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Abstract - Model predictive control (MPC) is one of the
few advanced control methodologies that have proven to be
very successful in real-life control applications. MPC has
the capability to guarantee optimality with respect to a de-
sired performance cost function, while explicitly taking con-
straints into account. Recently, there has been an increas-
ing interest in the usage of MPC schemes to control power
networks. The major obstacle for implementation lies in the
large scale of power networks, which is prohibitive for a cen-
tralized approach. In this paper we critically assess and com-
pare the suitability of three model predictive control schemes
for controlling power networks. These techniques are ana-
lyzed with respect to the following relevant characteristics:
the performance of the closed-loop system, which is eval-
uated and compared to the performance achieved with the
classical automatic generation control (AGC) structure; the
decentralized implementation, which is investigated in terms
of size of the models used for prediction, required measure-
ments and data communication, type of cost function and
the computational time required by each algorithm to ob-
tain the control action. Based on the investigated properties
mentioned above, the study presented in this paper provides
valuable insights that can contribute to the successful decen-
tralized implementation of MPC in real-life electrical power
networks.

Keywords - Model predictive control, Decentralized
control, Distributed control, Power systems.

1 INTRODUCTION

CURRENT power networks consist of large scale
power generating units and automatic generation

control (AGC) is used for real-time control of the system
frequency and tie line interchange among control areas in
the system [1]. However, there is a strong tendency to
implement an increasing amount of decentralized power
generating units and to liberalize the power markets. Dis-
tributed generation introduces uncertainties in generation

and therefore complicates control [2]. Large unpredictable
power fluctuations from renewable energy sources, e.g.
wind power, require efficient and fast acting controllers.

Recently, it was observed [3, 4, 5] that the model pre-
dictive control (MPC) technique has a potential for solv-
ing the above mentioned problems that will appear in fu-
ture electrical power networks. The reason for this lies
in the capability of MPC to guarantee optimality with re-
spect to a desired performance objective, while explicitly
taking constraints into account. Furthermore, MPC allows
the usage of disturbance models, which can be employed
to counteract the uncertainties introduced by renewable
energy sources. For a detailed survey of MPC and con-
strained optimal control the interested reader is referred to
[6, 7].

Nevertheless, the fact that model predictive control is
a global centralized control technique is a considerable
drawback when power system control is considered. Cen-
tralized control implies that a single controller is able to
perform the following sequence of operations within a
time sample: measure all outputs of the system, compute
an optimal control action and apply this control action to
all actuators in the power system. As power networks are
large scale systems, computationally as well as geograph-
ically, it is practically impossible to implement a central-
ized MPC controller.

This is one of the reasons for which the non-
centralized formulation and implementation of MPC re-
ceives more and more interest, see for example [3, 8, 9, 10,
11, 12]. Roughly speaking, non-centralized MPC schemes
can be divided into two categories: decentralized tech-
niques, where there is no communication in between dif-
ferent controllers, and distributed techniques, where com-
munication between different controllers is allowed. Fur-
thermore, distributed MPC techniques can be categorized
as techniques that require communication with all the con-
trollers in the network and techniques that require commu-
nication solely with directly neighboring controllers.

A distinction between non-centralized MPC tech-

16th PSCC, Glasgow, Scotland, July 14-18, 2008 Page 1



niques can also be made depending on the level of cou-
pling, i.e. some schemes handle dynamically coupled sys-
tems, while others handle dynamically decoupled systems
with coupled objectives. The challenge for power sys-
tems is to obtain a computationally viable non-centralized
MPC algorithm, without losing properties such as opti-
mality and state constraint satisfaction. The latter property
is crucial to power systems, due to the dynamic coupling
present in a power network.

Among the research that focusses on non-centralized
MPC, implementations for power system control have al-
ready been illustrated [3, 8, 9], differing in the require-
ments for computational power, data communication and
model size. In this paper we select three non-centralized
MPC techniques that can handle coupled dynamics. The
selected techniques belong to one of the above mentioned
categories1. The first non-centralized MPC technique [11]
considered for power system control does not require any
communication for a specific choice of subsystem decom-
position and therefore, belongs to the decentralized cat-
egory. However, this scheme also allows for overlap-
ping subsystems case in which it requires communica-
tion. In what follows we will refer to the algorithm from
[11] as decentralized model predictive control (DMPC).
The second non-centralized MPC scheme [8] that we in-
vestigate requires communication solely between directly
neighboring controller areas and is in the following re-
ferred to as stability constrained distributed model predic-
tive control (SC-DMPC). The third non-centralized MPC
technique [4] requires communication between all subsys-
tems and uses an iterative procedure to compute the con-
trol action. This scheme is referred to as feasible coop-
eration based model predictive control (FC-MPC). These
three non-centralized MPC schemes will be compared to
a centralized MPC algorithm and with the classical AGC
control structure currently employed in control of real-life
power systems.

