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Abstract—There is an increasing need for integrating re-
newable generation sources into electricity networks. To take
advantage of the economic and environmental benefits offered by
renewable sources, storage devices are important to mitigate their
inherent variability. However, the physical properties of storage
devices require operation to be optimized over a finite horizon.
This paper provides a multi-period optimal power flow (OPF)
formulation including both wind generation and energy storage
that is based on a traditional AC-Quadratic Program (AC-QP)
OPF solution method. Test cases are provided to demonstrate
the economic benefits of the multi-period OPF solution. The
sensitivity of the cost of operation and scheduled storage charging
pattern to the length of the multi-period OPF horizon chosen is
assessed. Additionally, the computation time for various OPF
horizons is also examined. Finally, the effect of forecast errors
on the choice of OPF horizon is investigated.

I. INTRODUCTION

The optimal power flow (OPF) problem has been well

researched in the past few decades. As a result, many solu-

tion methods have been established for traditional electricity

networks. One common practice is to use the DC power

flow approximation to formulate the problem as a quadratic

program (QP), for which reliable solvers are readily available

[1]-[2]. However, while this method scales well for realistically

large networks, it does not result in an AC-feasible solution

and can have significant discrepancies compared to the AC

solution [3]. More recently, semidefinite and second-order

cone programming (SOCP) techniques have been applied to

convex relaxations of the OPF problem, as in [4] and [5].

These relaxations, when tight, have the advantage that they

guarantee a globally optimal solution. However, for arbitrary

networks there are no guarantees that the relaxations will be

tight or produce feasible solutions [6]-[7]. Furthermore, the

solvers currently available do not necessarily scale well for

large networks. Another solution method is the traditional AC-

QP OPF algorithm, the details of which can be found in [8].

This method alternates between solving a simple quadratic

program to minimize cost of generation and running an AC

power flow to ensure AC-feasibility. It has the benefits of

guaranteeing an AC-feasible solution, and QP solvers are

available for arbitrarily large networks. These benefits come,
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however, with the tradeoff that the algorithm may produce

locally, rather than globally, optimal solutions. Because AC

feasibility is guaranteed, this solution method is the focus of

this paper.

There is increasing need for integration of renewable gener-

ation sources into traditional electricity networks. Renewable

sources are important for the economic and environmental

operation of power systems. However, challenges arise due to

their inherently variable nature. Thus, storage devices become

important in the operation of these generation sources: they

can charge using excess renewable energy at high production

periods, and return power to the network when renewable gen-

eration is lacking [9]. By carefully scheduling these devices,

they can thus reduce the impact of large fluctuations from

renewable generation on network reliability. Therefore, the

scheduling of storage devices must be carefully considered,

which requires modifying traditional OPF methods. Including

the model for storage devices, such as the one given in [10], in

the OPF problem introduces temporal coupling over the OPF

horizon, which results in a multi-period OPF formulation.

This multi-period OPF offers the ability to make current

storage (dis)charging decisions taking into account not only

current conditions, but also future forecasted conditions. Many

multi-period OPF formulations that include renewable gen-

eration and storage, as in [11] and [12], use a horizon of

24 hours. The size and complexity of the multi-period OPF

problem when using such a long horizon may substantially

increase the computation time, thus limiting the real-time

applications of the OPF tool developed. However, the length

of the horizon affects the benefits that are derived from solving

the multi-period OPF, as decisions seek to minimize cost over

the entire horizon, not simply the cost at the current time

period. Implementing a longer horizon may thus increase the

quality of solution in terms of minimum cost of generation,

but also makes the solution more susceptible to forecast

error. This tradeoff becomes particularly important in real-

time applications for realistically large networks. The paper

explores various horizons, ranging from 1 hour to 8 hours,

with a sampling time of half an hour. An 8-hour horizon

therefore requires optimizing over 16 time steps. The results

of the various horizons tested offer insights into the sensitivity

of the solution to the choice of this horizon.



The organization of this paper is as follows. Section II

establishes the notation used in the subsequent formulation,

while Section III describes the multi-period OPF problem

with storage and wind, and the AC-QP OPF solution method.

