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ABSTRACT

This paper presents preliminary results in a
program aimed at energy function anmalysis of transient
behaviour of power systems with nonlinear loads. The
model, which preserves the network structure, is of
differential-algebraic type. This introduces some new
analytical issues, but the concepts enable the establ-
ishment of a connection between transient (angle) stab-
ility, multiple stable equilibria and voltage behav-
jour. A practical method for determining and classify-
ing equilibrium points of the model is developed.

I INTRODUCTION

Direct methods of determining power system trans-
jent stability using energy functions have been evolv-
ing for a number of years. Recently however, they have
reached the stage where industry is starting to accept
them as valid analysis tools capable of giving suffic-
jently accurate results for realistic power systems

1,2]. Through this interaction with industry, pract-
ical modelling and implementation difficulties are
being identified.

A number of the major limitations experienced to
date relate to the reduced network model (RNM) of the
power system traditionally used as the basis of energy
function methods. In this model, all loads are conv-
erted to constant admittances. Then the network is

reduced to the generator internal buses [3].  Some
concomitant problems are:
- Network sparsity is lost. By not maintaining

sparsity, solution efficiency is reduced and solution
time is increased. For large power systems this
increase is significant. It has also been noted that
for very large power systems, solution of the reduced
network may not be possible at all, see comments by
Tinney {4].
- Nonlinear loads cannot be modelled. The importance
of correct load modelling is now widely recognized in
utilities. Constant impedance load models often lead
to optimistic assessment of system stability when
compared to cases with significant constant power or
constant current components [5].
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These limitations can be overcome by the use of
structure preserving models (SPM) of power systems; see
discussions in [6}%]‘ As the name suggests, these
nodels leave the structure (or topology) of the network
in its original form. Therefore normal sparsity progr-
amming can be employed in the implementation of algor-
ithms. Also, because the structure remains intact,
complete with load buses, nonlinear load models can be
easily incorporated. More accurate transient stability
assessment results. Whereas considerable effort has
gone into improving energy function methods with
respect to generator modelling, computational exper-
ience suggests that the network model is typically more
important to the essential transient stability problem.

Following the initial idea by Bergen and Hill [6],
work on SPMs has progressed to develop better energy
functions and show that some familiar techniques from
studies with traditional RNMs can be used (namely PEBS
type methods) [8-15&. However, it remains to exploit
the potential of SPMs for large realistic systems.
Further there are some interesting network cutset
concepts which appear useful [6,16]. These comnect
closely with the demand in industry fo relate stability
assessment to familiar practical notions of ‘weak
boundaries' [17]. With these aims in sight it becomes
clear that a deeper understanding is needed of SPMs and
their energy functions. In mathematical terms, how the
equilibria and energy functions are defined on mani-
folds associated with the model.

Perhaps the most important side issue in consider-
ation of SPMs for transient stability analysis is volt-
age stability. Because explicit load models and net-
work structure are incorporated in the SPM, many of the
important elements of the voltage stability phenomena
are modelled. It is clear that network voltage behav-
iour in the transient period is important to analysis
of transient stability (large disturbance angle stabil-
ity). There are numerous views on the problem of volt-
age collapse. The work which seems most relevant here
relates to multiple solutions in load flow %18,19].
These solutions are the equilibria in dynamic SPMs.

The aim of this paper is to present results in
progress towards a thorough study of the above ideas.
Tt provides a basis for development of a direct trans-
ient stability assessment algorithm based on nonlinear
loads, sparsity and weak cutsets. This algorithm is to
be described separately. The emphasis here is on under-
standing the concepts and tools to be used. Throughout
the paper, concepts are illustrated by reference to the
four bus power system of Fig. 1. Many more details
including proofs of some theoretical statements are
omitted and can be found in the report [20].

II STRUCTURE PRESERVING MODELS

2.1 Model Development

The classical machine model is used in the devel-
opment of this SPM. Therefore the synchronous machines
are represented by a constant voltage IEiI in series

with transient reactance. Other generator/exciter
nodels could be substituted if necessary using establ-
ished techniques [10,13,21]. lHowever, in the present
paper, this machine model simplifies the details of the
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SPM and energy furction without detracting from the
main concepts.

Consider now a network consisting of n, buses conn-
ected by transmission lines. At m of these buses there
are generators. The buses which have load but no gen-
eration are labelled i=1,...,ng-m. The network is
augmented with m fictitious buses representing the
generator internal buses, in accordance with the class-
ical machine model. They are labelled i+m where i is
the bus number of the corresponding generator bus. The
total number of buses in the augmented system is
therefore ng+m:=n.

The network is assumed lossless, so all lines
(including those corresponding to the machine transient
reactances) are modelled as series reactances. The bus
admittance matrix Y is therefore purely imaginary,
with elements Yij:JBij'

Let the complex voltage at the ith bus be the (time
varying) phasor Vi=|Vi|4£5i where 6. is the bus
phase angle with respect to a synchronously rotating
reference frame. Define |yr:[|v1|,.,.,|vnol]t, where
't denotes matrix transpose. The bus frequency
deviation is given by wi:fSi.

The SPM of interest is based on machine reference
angles, with the nth bus taken as the reference. We
use the internodal angles @;i=6,-8 . Define

and w

t t
g:[al,...,aml] g:[“’no+1""’°’11] .