2 Centralized Model Predictive Control

Model predictive control (also referred to as receding
horizon control) is a control strategy that belongs to the
finite horizon optimal control category. The unique, dis-
tinguishing feature of MPC lies in its ability to guarantee
optimality with respect to a desired performance objec-
tive while explicitly taking constraints into account. This
is achieved by solving online a finite horizon open-loop
optimal control problem at each time instant. Within this
problem, a model of the plant initialized with the current
system state is used to obtain a prediction of the future
behavior of the plant. In this way, constraints on states
and inputs can be explicitly taken into account in the com-
putation of the control law. After a sequence of optimal
control moves is computed, only the first one is applied to
the plant and the whole proces is repeated at the next time
instant. This is the main difference from conventional con-
trol which commonly uses a pre-computed control law.

A graphical illustration of the basic principles behind
MPC is depicted in Figure 1.

Past Future / predictions
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Figure 1: A graphical illustration of Model Predictive Control.

The typical system model considered in this paper is a
discrete time state-space representation, which is given in
the linear case by

x(t + 1) = Ax(t) + Bu(t), (1)

where A ∈ R
n×n, B ∈ R

n×m, x ∈ R
n is the state and

u ∈ R
m is the control input. R is the set of real numbers.

For an arbitrary sequence u = (u(0), u(1), . . .) we use the
notation u[k] to denote the truncation of u at k ∈ Z, i.e.
u[k] := (u(0), u(1), . . . , u(k)) with k ≥ 1. Z is the set of
integer numbers.

The open-loop finite horizon optimal control problem
to be solved online is formally defined as follows.

Problem 2.1 At discrete time t ∈ Z+ let x(t) and N ≥ 1
be given, set x̄(0) := x(t) and solve

PN (x) : V∗
N (x) = min

ū[N−1]
{VN (x, ū[N−1])...

...|ū[N−1] ∈ UN (x)},
(2a)

VN (x, ū[N−1]) =
N−1∑
k=0

�(x̄(k), ū(k)) + F (x̄(N))

=
N−1∑
k=0

x̄�(k)Qx̄(k) + ū�(k)Rū(k)

+ x̄�(N)P x̄(N).
(2b)

In Problem 2.1, ū[N−1] = (ū(0), . . . , ū(N − 1)) is the se-
quence of control moves and N is the prediction horizon.
Q = Q� � 0, i.e. Q is a positive semidefinite symmetric
matrix, while R = R� � 0, i.e. R is a positive defi-
nite symmetric matrix. The matrix P = P� � 0 weighs
the terminal state and is usually computed off-line such
that stability is guaranteed, as will be shown below. x̄(k)
and ū(k) denote the predicted state and control input at
time instant t + k. Given an open-loop control trajectory
ū[N−1], a prediction model of the form

x̄(k + 1) = Ax̄(k) + Bū(k), k = 0, . . . , N − 1, (3)
1Regarding other non-centralized MPC techniques, not considered in this paper, the interested reader is referred to [3, 8, 9, 10, 11, 12] and the

references therein.
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is used to predict the future behavior of the system. At
each time instant t, this model is initialized with the state
measurement of the real system, i.e. x̄(0) := x(t). Note
that the real system (1) and the prediction model (3) do
not have to be identical, as will be seen in the next section.
The prediction model is usually only an approximation of
the real system.

The control problem defined in (2a) is to minimize the
cost function VN (x, ū[N−1]) subject to all input sequences
ū[N−1] in the set UN (x). This set contains all input se-
quences that satisfy certain desired state and input con-
straints, i.e.

UN (x) :={ū[N−1] ∈ U
N |x̄(k) ∈ X,

k = 1, . . . , N − 1, x̄(N) ∈ Xf},
(4)

where U
N is the N-times Cartesian product, i.e. U

N :=
U × . . . × U. U is a compact subset of R

m and X is a
closed subset of R

n. These sets implement physical input
and state constraints. Furthermore, to guarantee stability,
the terminal state x̄(N) is constrained in a terminal set Xf ,
which must satisfy certain properties, outlined later in this
section.

After the open loop optimization problem (2) is
solved, the first element of the calculated optimal control
sequence ū∗

[N−1] = (ū∗(0), ū∗(1), . . . , ū∗(N − 1)) is ap-
plied to the system (1), i.e. u(t) := ū∗(0), and the rest of
the control sequence is discarded. At the next time instant,
i.e. t = t + 1, the state of the system is measured and the
procedure described above is repeated. This strategy is re-
ferred to as the moving or the receding horizon strategy.
In this way feedback is introduced in a closed loop way
and robustness is increased.

