at node i ∈ W at time t ∈ T
δi angle in radians at node i ∈ N

δpwij (l) angle block l in loss approximation in line from node i to j
wij(l) binary variable indicating if block l is at its maximum
yij(t) binary variable indicating the sign of the angle

difference over line from node i to j at time t ∈ T
plossij active power loss in line from node i to node j
pij active power flow in line from node i to node j

A. Method 1: DC OPF

The first method investigated is the DC OPF. This problem
seeks to minimize the quadratic cost of traditional generation

with the DC power flow embedded in the constraints. The
advantage of this formulation is that it is a quadratic problem
for which there exist many reliable solvers:

min
∑
t∈T

∑
i∈G

Ci(Pg,i, t) (1a)

subject to (∀t ∈ T ):

Pg,i(t)− ri(t) +Wmax
i (t)− Pw,i(t)

= di(t) +
∑
j∈Li

1

xij
[δi(t)− δj(t)]

+
∑
j∈Li

1

2
plossij (δi(t), δj(t))

∀i ∈ N

(1b)

Pmin
g,i ≤ Pg,i(t) ≤ Pmax

g,i ,∀i ∈ G (1c)

−RDWN
i ≤ Pg,i(t)− Pg,i(t− 1) ≤ RUP

i ,∀i ∈ G (1d)

0 ≤ Pw,i(t) ≤Wmax
i (t),∀i ∈ W. (1e)

Storage dynamics are modeled by the difference equations
described in [11], giving the additional five constraints (∀i ∈
S, t ∈ T ):

bi(t+ 1) = bi(t) + Tsηcrc,i(t)−
Ts
ηd
rd,i(t) (2a)

bi(T + 1) = btermi (2b)

ri(t) = rc,i(t)− rd,i(t) (2c)

rc,i ∈ [0, Rmax
c ], rd,i ∈ [0, Rmax

d ] (2d)

0 ≤ bi(t) ≤ Bi. (2e)

Examining the storage constraints given in (2a)-(2e) reveals
an important issue. As stated, simultaneous charging and dis-
charging is possible. This gives rise to non-physical solutions
if the charging and/or discharging efficiencies are not unity.
For example, consider a solution that had rc,i(t) = rd,i(t)
for some i ∈ S. Then ri(t) = 0, which physically should
imply that the state of charge of the device is unchanged.
However, mathematically this does not hold: with ηc < 1
and/or ηd < 1, there will be a nonzero change in the state
of charge of the device. Hence solutions to the problem
stated above may be mathematically valid, yet not physically
meaningful. Section III of this paper proposes two methods
to avoid this issue, and hence ensure that solutions are both
physically and mathematically valid.

Losses must also be taken into account to produce solutions
that approximate AC solutions. To do this, the piecewise-linear
approximation of losses developed in [2] is used, which is
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represented by the following constraints:

‖pij‖+
1

2
plossij ≤ fmax

i−j (3a)

δi − δj = δ+ij − δ
−
ij (3b)

δ+ij ≥ 0, δ−ij ≥ 0 (3c)

δ+ij + δ−ij =
L∑

l=1

δpwij (l) (3d)

plossij (δi, δj) =
Rij

x2ij
∆θ

L∑
l=1

(2l − 1)δpwij (l) (3e)

‖pij‖ =
1

xij

L∑
l=1

δpwij (l). (3f)

In the previous set of constraints, equations (3b) and (3c)
comprise a linear formulation of the absolute value of the
difference in the angles of the sending and receiving ends
of the line of interest. To avoid fictitious losses, the following
constraints must be added to the piecewise linear approxima-
tion to explicitly enforce adjacency conditions [2]:

wij(l)∆θ ≤ δpwij (l), ∀l = 1, ..., L− 1 (4a)

δpwij (l) ≤ wij(l − 1)∆θ, ∀l = 2, ..., L (4b)

wij(l) ≤ wij(l − 1), ∀l = 2, ..., L− 1 (4c)
δpwij (l) ≥ 0, ∀l = 1, ..., L (4d)

wij(l) ∈ {0, 1}, ∀l = 1, ..., L− 1. (4e)

Similarly, binary variables must be added to explicitly enforce
complementarity1 between the δ+ij and δ−ij variables, ∀ij ∈ L.
To do so, the following constraints are added:

δ+ij ≤ L∆θyij(t), ∀ij ∈ L, t ∈ T (5a)