Section IV describes the two test cases used to assess the

performance of the proposed method. Section V gives the

results of those test cases and demonstrates the sensitivity

of the OPF solution to the OPF horizon, the impact that

forecast errors can have on the final solution, and the inherent

tradeoff between the increased complexity/computation time

and economic benefits derived from using a longer OPF

horizon. Conclusions are then offered in Section VI.

II. NOTATION

Parameters :
G set of conventional generation nodes

Ci(Pg,i) quadratic cost curve for each generator i ∈ G
S set of storage nodes

W set of wind nodes

T set of time periods

T term time of day at the end of the OPF horizon

T length in hours of OPF horizon

N set of nodes in the network

slack slack node in the network

Wmax
i (t) available wind at node i ∈ W at time t ∈ T
Smax
ij maximum apparent power flow in line from

node i to node j

Pmin
g,i , Pmax

g,i minimum, maximum active power limits when

generator at node i ∈ G in service

Qmin
g,i , Qmax

g,i minimum, maximum reactive power limits when

generator at node i ∈ G in service

Ts sampling time in storage dynamics model

ηc, ηd storage device charging, discharging efficiencies

btermi terminal state of charge of storage at node i ∈ S
bi,0 initial state of charge of storage at node i ∈ S
Bi storage energy limit at node i ∈ S

Rmax
c,i , Rmax

d,i maximum charging, discharging of storage at

node i ∈ S
∂Sij

∂θk
(t),

∂Sij

∂Vk
(t) AC line flow sensitivity factors

J(t) AC power flow Jacobian matrix at time t ∈ T
V min
i , V max

i minimum, maximum voltage magnitude at
node i ∈ N

γ (nonnegative) cost coefficient penalizing the
deviation of terminal state of charge of storage
device i ∈ S from specified value btermi

Control Variables:
ΔPg,i(t) change in active power generation at node i ∈ G

at time t ∈ T
ΔQg,i(t) change in reactive power generation at node

i ∈ G at time t ∈ T
Δrc,i(t),Δrd,i(t) change in battery active power charging,

discharging at node i ∈ S at time t ∈ T
bi(t) battery energy at node i ∈ S at time t ∈ T

ΔPw,i(t) change in wind curtailment at node i ∈ W
at time t ∈ T

ΔVi(t), Δθi(t) change in voltage magnitude, angle at node i ∈ N
at time t ∈ T

III. AC-QP OPF SOLUTION METHOD

The following algorithm is based on the traditional AC-QP

OPF method described in [8]. This method begins by solving

an AC power flow from an initial operating point. In this

application, the initial generation and voltage schedules come

from the solution of a modified, multi-period version of the

SOCP OPF relaxation given in [5] that includes both wind

and storage. The full problem description of this modified

SOCP relaxation can be found in [13]. The SOCP solution

also provides a lower bound on the globally optimal cost of

generation, which is used to assess the quality of solution

coming from the AC-QP OPF method. After the initial power

flow is run, the QP that follows is solved to find an operating

point which minimizes the total quadratic cost of traditional

generation while enforcing power balance in the network. The

linearization/sensitivity terms required by this QP are obtained

from the AC power flow solution. The results of the QP give

the generation and voltage schedules used to run an AC power

flow at the next QP-power flow iteration.

Additionally, the net of charging and discharging of each

storage device in the QP solution is used to determine the

(dis)charging status of that device. That status is then en-

forced in the QP solved at the next iteration by setting the

appropriate charging or discharging limit of that device to be

0; this eliminates the possibility of simultaneous charging and

discharging of storage devices in the QP solution. The status

is then updated after each subsequent QP solution. A more

detailed discussion of this processing step can be found in [14].

This approach explicitly enforces storage complementarity,

while avoiding the use of binary variables. The successive

linearization procedure then continues, alternating between

solving a full AC power flow and the QP until the two

solutions agree within a specified tolerance. The overall AC-

QP solution method is summarized in Figure 1.