Stability of the resulting closed-loop system can be
guaranteed a priori by choosing a terminal set and a ter-
minal weight P that satisfy the following conditions [6]:
Xf must be a positively invariant set [13] satisfying the
following property:

Xf ⊆ O∞ :={x ∈ R
n | K(A − BK)kx ∈ U and

(A − BK)kx ∈ X, k = 0, . . . ,∞}. (5)

The pair {P,K} can be obtained as the solution of the
unconstrained infinite horizon LQR problem [6], i.e.

P = (A + BK)�P (A + BK) + K�RK + Q, (6a)

K = −(R + B�PB)−1B�PA. (6b)

In [6] it is proven that system (1) in closed-loop with a
predictive control law obtained by solving Problem 2.1
in a receding horizon manner, with Xf calculated for in-
stance as in [13], is asymptotically stable. Clearly, a non-
centralized implementation of MPC affects both feasibil-
ity of Problem 2.1 and closed-loop stability and necessi-
tates new stabilization conditions. The following section
presents possible solutions in this framework.

3 Description of the non-centralized MPC schemes

As already explained in the Introduction, the central-
ized implementation of the MPC methodology described

in Section 2 is not possible in the case of power networks
due to the very large scale of the system. Therefore, in this
section we will present three non-centralized MPC tech-
niques that are more suitable for power system control.

3.1 Decentralized MPC (DMPC)

The DMPC technique [11] uses the fact that the sys-
tem can be divided into M subsystems and proposes the
design of local MPC controllers, one for each subsystem.
The total system to be controlled is described by a discrete
time state space model of the form:

x(t + 1) = Ax(t) + Bu(t), (7)

with A ∈ R
n×n, B ∈ R

n×m, x ∈ R
n and u ∈ R

m. The
division into M subsystems is then performed by an ex-
plicit transformation via suitably defined matrices Wi and
Zi. These matrices collect the states and inputs belong-
ing to subsystem i and are further employed to define the
weighting matrices for each subsystem’s states and inputs
as follows:

xi = W�
i x, ui = Z�

i u, (8a)

Qi = W�
i QWi, Ri = Z�

i RZi, (8b)

with xi ∈ R
ni , ui ∈ R

mi , Qi = Q�
i � 0 and Ri = R�

i �
0. Note that by (8a) each entry in x is in general assigned
to one or more xi and each entry in u is assigned to one
or more ui. This allows for definition of overlapping sub-
systems. For more information about the construction of
these matrices, the reader is referred to [11]. Compared
to centralized MPC, the DMPC control scheme assigns
a controller to each subsystem and each controller then
solves online its own local open loop finite horizon opti-
mization problem. More precisely, with subsystem i the
following finite horizon problem is defined:

Problem 3.1 DMPC

PN,i(xi) : V∗
N,i(xi) = min

ū[N−1],i
{VN,i(xi, ū[N−1],i)...

...|ū[N−1],i ∈ UN,i(xi)},
(9a)

VN,i(xi, ū[N−1],i) =
N−1∑
k=0

�i(x̄i(k), ūi(k)) + Fi(x̄i(N))

=
N−1∑
k=0

x̄�
i (k)Qix̄i(k) + ū�

i (k)Riūi(k)

+ x̄�
i (N)Pix̄i(N).

(9b)

Note that for each subsystem i the cost function now de-
pends solely on the local states and inputs, i.e. on xi(t)
and ū[N−1],i, and therefore a solution to the DMPC prob-
lem is no longer optimal with respect to the centralized
MPC objective (2a), unless x ≡ xi and u ≡ ui, ∀i.
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Given a certain open-loop control input sequence a
prediction model of the form

x̄i(k + 1) = Aix̄i(k) + Biūi(k), k = 0, . . . , N − 1,
(10a)

Ai = W�
i AWi, Bi = W�

i AZi, (10b)

is used to predict the state trajectories, where Ai ∈
R

ni×ni , Bi ∈ R
ni×mi . The prediction model uses an ap-

proximation of the real system, by partially neglecting dy-
namic coupling existing among neighboring subsystems.
The reduction of the complexity of the prediction model
compared to the total system depends on the number of
subsystems. The prediction model is initialized with the
partial state measurement of the real system at the current
discrete-time instant, i.e.

x̄i(0) := W�
i x(t). (11)

The optimization problem (9a) employs the following fea-
sibility set:

UN,i(xi) :={ū[N−1],i ∈ U
N |ūi(k) = Kix̄i(k),

k = Nu, . . . , N − 1}, (12)

where 1 ≤ Nu ≤ N − 1 is the so-called control horizon
[6]. Note that the DMPC approach does not incorporate
state constraints. To guarantee a priori local stability of
each subsystem, a terminal penalty matrix Pi for each sub-
system i can be defined following the centralized case as
follows:

Pi = (Ai + BiKi)�Pi(Ai + BiKi) + K�
i RiKi + Qi,

(13a)

Ki = −(Ri + B�
i PiBi)−1B�

i PiAi. (13b)

If Ki ≡ 0, as done in [11], then (13a) reduces to the Lya-
punov equation, i.e. to Pi = A�

i PiAi+Qi. Note that with
Qi � 0, this implies that each subsystem has to be open-
loop stable, i.e. all eigenvalues of Ai must be within the
unit circle. After all M controllers have calculated their
local optimal control input sequence ū∗

[N−1],i, the collec-
tion of all local inputs is applied to the global system (7),
i.e.

u(t) = [ū∗
1(0), . . . , ū∗

i (0), . . . , ū∗
M (0)], (14)

and the whole procedure is repeated at the next time in-
stant.

It is important to notice that in general x(t+k) �= x̄(k)
for k = 1, . . . , N , i.e. in general the predicted state does
not coincide with the real system state trajectory. This is
a result of the fact that the prediction model (10) only ap-
proximates the real system and is initialized with partial
state measurements, while the dynamic coupling between
the subsystems is partially ignored. If the dynamic cou-
pling is strong, the prediction mismatch can be large. Due
to the fact that the optimization problem is based on pos-
sibly wrong predictions, this can result in loss of perfor-
mance. The advantages of this scheme are the relatively

simple optimization problems that have to be solved by
each subsystem, so the computational requirements are
low. Furthermore, it is important to notice that this scheme
allows for non-overlapping subsystems, i.e each entry in
x can be assigned to one and only one xi and each en-
try in u to one and only one ui. Although overlapping
subsystems are expected to achieve better performance,
non-overlapping subsystems have a big advantage as no
communication network is required between subsystems.

Feasibility of the optimization problem is guaranteed,
because no state constraints are taken into account. Fur-
thermore the article [11] provides a posteriori verifiable
stability conditions. More precisely, the proposed stabil-
ity test checks overall stability of the entire system (7) in
closed loop with the M decentralized MPC controllers, if
the matrix Pi of the controller i is chosen as indicated in
(13a). This a posteriori stability condition checks whether
the sum of all cost functions is a Lyapunov function for the
overall system, and is based on the explicit form of each
MPC controller thereby creating a PWA system. Under
certain conditions this reduces to a positive semidefinite-
ness check of a square n×n matrix. The drawback of this
approach is that it has to be carried out at a centralized
level, which partly cancels out the advantages of the de-
centralized structure. For more detailed information about
the stability test, the reader is referred to [11].

3.2 Stability constrained distributed MPC (SC-DMPC)

The SC-DMPC scheme from [8] requires that the plant
dynamics, i.e.

x(t + 1) = Ax(t) + Bu(t), (15)

are given by the following matrices:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 . . . A1i . . . A1M

...
. . .

...
. . .

...
Ai1 . . . Aii . . . AiM

...
. . .

...
. . .

...
AM1 . . . AMi . . . AMM

⎞
⎟⎟⎟⎟⎟⎟⎠

, (16a)

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

B11 . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . Bii . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . BMM

⎞
⎟⎟⎟⎟⎟⎟⎠

, (16b)

with A ∈ R
n×n, B ∈ R

n×m, Aii ∈ R
ni×ni , Aij ∈

R
ni×nj , Bii ∈ R

ni×mi , x ∈ R
n and u ∈ R

m. Note that
the B matrix is block diagonal, i.e. a certain input only
affects a single subsystem directly.

At each discrete-time instant t the state xi(t) of each
subsystem is measured and each MPC controller solves
the following local open loop optimization problem.
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Problem 3.2 SC-DMPC

PN,i(xi) : V∗
N,i(xi) = min

ū[N−1],i
{VN,i(xi, ū[N−1],i)...

...|ū[N−1],i ∈ UN,i(xi)},
(17a)

VN,i(xi, ū[N−1],i) =
N−1∑
k=0

�i(x̄i(k), ūi(k)) + Fi(x̄i(N))

=
N−1∑
k=0

x̄�
i (k)Qix̄i(k) + ū�

i (k)Riūi(k)

+ x̄�
i (N)Pix̄i(N).