δ−ij ≤ L∆θ(1− yij(t)), ∀ij ∈ L, t ∈ T (5b)

yij(t) ∈ {0, 1}, ∀ij ∈ L, t ∈ T . (5c)

B. Method 2: AC-LP OPF

The next method investigated is based on the traditional
AC-LP OPF. The optimization problem solved is a simple
linear program that minimizes the total piecewise linear cost
of traditional generation while satisfying power balance in the
network. The objective function C̄i(Pg,i, t) in this problem is
the piecewise linear approximation of the quadratic cost curve
in the DC OPF. The method iterates with a full AC power
flow, updating the Ploss term in the problem at each iteration,
to ensure the final solution is AC feasible. The linear program
solved at each iteration is given by:

min
∑
t∈T

∑
i∈G

C̄i(Pg,i, t) (6a)

1Complementarity of two variables a and b implies a× b = 0, i.e., if one
variable is non-zero, then the other one must be zero.

subject to (∀t ∈ T ):∑
i∈G

Pg,i(t)−
∑
i∈S

ri(t) +
∑
i∈W

(Wmax
i (t)− Pw,i(t)) =∑
i∈D

di(t) + Ploss(t)
(6b)

0 ≤ Pg,i(t) ≤ Pmax
g,i , ∀i ∈ G (6c)

−RDWN
i ≤ Pg,i(t)− Pg,i(t− 1) ≤ RUP

i , ∀i ∈ G (6d)
0 ≤ Pw,i(t) ≤Wmax

i (t), ∀i ∈ W (6e)
bi(0) ≥ 0, ∀i ∈ S (6f)

bi(t+ 1) = bi(t) + Tsηcrc,i(t)−
Ts
ηd
rd,i(t), ∀i ∈ S (6g)

bi(T + 1) = btermi , ∀i ∈ S (6h)
ri(t) = rc,i(t)− rd,i(t), ∀i ∈ S (6i)

rc,i ∈ [0, Rmax
c ], ∀i ∈ S (6j)

rd,i ∈ [0, Rmax
d ], ∀i ∈ S (6k)

0 ≤ bi(t) ≤ Bi, ∀i ∈ S, (6l)

and the overall method is described by the algorithm shown
in Figure 1.

Line limit constraints are nonlinear. However, to preserve
the linearity of the optimization problem in the AC-LP OPF,
the constraint,

f0i−j +
∑
k∈G

ai−j,k(Pg,k−rk−Pw,k−P 0
g,k+r0k+P 0

w,k) ≤ fmax
i−j

(7)
is added to the problem to enforce line-flow limits. This
constraint is a successive linearization of the line flow con-
straints at the current operating point. Thus, a constraint of
this form is added for every overloaded line after the initial
LP-powerflow iteration. The quantities with superscript ‘0’ are
results from the AC power flow, and are updated at every
iteration between the LP and AC power flow. The ai−j,k
coefficients represent the sensitivity of the line flow to changes
in generation (including conventional generation, wind power
and storage device injected power), and are derived in [1].

III. STORAGE COMPLEMENTARITY CONDITIONS

From an optimization perspective, the addition of wind
power and storage devices into power system models present
unique challenges that must be addressed. One issue of par-
ticular importance that is addressed in the formulations that
follow is complementarity between charging and discharging
of storage devices. From a purely mathematical point of
view, producing solutions that result in devices simultaneously
charging and discharging is not a problem. However, such so-
lutions are not physically meaningful. Explicitly enforcing this
complementarity in the OPF problem would require adding the
constraint,

rc,i × rd,i = 0, ∀i ∈ S, t ∈ T (8)

for every storage device in the network, which requires in-
teger variables. Two methods for enforcing complementarity
between storage charging and discharging are investigated.
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Fig. 1. AC-LP OPF Iterative Method.

The first is an iterative approach that does not require the
use of integer variables; because the AC-LP OPF is already
an iterative algorithm, this method lends itself well to the
first approach. The second method utilizes binary variables;
since the DC OPF already includes binary variables explicitly
enforcing adjacency of angle difference blocks, this approach
is implemented in the DC OPF. Because each approach does
not change the type of problem being solved or nature of the
method (iterative as compared to non-iterative), it is observed
that the convergence of the AC-LP OPF and DC OPF are
unchanged. The benefit of these additions is that the resulting
solutions are physically meaningful, and reveal at optimality
the charging/discharging patterns for storage devices.