The QP solved at each iteration makes use of the power

flow linearization:

J(t) =

[
∂P
∂θ (t)

∂P
∂V (t)

∂Q
∂θ (t)

∂Q
∂V (t)

]
, Δx(t) =

[
Δθ(t)
ΔV (t)

]

ΔS(t) =

[
ΔPg(t)−Δrc(t)−Δrd(t)−ΔPw(t)

ΔQg(t)

]
and is formulated as:

min
∑
t∈T

∑
i∈G

Ci(P
0
g,i +ΔPg,i, t)

+ γ
∑
i∈S

‖bi(T )− btermi (T term)‖22 (1a)

subject to (∀t ∈ T ):

J(t)Δx(t) = ΔS(t) (1b)

Pmin
g,i ≤ P 0

g,i(t) + ΔPg,i(t) ≤ Pmax
g,i , ∀i ∈ G (1c)

Qmin
g,i ≤ Q0

g,i(t) + ΔQg,i(t) ≤ Qmax
g,i , ∀i ∈ G (1d)

Δθslack(t) = 0 (1e)

−π ≤ θ0i (t) + Δθi(t) ≤ π, ∀i ∈ {N\slack} (1f)

V min
i ≤ V 0

i (t) + ΔVi(t) ≤ V max
i , ∀i ∈ N (1g)

0 ≤ P 0
w,i(t) + ΔPw,i(t) ≤ Wmax

i (t), ∀i ∈ W (1h)

bi(0) = bi,0, ∀i ∈ S (1i)
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Fig. 1. AC-QP OPF Iterative Method

bi(t+ 1) = bi(t) + Tsηc(r
0
c,i(t) + Δrc,i(t))

−Ts

ηd
(r0d,i(t) + Δrd,i(t)), ∀i ∈ S

(1j)

0 ≤ r0c,i(t) + Δrc,i(t) ≤ Rmax
c,i , ∀i ∈ S (1k)

0 ≤ r0d,i(t) + Δrd,i(t) ≤ Rmax
d,i , ∀i ∈ S (1l)

0 ≤ bi(t) ≤ Bi, ∀i ∈ S. (1m)

Quantities with a superscript ‘0’ in the QP denote results from

the AC power flow, and are updated after each QP-power

flow iteration. Additionally, (1i)–(1m) model the storage state

of charge dynamics with non-ideal charging and discharging

efficiencies, as described in [10].

A penalty term is added to the generation cost term of the

OPF objective to avoid the greedy use of storage. This is of

particular importance for shorter horizon choices. The intuitive

use of storage is to charge devices during low demand and

high renewable periods of the day, and then discharge them

during high demand and low renewable periods to achieve

peak shaving and reduce the total operating cost. However,

shorter horizons may not achieve this desirable behavior, as

the valley and peak periods are not visible within the reduced

optimization horizon.

To address this problem, a reference storage usage pattern

can be determined by solving a higher level problem, such

as unit commitment, that performs an optimization over a

sufficiently long horizon. The approach adopted has been to

establish this reference trajectory by solving a higher-level,

approximate, storage allocation problem using six 4-hour time

steps.

The multi-period OPF seeks to minimize the total generation

cost over the horizon of interest. To do so, it can use storage

freely, and only incurs a penalty cost if the state of charge of

each storage device at the end of the horizon deviates from

the reference usage pattern. This terminal penalty also ensures

fair usage of storage devices over the entire day. As storage

devices begin the 24 hours charged to half of their energy

rating, they should be returned to that initial value at the end

of the 24-hour period. This is achieved by varying the penalty

coefficient γ throughout the 24 hours, depending on the time

at the end of the OPF horizon, according to the following

scheme:

γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

102, T term ∈ [1, 15]

103, T term ∈ (15, 17]

104, T term ∈ (17, 19]

105, T term ∈ (19, 21]

106, T term ∈ (21, 24]

102, T term > 24.