(17b)

The SC-DMPC uses the following prediction model:

x̄i(k + 1) = Aiix̄i(k) + Biiūi(k) +
M∑
j �=i

Aij x̄j(k). (18)

Notice that this model takes the dynamic coupling of
neighboring subsystems into account. However, as the
real state trajectory of the neighbors is unknown, the pre-
dicted state trajectory of the previous time instant t − 1,
received from all direct neighbors, is used instead, i.e.

x̄j(k) := x̄∗
j (k|t − 1), (19)

where x̄∗
j (k|t − 1) is the optimal predicted state at time k

with initial condition x̄j(0) := xj(t − 1).
The prediction model is initialized with the current

partial state measurement of the system, i.e.

x̄i(0) := xi(t). (20)

Note that Aij = 0 if the the subsystem j is not directly
coupled to subsystem i. Certain systems, as for example
the power systems, are loosely coupled, so the number of
elements Aij (i �= j) that are zero is large. This signifi-
cantly reduces the complexity of the prediction model.

The set of feasible input sequence for Problem 3.2 is
defined as follows:

UN,i(xi) := {ū[N−1],i ∈ U
N | ‖x̄i(1)‖2

2 ≤ l̂i}, (21)

where

l̂i := max{‖x̄i(1|t−1)‖2
2, ‖x̄i(0)‖2

2}−βi‖x1
i (0)‖2

2, (22)

with 0 < βi < 1 as a tuning parameter. Furthermore,

x̄i(1|t − 1) := Aiix̄i(0) + Biiūi(0) +
M∑
j �=i

Aij x̄j(0),

(23a)

x̄i(0) := xi(t − 1), ūi(0) := ū∗
i (t − 1), (23b)

and x1
i (0) is obtained from x(t) via a similarity transfor-

mation that is based on the controllable companion form.
For more details see [8].

The terminal penalty matrix P that weights the ter-
minal state x̄(N) can be computed as the solution of the
unconstrained infinite horizon LQR problem, i.e.

Pi = (Ai + BiKi)�Pi(Ai + BiKi) + K�
i RiKi + Qi,

(24a)

Ki = −(Ri + B�
i PiBi)−1B�

i PiAi, (24b)

as done also in the centralized case. After all M con-
trollers have calculated the local optimal control input se-
quence ū∗

[N−1],i, the collection of all local inputs is ap-
plied as input to the global system (15), i.e.

u(t) = [ū∗
1(0), . . . , ū∗

i (0), . . . , ū∗
M (0)]. (25)

After the input is applied the whole procedure is repeated
at the next time instant. Notice that the stability of the SC-
DMPC closed-loop system is ensured by the contraction
constraint on the one-step ahead predicted state for each
subsystem, which is explicitly required in each UN,i(xi).

Although SC-DMPC takes dynamic coupling into ac-
count, in the prediction model, there is still a prediction
mismatch, i.e. x(t + k) �= x̄(k) for k = 1, . . . , N be-
cause the assumed dynamic coupling is an estimation re-
ceived from the neighbors, xj(k) �= x̄∗

j (k|t−1). However,
the prediction mismatch, i.e. the mismatch between the
predicted state trajectories [x̄1(k), . . . , x̄i(k), . . . , x̄M (k)]
and the state trajectories in case the collection of open loop
inputs [ū1(k), . . . , ūi(k), . . . , ūM (k)] is applied to the full
system (15), is in general smaller compared to DMPC,
where dynamic coupling is (partially) neglected. There-
fore, it is expected that the performance will be improved.
The advantage of this approach lies in the fact that the
predictions are improved at the cost of a slight increase
in complexity of the optimization problem. Furthermore,
only a local state measurement is required for initialization
of the prediction model. However, this technique requires
a communication network.

Feasibility of the SC-DMPC scheme is guaranteed, as
the stabilization constraint, i.e. the contraction constraint
defined by (21) and (22), is based on a controllable com-
panion form. In [8] it is proven that this ensures the ex-
istence of a feasible control input. Moreover, it is proven
that the collection of calculated control inputs comprises
a feasible solution for the overall system. Furthermore, it
is proven that the collection of calculated control inputs
comprises a feasible solution for the overall system. For
more details on feasibility and stability, the reader is re-
ferred to [8].

3.3 Feasible Cooperation based MPC (FC-MPC)

DMPC and SC-DMPC solve locally different opti-
mization problems. Such strategies converge to subopti-
mal Nash equilibria, at best2. Feasible Cooperation-based
MPC [9], on the other hand, solves the global optimization
problem within every subsystem, thus ensuring that the
resulting solution is Pareto optimal. This is an attractive

2Examples have been found where the Nash equilibria are unstable [4]. In such cases, the optimization process is divergent.

16th PSCC, Glasgow, Scotland, July 14-18, 2008 Page 5



feature of the FC-MPC over the DMPC and SC-DMPC.
However, the FC-MPC requires communication with all
subsystems, not just with directly neighboring ones.