Storage charging and discharging complementarity within
the DC OPF is an example of a broader class of problems,
namely quadratic programs with complementarity constraints
(QPCCs) [12]. This set of problems has been widely re-
searched, and many algorithms have been developed to solve
them. If the problem has m complementarity constraints, a
straightforward but inefficient way to solve the problem is
through full enumeration of the possible constraint values
satisfying complementarity. However, practical solution tech-
niques seek to avoid such enumeration. One possibility is to
use a semidefinite programming heuristic to find a suitable
subset of the 2m possible quadratic programs to solve, and
select an optimal solution from the results of that subset [13].
Another broad class of solution methods often used for these
problems include sequential quadratic programming [14]. Still
others include a modified logical Benders’ decomposition to
generate cuts of the feasible region, sparsification to form
a quadratic relaxation of the original QPCC, and penalty
function methods that maintain convexity but satisfy com-
plementarity at optimality [15]. This paper investigates two
methods that ensure complementarity but avoid increasing
the complexity of the original quadratic program (or linear

program).

A. Approach 1: Iterative Updates

The AC-LP OPF problem includes upper and lower bounds
on storage device charging and discharging. This method adds
a simple additional step after each iteration of the algorithm.
After the initial LP-powerflow iteration, the net of charging
and discharging is checked for every device to determine its
charging/discharging status. If the optimal solution (at that
iteration) reveals that device k ∈ S is charging, the upper limit
of discharging for that device is set to zero, so (6k) becomes,

rd,k ∈ [0, 0] (9)

which forces that device to stay charging at the next iteration,
and ensures complementarity between rc,k and rd,k. Likewise,
if device k ∈ S is discharging, (6j) is changed to,

rc,k ∈ [0, 0] (10)

which ensures the device stays discharging during the next LP-
powerflow iteration. Adding this check after the first iteration
enforces complementarity between storage charging and dis-
charging explicitly, ensuring physically meaningful solutions.
However, this assignment of a device’s charge/discharge status
at the first iteration may not be optimal for subsequent
iterations. To account for the fact that in subsequent iterations
it may be optimal for a storage device to switch its status,
additional checks are added.

At each subsequent iteration, if the device constraints en-
force charging and the amount the device is charging is at
its lower (zero) charging limit, this implies that it may be
optimal for the status of the device to change to discharging.
This is accomplished by reverting (6k) to its original form and
changing (6j) to match (10). This sets the upper charging limit
to zero and thus changes the device’s status from charging to
discharging. A similar switch is made if a discharging device
encounters its lower (zero) discharging limit. The updated AC-
LP OPF algorithm that enforces complementarity is shown in
Figure 2.

This algorithm enforces complementarity explicitly, due to
the fact that at every iteration exactly one of the device
charging or discharging upper limits is modified to force the
corresponding variable to zero. Additionally, the algorithm
allows for device status switching between iterations. There-
fore this algorithm produces optimal solutions to the OPF
problem formulated in Section II-B but maintains linearity of
the problem being solved.

B. Approach 2: Binary Variable Constraints

The second approach that has been implemented involves
the addition of binary variables to the OPF problem to explic-
itly enforce charging/discharging complementarity, as in [11].
This approach has the advantage that it preserves the non-
iterative nature of the DC OPF solution algorithm. Because
the adjacency conditions already use binary variables, this
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Fig. 2. Updated AC-LP OPF Iterative Method.

approach does not significantly increase the overall complexity
of the problem. The constraints,

0 ≤ rc,i(t) ≤ Rmax
c (Sc,i(t)), ∀i ∈ S, t ∈ T (11a)

0 ≤ rd,i(t) ≤ Rmax
d (1− Sc,i(t)), ∀i ∈ S, t ∈ T (11b)

Sc,i(t) ∈ {0, 1}, ∀i ∈ S, t ∈ T . (11c)

are added to the DC-OPF problem to explicitly enforce storage
complementarity.

IV. TEST CASE

Both OPF algorithms, with and without complementarity
enforced, were tested on a modified RTS-96 system [16]. The
RTS-96 system is comprised of three symmetric areas with 73
nodes and 120 lines. Figure 3 shows the topology of area 1 of
this system; areas 2 and 3 are identical. Five inter-area lines
connect the three areas. Significant wind generation was added
to area 1 of the system, with lesser wind added in areas 2
and 3. Correspondingly, traditional generators were removed
from service in area 1 and to a lesser extent in area 2. In
total, 19 wind locations were added in the system. Four storage
devices were also added at locations throughout the system.
This test case demonstrates the application of OPF algorithms
in systems that include storage and wind generation. The
example also highlights the potential cost benefit of scheduling

Fig. 3. RTS-96 System Topology.

renewable generation in conjunction with storage, and the
challenges that must be addressed in doing so.