(2)

This coefficient is relatively low for the first part of the

day and then gradually increases as the day progresses. The

specific values given above are designed such that the largest

coefficient is of the same order of magnitude as the cost of

conventional generation. Additionally, including several steps

to increase this penalty coefficient ensures a relatively smooth

transition to return storage energy levels at the end of the

24 hours to their initial values. Moreover, the very large

coefficient over the last few hours ensures that if it is feasible

to do so, the state of charge of each storage device will be

returned to its initial value.
Finally, apparent power line flow limits are enforced by

including a linearized line flow constraint,

S0
ij(t) +

∑

k∈N

∂Sij

∂θk
(t)Δθk(t) +

∑

k∈N

∂Sij

∂Vk
(t)ΔVk(t) ≤ Smax

ij (3)

in the QP for every line that is at or above 95% of its line

flow limit after the initial power flow. Additional line flow

constraints are then included as necessary for any further

overloaded lines in subsequent QP-power flow iterations.

The convergence of this method depends on the accuracy of

the linearization used in the QP at each iteration. To improve

the convergence of this method, a step is added to check

the accuracy of the linearization before the QP is solved at

each iteration. This additional step is based on the trust-region

formulation provided in [15]. After each power flow is solved,

the actual change in system losses,

ΔPloss act(t) = P k
loss(t)− P k−1

loss (t), (4)

is compared to the predicted change in losses from the QP

solution,

ΔPloss pred(t) =
∑
i∈N

∑
k∈N

[
∂Pi

∂θk
(t)Δθk(t) +

∂Pi

∂Vk
(t)ΔVk(t)

]
(5)

for every time period in the multiperiod OPF horizon. If they

are within a specified tolerance, the linearization is considered

sufficiently accurate. If, however, the predicted and actual

changes in system losses do not closely agree, the linearization

is not considered sufficiently accurate, and the constraints on

control variable updates are reduced by a scaling factor. This

reduces the magnitude of allowable control variable changes,
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Fig. 2. Trust Region Step of AC-QP OPF Method

which improves convergence reliability. The details of this step

are summarized in Figure 2. In the following investigations,

a reduction factor of Sc = 0.5 was sufficient to provide

acceptable convergence rates.

IV. TEST CASES

Two test cases are presented to assess the performance of

the proposed method. They are both based on a modified

version of the Polish 3012wp network, which can be found

in [16]. This system has been augmented with both wind

nodes and storage devices. Three hundred storage devices were

placed at randomly chosen locations within the network. The

maximum (dis)charging rating and maximum energy rating of

each device were then chosen to be randomly distributed over

the ranges 1–5 MW and 1–20 MWh, respectively. One hundred

wind locations were randomly chosen within the network. The

available wind at those locations was likewise chosen such that

they were randomly distributed over 1–100 MW. To create a

demand profile over 24 hours, the hourly load data provided

in the RTS-96 test case description for a summer weekend

was used [17]. Both cases are assumed to begin at 7 p.m.,

just after the peak demand period has occurred. Additionally,

it is assumed that storage devices begin each 24-hour period

charged to half of their maximum energy ratings, and must

be returned to that value by the end of the 24-hour period to

maintain a fair usage policy. The demand and wind profiles

assumed in this case over the course of 24 hours are given by

the solid lines in Figure 3.

Both test cases presented use the same network description,

as well as randomly chosen wind and storage device locations

and ratings. The difference between the two cases is in
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Fig. 3. Demand and Wind Profiles Used in Both Test Cases

the assumption of load and wind forecast accuracy. Initially,

results are presented assuming perfect wind and load forecasts.

This test case is used to assess the computational scalability

of the method and to demonstrate the sensitivity of the total

cost of generation to the OPF horizon chosen. The second

test case introduces an event such that the load forecast has

significant error, as shown by the dotted line in Figure 3. This

case highlights the sensitivity of the OPF solution to forecast

errors, and considers the effect of horizon length.

V. RESULTS AND DISCUSSION

A. Test Case 1: Perfect Wind and Load Forecasts

The results of the first test case are given in Figures 4–9.

Both the total cost of generation and total stored energy of

all 300 storage devices over the 24-hour period considered

are given in Figure 4. The storage state of charge reference

pattern over the entire day, denoted by T=24 in the lower

figure, establishes the terminal value that is used in the penalty

term in the OPF objective function (1a).

Figure 4 demonstrates the improved performance of the

longer OPF horizons in scheduling storage (dis)charging.