The open-loop optimization problem solved online by
each FC-MPC controller minimizes the same cost func-
tion over the local control input sequence3 ū[N−1],i. Due
to the fact that a controller is only able to optimize over its
own optimization variables, an iterative procedure is used
to achieve the global optimal solution. In the following
p denotes the iteration number. The FC-MPC problem is
formulated next.

Problem 3.3 FC-MPC

Pp
N,i(x) : Vp∗

N,i(x) = min
ūp

[N−1],i

{Vp
N,i(x, ūp

[N−1],i)...

...|ūp
[N−1],i ∈ U p

N,i(x)},
(26a)

Vp
N,i(x, ūp

[N−1],i) =
N−1∑
k=0

�(x̄p(k), ūp
i (k)) + F (x̄p(N))

=
N−1∑
k=0

x̄p�(k)Qx̄p(k) + ūp�
i (k)Riū

p
i (k)

+ x̄p�(N)P x̄p(N).
(26b)

In order to predict the future state trajectory x̄, the follow-
ing prediction model is used for each subsystem i:

x̄p(k+1) = Ax̄p(k)+B[ūi,p
1 (k), . . . , ūp

i (k), . . . , ūi,p
M (k)],

(27)
where ūp

i (k) is the control input and optimization variable
of subsystem i. The inputs of the other subsystems used
by controller i (denoted by ūi,p

j (k)) are set equal to the op-
timal solution obtained during the previous iteration, i.e.

ūi,p
j (k) := ūp−1

j (k), k = 0, . . . , N − 1,

j = 1, . . . , M, j �= i,
(28)

where M denotes the total number of subsystems. The
prediction model (27) is initialized with the current state
of the system, i.e.

x̄p(0) := x(t), ∀p. (29)

The feasible set is defined as:

U p
N,i(x) := {ūp

[N−1],i ∈ U
N}, ∀p. (30)

The terminal penalty matrix P used in (26b) is the solu-
tion of the unconstrained infinite horizon LQR problem,
i.e.

P = (A + BK)�P (A + BK) + K�RK + Q (31a)

K = −(R + B�PB)−1B�PA. (31b)

In [9], K is chosen equal to zero, which yields P =
A�PA + Q. At each discrete time instant t the optimal
control action is calculated via an iterative procedure, de-
fined as follows:

• p = 0; the iteration variable is set to zero.

• ū0
i (k) := up∗

i (k+1|t−1); the initial guess for the inputs
at the first iteration, p = 0, is equal to the optimal input
sequence of the previous time instant, t − 1.

while(ρi > ε)

• ūp∗
[N−1],i = arg Vp∗

N,i(x) ∀i; all M controllers solve the
optimization problem resulting in a local optimal control
sequence.

• ūp
[N−1],i = wiū

p∗
[N−1],i + (1 − wi)ū

p−1
[N−1],i; the actual

control is sequence is updated using the tuning parameter
w.

• ρi = ‖ūp
[N−1],i − ūp−1

[N−1],i‖; a check is performed to
verify the stopping criterion.

• The local solution ūp
[N−1],i is transmitted to all other con-

trollers j = 1, . . . , M, j �= i.

• p = p + 1; the iteration variable is increased by one.

end

When the stop criterion is satisfied for some p ≥ 1, all
M controllers communicate the calculated control actions
which are collected to form the control input of the overall
system, i.e.

u(t) = [ūp
1(0), . . . , ūp

i (0), . . . , ūp
M (0)]. (32)

The feasibility of FC-MPC is guaranteed because there are
no state constraints. Furthermore, convergence of the it-
erative procedure and stability of the closed loop system
is proven4. As the controllers solve a global optimiza-
tion problem and the sequence of cost functions is non-
increasing with iteration number p, the cost function can
be used as a Lyapunov function to prove stability. For
more detailed information about these results, the reader
is referred to [9].

4 Description of the benchmark test example and
simulation results

Automatic generation control (AGC) provides a suit-
able example for assessment and comparison of non-
centralized MPC schemes for control of electrical power
systems. All the simulations performed in this paper are
based on the benchmark power system from [9], which is
presented in the following subsection.

4.1 Test network and simulation scenario

A schematic representation of the test power system is
depicted in Figure 2.

Subsytem 4Subsystem 3Subsystem 2Subsystem 1

Node 1 Node 4Node 3Node 2Tie line 12 Tie line 23 Tie line 34

Figure 2: Schematic representation of the power network.