The test cases assume that a unit commitment (UC) has
previously been run using day-ahead demand and wind fore-
casts. This UC produces a schedule of generators that are in
service. The OPF then runs every 15 minutes or so, using up-
to-date forecasts of demand and wind to establish the most
economical real-time operating conditions.

V. RESULTS

The OPF algorithms were run with and without storage
complementarity being enforced, to explore how the solution
quality might change. Two cases were considered. The first
assumed that the forecast values from the unit commitment
were correct, providing a baseline to which further results
could be compared. The second demonstrates how the methods
perform in the presence of forecast errors.

Figures 4 to 6 show the results for the base case, hours 10-
13 of day 1 of the RTS-96 system data. Online generation is
scheduled as shown in Figure 4, storage devices are scheduled
as in Figures 5 and 6, and available wind generation is
scheduled to maintain power balance. Figure 5 shows the
total change in state-of-charge across all devices at each
hour, and Figure 6 shows the total net power injection for
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Fig. 4. Base Case: Total Conventional Generation.

Fig. 5. Base Case: Total Change in SOC.

all storage devices at each hour. In both the DC OPF and
AC-LP OPF methods, without complementarity enforced, the
optimal solution may not be physically realizable. Figure 4
shows the effect on the scheduling of conventional generation,
and therefore total cost, of adding storage complementarity
constraints. The two methods of enforcing complementarity
result in very similar generation schedules, and therefore the
operating cost is almost equal.

Figures 5 and 6 highlight an important phenomenon that
can occur when simultaneous charging and discharging is
observed. Examining the AC-LP OPF results in Figure 5,
with and without complementarity enforced, the change in
state-of-charge at each hour is nearly equal. However, the
corresponding AC results in Figure 6 indicate that for the
same change in state-of-charge, storage devices appear to the
network as much larger loads when simultaneous charging
and discharging occur. In other words, when complementarity
is not enforced, solutions that undergo simultaneous charging
and discharging will always underestimate the state-of-charge,
as proven in [17].

Fig. 6. Base Case: Total Storage Demand.

Fig. 7. Altered Wind Case: Total Conventional Generation.

Fig. 8. Altered Wind Case: Total Storage Demand.

Figures 7 and 8 show the results of the OPF methods when
the forecast and actual values of available wind differ. In this
case actual wind is 10% greater than predicted in area 2 at
hours 10 and 11, and 10% greater in area 3 at hours 12 and 13.
Recall that the UC schedule is based on forecast values, and
so is inconsistent with the altered wind availability. Therefore,
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Fig. 9. Base Case (Left) and Altered Wind Case (Right) Total Cost.

in order to establish a meaningful comparison between the
OPF results and the UC schedule, generation shift factors
(GSFs) were used to adjust the UC schedule to eliminate line
overloads [1]. This emulates operational practice.

Trends observed for the base case are again apparent in
Figures 7 and 8. As in the base case, storage complementarity
is not achieved without explicit constraints. The total change
in state-of-charge across all devices is underestimated when
complementarity is not enforced. However, as with the base
case, the objective cost changes very little with the addition of
explicit complementarity constraints. In fact, Figure 9 shows
that both the DC OPF and AC-LP OPF achieve almost the
same objective value with and without complementarity en-
forced. In this case, enforcing a physically meaningful solution
does not incur additional cost due to the availability of excess
(free) wind generation.

As there is greater wind in the network in the second case,
Figure 9 shows that a slightly lower operating cost can be
achieved relative to the base case, highlighting the benefits of
wind generation availability. Finally, comparing the OPF and
UC (with GSF) costs, both OPF algorithms achieve a more
economical schedule in the presence of wind forecast errors.

VI. CONCLUSIONS

The DC OPF and AC-LP OPF problems have been formu-
lated to include wind and storage, and to consider a multiple
time-step optimization horizon. These formulations address the
challenges associated with adding storage, namely including
temporal coupling over the time horizon and complementarity
between storage charging and discharging. Two methods of
enforcing storage complementarity have been demonstrated.
Compared with other solution methods used for quadratic
programs with complementarity constraints (QPCCs), the pro-
posed methods are simple to implement and do not increase the
complexity of the original OPF problems. The two proposed
methods maintain the convergence properties of the AC-LP
and DC OPF problems.
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