Shorter horizons, such as 1 or 2 hours, result in storage

charging over the valley period (hours 7–13) being insuffi-

ciently scheduled, such that during the peak demand period

(hours 15–24) less storage is available to achieve lower peak

operating costs. This highlights the short-sighted nature of

these horizons that are unable to anticipate the upcoming peak

demand. It should also be observed that these shorter horizons

not only charge storage devices to a lower state of charge, but

also begin discharging several hours before the peak demand

period, contributing to a higher cost of operation. Conversely,

longer horizons, such as 4, 6 or 8 hours, successfully charge

storage devices to a higher state of charge level before the

peak demand period. Storage can then be discharged during

the peak periods, resulting in significant cost savings.

Figure 5 highlights the economic improvement for each

horizon tested, relative to the cost of operation with no storage

in the network. Both the 1- and 2-hour horizons achieve some

cost savings during hours 14–16, but they also incur higher

cost during the high-demand hours of 19–21, as storage must

be charged to return to its initial state of charge. However,
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0 5 10 15 20 25
−6

−4

−2

0

2

4

6

Hour After 7pm

T
ot

al
 C

os
t P

er
ce

nt
 D

iff
er

en
ce

 (
%

)

 

 

T = 1
T = 2
T = 4
T = 6
T = 8

Fig. 5. Case 1: Hourly Percent Savings Compared to No Storage Case

1 2 3 4 5 6 7 8

0.4

0.5

0.6

0.7

0.8

0.9

1

OPF Horizon (Hours)

P
er

ce
nt

 C
os

t S
av

in
gs

 C
om

pa
re

d 
to

 T
 =

 0
 C

as
e

Fig. 6. Case 1: Total Cost Percent Savings Over 24 Hours for Various
Horizons

using a longer horizon, such as 4, 6, or 8 hours, avoids this

issue and can achieve cost savings up to 4% during peak

demand periods in this case. Figure 6 shows the improved

cost savings over an entire day that result from optimally

scheduling storage (dis)charging. The savings can be up to

0.9% per day in this case. While longer horizons produce

higher cost savings, there is a diminishing benefit as the length

of the OPF horizon is increased.

Figures 7–8 show the computation time for various OPF

horizons. For real-time OPF applications, an execution time

target of 5 minutes is assumed. While longer horizons can
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Fig. 7. Case 1: AC-QP OPF Timing Results
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Fig. 9. Case 1: Total Energy and Cost Comparison - Constant γ, T = 4

schedule storage devices more economically, the computation

time of the AC-QP OPF method increases significantly as

the horizon increases, as shown in Figure 7. Moreover, when

the initialization time to solve the SOCP OPF relaxation is

considered in the total computation time, as shown in Figure 8,

the increase in total time for longer OPF horizons is even

more pronounced. Horizons longer than 8 hours have not been

considered as they are likely to exceed the 5 minute target

assumed for real-time applications. Computation time must

be carefully addressed when choosing an appropriate horizon,

especially considering the diminishing cost benefits achieved

with longer horizons.
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Figure 9 shows the sensitivity of these results to the choice

of the storage terminal penalty coefficient γ. The first test case

is repeated for a constant choice of γ throughout the day and

a horizon of 4 hours. When γ is less than 104, storage is

discharged before the peak demand period. This short-sighted

operation of storage leads to a higher operating cost over the

entire day, compared to the time-varying scheme proposed.

Conversely, when γ is increased to 105 or 106, the storage

usage pattern matches the reference pattern more closely. This

leads to a slightly lower cost of operation compared to the

time-varying scheme. However, this result relies upon the

assumption of having a perfect demand forecast.

B. Test Case 2: Introducing Load Forecast Error

The second test case, the results of which are summarized

in Figures 10–13, explores the impact of significant forecast

errors on the quality of solutions for various OPF horizons.

As the day begins, the wind and demand forecasts are those

given by the solid lines in Figure 3. Then, at hour 16, a new

demand forecast is received, which is shown by the dotted

curve in Figure 3. Comparing the original forecast and actual

demand curves, it it observed that there is significant error

in the original forecast. In particular, the actual demand lacks

the peak demand period that was originally anticipated. The

degree to which this forecast error impacts the quality of the

solutions achieved by the AC-QP OPF depends on the horizon

chosen, as shown in Figure 10.