3Note that the notation used in [9] is adapted so that it is consistent with the notation of this paper.
4In fact, in [4] it has been shown that only a single iteration of the algorithm is required to guarantee stability.
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The system consists of 4 control areas, with the dy-
namics of each area given by the following standard
model:

dΔωi

dt
=

1

Ji
(ΔPMi − DiΔωi − ΔP ij

tie − ΔPLi), (33a)

dΔPMi

dt
=

1

τTi

(ΔPVi − ΔPMi), (33b)

dΔPVi

dt
=

1

τGi

(ΔPrefi − ΔPVi −
1

ri
Δωi), (33c)

dΔP ij
tie

dt
= bij(Δωi − Δωj), (33d)

ΔP ji
tie = −ΔP ij

tie. (33e)

These equations describe the dynamics of a generator and
a tie line connecting the generators, and are graphically
depicted in Figure 3. By combining these two “building
blocks” a dynamical model of a power network with an
arbitrary structure can be constructed.

1
1 Gis

1
1 Tis

1

i iJ s D
1

ir

 ref iP i

ij
tie Lij

P P

ijb

s

i

j

ij
tieP

A

B

Figure 3: Graphical representation of the dynamics of a generator (A)
and tie line (B).

The parameter values chosen for the example are given
in the Appendix. In particular, note that the control input
to the control area i is the signal ΔPrefi

, which denotes
the change in the reference value for power production in
that area. The exogenous input signal ΔPLi

represents
the accumulated change of the power demand in the cor-
responding area.

The classical AGC structure used in current power net-
works consists of local PI controllers that bring the fre-
quency deviation and the tie line power flow deviation
to zero. The controller for control area i is defined by
dΔPrefi

dt = Ki(−BiΔωi − ΔP ij
tie), with Ki and Bi as

tuning parameters. For a more detailed description of clas-
sical AGC the reader is referred to [1].

The simulation scenario used in the assessment of the
closed-loop performance is the following. At the time
instant zero, the system is in a steady state with the fre-
quency and the tie-line flow deviations equal to zero. At
t = 10 a step disturbance of +0.25 affects control area 2,
while at time instant t = 60 a step disturbance of −0.25
affects control area 3. The simulation parameters such as
weighting matrices and prediction horizon are chosen the
same for all techniques. The numerical data related to the
example can be found in the Appendix. Furthermore, the
optimization problems for all the assessed MPC schemes
are implemented as quadratic programs and solved using
the Matlab quadprog solver 5. The SC-DMPC scheme
is slightly adapted to make an implementation with a QP

solver possible. More precisely, the 2-norm used for the
contraction constraint is replaced by the 1-norm. Also,
the number of iterations of FC-MPC is fixed to 1. Al-
though DMPC allows for overlapping subsystems, decou-
pled subsystems are used for the simulation to investi-
gate the performance of a completely decentralized con-
trol scheme.

4.2 Simulation results

The simulations results for all 3 non-centralized
schemes are presented in Figure 4 together with results ob-
tained with a centralized MPC algorithm and the classical
AGC structure. From the state trajectories, only the trajec-
tories of the network frequency deviation Δω2 and of the
tie-line power flow deviation ΔP 23

tie are plotted. Further-
more, the control inputs applied to the subsystems in area
2 and 3, i.e. ΔPref2 and ΔPref3 , are depicted in Figure 4.
Table 1 shows the settling time 6 of the weighted states
and the performance in the 1-norm, i.e.

∑200
t=0 |Qx(t)|.

Settling time (s) Norm

ω1 ω2 ω3 ω4 P12 P23 P34

AGC - - - - - - - 19.25

MPC 112 109 105 94 124 116 125 7.03

FC-MPC 111 109 104 94 124 116 125 7.05

DMPC 130 132 148 139 177 199 151 9.55

SC-DMPC 117 116 124 125 152 186 127 10.99

Table 1: Performance figures, settling time and 1-norm

The simulation results indicate that the centralized
MPC scheme achieves the best performance in terms of
the settling time and the overshoots. In contrast, the clas-
sical AGC structure is characterized by the worst perfor-
mance with respect to settling time and overshoots, i.e. all
the non-centralized MPC schemes outperform the classi-
cal AGC. It is expected that the performance of the non-
centralized control techniques is directly correlated with
the level of communication between subsystems. The
results of the performed simulations are in conformance
with this expectation, although the observed difference in
the settling time between DMPC and the SC-DMPC con-
trollers is very small. Finally, note that FC-MPC performs
almost identically with the centralized MPC, in spite the
fact that only one iteration in the FC-MPC scheme was
allowed.