As in the first case, storage devices begin charging at hour 5.

The longer horizons (4 and 6 hours) charge those devices

more rapidly, and have them more fully charged by hour 14.

This is due to the fact that those horizons are sufficiently long

for the peak demand at hour 16 to be anticipated. However,

the shorter horizons (1 and 2 hours) begin charging, but at

a lower rate, as the peak demand has not yet been taken

into account. As in the first case, the shorter horizon results

are short-sighted, and so begin discharging storage devices at

hour 14. In this case, however, the demand forecast for which

the storage (dis)charging pattern was planned was in error.

An event occurs at hour 16 such that a large portion of the

anticipated demand does not eventuate, and load continues to

decrease over the rest of the day. Consequently, the original
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Fig. 11. Case 2 Hourly Percent Savings Compared to No Storage Case
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Fig. 13. Case 2 Total Energy and Cost Comparison - Constant γ, T = 4

peak demand period never occurs. The longer horizons have

already incurred the extra cost of charging storage to a higher

level in planning for that peak, which results in a higher

cost compared to the shorter horizon results. This is just

one example where relying upon a longer horizon, which is

more economic given a reliable forecast, leaves operations

vulnerable to forecast error and actually results in a higher

cost solution.

Figure 11 emphasizes the impact that forecast error may

have on the cost savings achieved by adding storage to a

network. Compared to the case without any storage in the
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Fig. 14. Case 2 SOCP Initialization and AC-QP Total Timing Results

network, all horizons achieve similar cost savings until hour

14. At that time, the longer horizons incur a cost to charge

storage to a higher energy level, while the shorter horizons

achieve cost savings up to 4.5% in this case, as they have

already begun returning power from storage devices to the

network. Then, after the unanticipated load-reduction event at

hour 16, all horizons use the available storage to return power

to the network. It is again clear that shorter horizons may be

beneficial in scenarios with less reliable forecasts.

Considering the cost of operation over the entire 24-hour

period, Figure 12 emphasizes the significance of forecast

error on the quality of the solution. This plot shows that

the difference in cost of operation between a 1-hour and

6-hour horizon is approximately 0.3%. In the presence of

significant error, using a 1-hour horizon could save almost 1%

per day. Forecast errors should also be taken into account when

choosing appropriate values for γ. Figure 13 shows the results

of this second case study for a constant γ throughout the day.

In the presence of significant forecast errors, choices of γ that

are less than 104 achieve the same use of storage and cost

of operation as the time-varying scheme (2). However, when

γ is increased to 105 or 106, while the use of storage more

closely matches the reference pattern, the cost of operation is

higher compared to the time-varying scheme. Placing such

large penalties on deviation from terminal state of charge

reduces the flexibility of the storage to adapt to forecast errors.

Taken together, these figures reveal that the degree of

confidence placed in a demand or wind forecast must be

assessed carefully, as that accuracy can have a significant

impact on the choice of horizon length. Finally, as in the first

test case, Figure 14 demonstrates the scalability of this method

for a realistically large network, as all cases are within the 5-

minute limit set for real-time applications. It should also be

noted that if large forecast errors are a concern and shorter

horizons are implemented, significant execution time savings

can be achieved.

VI. CONCLUSIONS

The traditional AC-QP OPF solution method has been ex-

tended to a multi-period formulation to include both renewable

generation and energy storage devices. Several factors influ-

encing the choice of OPF horizon have been explored. First,

when forecasts are accurate, longer horizons offer significant

benefits in reducing operational costs. Conversely, when large

forecast errors are anticipated, choosing a longer horizon

may increase the operational cost, while shorter horizons can

achieve greater cost savings. Together, these investigations

demonstrate that optimal scheduling is reliant upon matching

the horizon length to the forecast quality.

The scalability of the proposed approach has been demon-

strated on a realistically large network and timing results fall

within a reasonable (5-minute) operation time limit.
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