The computational complexity can be determined by
inspection of the size of the optimization problem. As ex-
plained before, the optimization problems are quadratic
programs of the form:

min
x

x�Hx, (34a)

subject to Ax ≤ B, (34b)

Aeqx = Beq. (34c)

The computational complexity depends on the size of A,
B, Aeq, Beq and H . The size of the matrices A and Aeq

5From the available QP solvers (NAG, CLP, SeDuMi), quadprog (version 3.1.2 (R2007b)) was the fastest solver for this problem.
6The formal definition of settling time is slightly adapted, as we consider settling time as the time it takes for the states to settle within a certain bound

after two step disturbances.
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Figure 4: Simulation results of the considered control techniques

for this specific problem is listed in Table 2 for each algo-
rithm (the size of B, Beq and H can be derived from these
matrices).

Technique A Aeq

Cent. MPC 152 × 376 300 × 376

FC-MPC 38 × 319 300 × 319

SC-DMPC 39 × 99 80 × 99

DMPC 38 × 99 80 × 99

Table 2: Sizes of optimization problem for QP solver

The computational complexity can also be judged by
the computation time that is required for solving the op-
timization problem of controller i at time instant t. The
results are depicted in Figure 5.
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Figure 5: The computation time for all algorithms.

The results show that from a computational point
of view DMPC and SC-DMPC are preferred as these

techniques require significantly less computational power
compared to centralized MPC. The computational time of
DMPC and SC-DMPC are comparable as the size of the
optimization problem is the same, except from an addi-
tional state constraint in SC-DMPC. Whenever this con-
straint is active, as can be observed in Figure 5 around
t = 10s, the computational time required to solve the
SC-DMPC problem can increase considerably. This is-
sue could be resolved by relaxing the stabilization con-
straint. FC-MPC shows a slightly reduced computational
time compared to centralized MPC and is therefore only
advantageous for a small number of iterations.

5 Conclusions

In this section we summarize some constructive rec-
ommendations for the future implementation of non-
centralized MPC in power system control. Firstly, the
large scale of real-life power networks prohibits a non-
centralized implementation of MPC that requires commu-
nication with a large number of subsystems in the network.
This means that Pareto optimality of a non-centralized
MPC control action is not a feasible goal for current power
networks. Future advances in communications and in-
creasing processing power might bring this goal closer
to realization. Currently, however communication be-
yond directly neighboring subsystems, is unrealistic. Sec-
ondly, a completely decentralized implementation of MPC
seems to be less efficient with respect to performance but
still, much better than the classical AGC control structure.
Therefore there is room for a tradeoff: one can either use
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decentralized MPC if the provided performance is accept-
able or, distributed MPC with limited communication can
provide a feasible alternative for increasing performance
in real-life power system control. In this latter case, the
accuracy of the estimates of the real-system state trajec-
tories plays a crucial role in improving performance. A
significant problem that is currently not solved within ex-
isting non-centralized MPC schemes is posed by coupling
state constraints. This issue is of paramount importance
to power systems, where coupling state constraints are
inherent. Clearly, achieving better estimates of the real-
system state trajectories would also be useful for dealing
with coupling state constraints.

To summarize, a non-centralized MPC technique that
is viable for real-life control of power systems should have
the following characteristics: communication only with
direct neighboring subsystems, improved state trajectory
predictions (even at the price of iterations in between sam-
ples), ability to deal with coupling state constraints and
guarantee of closed-loop stability.
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6 Appendix

Sample time 1s

Simulation time 200s

Prediction horizon N 20

Iterations (FC-MPC) 1

States of subsystem 1 ΔPV 1, ΔPM1, Δω1

States of subsystem 2 Δδ12, ΔPV 2, ΔPM2, Δω2

States of subsystem 3 Δδ23, ΔPV 3, ΔPM3, Δω3

States of subsystem 4 Δδ34, ΔPV 4, ΔPM4, Δω4

Disturbance ΔPL1 0, ∀t

Disturbance ΔPL2 0, t < 10, +0.25, t ≥ 10

Disturbance ΔPL3 0, t < 60, −0.25, t ≥ 60

Disturbance ΔPL4 0, ∀t

Constraint on ΔPref −0.5 ≤ ΔPref ≤ 0.5

Generator friction: D1, D2, D3, D4 3, 0.275, 2, 2.75

Generator inertia: M1, M2, M3, M4 4, 40, 35, 10

Speed regulation: R1, R2, R3, R4 0.06, 0.14, 0.08, 0.06

Governor time constant: 4, 25, 15, 5

τG1, τG2, τG3, τG4

Turbine time constant: 5, 10, 20, 10

τT1, τT2, τT3, τT4

Q1, Q2 diag (0, 0, 5), diag (5, 0, 0, 5)

Q3, Q4 diag (5, 0, 0, 5), diag (5, 0, 0, 5)

R1, R2, R3, R4 1, 1, 1, 1
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