Let Pbi and ubi denote the total real and reactive

power leaving the ith bus via transmission lines. Then
n
Pyies VD) = ) V11V, 1By 5 sin(a;-ay) (1a)
=1
n
Qbi(g,ly]) =- E IVi”VjIBiJ' Cos(ai-aj) (1b)
=1
In these equations, we assume the substitution lViI:

IEi 0 |,i=ng+1l,...,n has been made. Also we take a, :=0.
~lo

Now consider the modelling of loads. Denote the
real and reactive power demand at the ith bus by Pdi

and l]di

functions of voltage and frequency.
assumed to satisfy

Pdi = Pdi(lvil) ; i=1,...,ng (2a)
Qdi = Qdi(lvil) (Qb)

In [15,20], it is shown that combining (1), (2) and the
usual generator swing equations gives the model

respectively. In general these powers are

The loads shall be

by = M D0 W TR, (g, Y1) ) (32)
ég = Lo, (3b)
0 = ylagay 1VD)ny (K] =f,(a .y, V1) (4a)
0 = (VT (0 lepomys VD0 (111)) :=8(ayay 1V1) (45)
Mg’ Dg are diagonal matrices of inertia, damping const-

ants. The angle vector g is partitioned as gt=[g2 c_zg].

Subscripts 2,g will be used to denote loads,
generators respectively. Eg is the (m-1)-vector of

mechanical powers excluding reference machine. (Some
transformation of powers is often required to achieve
the precise form (3) [22].) T is a specially

structured matrix of 41 and [a]

denotes
[diag{ai}] for vector a.

entries

Equations (3), (4) describe the model denoted SPM,,
which all further results are based upon. Note that it
consists of a set of differential-algebraic equations.
The system variables are clearly 9y € R", o € IRm'l,

n
@, €R'°, and |V| e IRE".

2.2 Local ODE Representation of SPM,

Differential-algebraic equations of the fornm (3),
(4) are theoretically problematic £23]. Fortunately,
here it can be shown that the model is locally equiv-
alent to a set of ordinary differential equations for
almost all operating states. The load bus variables
ge,lyl are related to the generator angles a_ by the

2ng algebraic equations (4). In fact, (4) defines an

(m-1)-manifold on which @, can flow.  Define the
Jacobian
Oz, 3d|¥
gy = g ag )
5, AN

Then, by the implicit function theorem [24], if
det Jee;e(), locally the load bus variables can be

written explicitly in terms of the generator angles as
g, = 8g) I = ¥(e,) (6)

An equivalent differential equation form of the SPM,

can therefore be obtainfd locally by substituting (6)

into (3a). Setting Bg(_g) :=Bg(gg,£(gg),£(gg)) gives
the model «
. -1 -1t 50
=-M "D ow-M" TP -P 7
9 = Mg Dow, ML (R (ay)-Py) (7a)
-7 7b
oy = Lgoy ()

Equations (7) define ordinary differential equations
which are locally equivalent to SPM,.

This idea of local solvability can be extended to
solvability over disjoint regions via the following
theoren.

Theorem 1. Suppose that for the non-empty compact

set C, det ieel(g‘,,a_e,fll) c Ce % 0; and

iEé'(a a%a'll) €, has & negative eigenvalues.

Let g:{gg;(gg,ge,[ﬂ) € Ce}. Then there exist

unique continuous functions ge:Ae—aIRn“, ge:Ae—iRn"
such that over Ce SPMo can be written in the form
(7).

Comments:

1. As igg has dimension 2n,, 2 can take the values



0,...,2n5. Therefore the maximum number of sets C

which can exist for SPMy is 2ng+1.
2. The sizes of sets Ce depend of course on the load

model parameters. Conditions are given in Appendix A
for ensuring Ce’ 2#0, are empty. However, these are

not always satisfied in practice [25].

2

2.3 Forms of Stability for SPM,

1. Angle stability. This is the traditional concept
of power system transient stability. It is the stabil-
ity of the model (7), i.e. the ability of « to settle
to a post-disturbance stable EP. &

2. Voltage causality. This is the requirement that the
load bus voltages and angles always behave in a manner
dependent on the generator angles. Voltage causality
is guaranteed over the sets c, defined above. Hence-

forth, we refer to sets C, as voltage causal regions.
On the surface det J,,=0, @, and [V] are no longer
dependent on a,- The model breaks down and voltage

behaviour can no longer be predicted. This surface
shall be referred to as the "impasse" surface, using
terminology from circuit theory [29]. (Lack of voltage
causality can sometimes be observed when a trajectory
of SPM, is being obtained by numerical integration. As
the trajectory encounters the impasse surface, the
integration technique will fail to converge.)

This terminology certainly does not aim to cover
the phenomenon of long-term voltage collapse where
other aspects of the system should be modelled and
added to SPMy. We are only concerned with the short-
term behaviour.

ITI DETERMINATION OF SYSTEM EQUILIBRIA

3.1 Conceptual Background

An intuitive approach to finding EPs is to view the
equilibrium equations of SPM, as defining the (m-1)-

manifold which would result if Bﬁ were allowed to vary.
All EPs for a given iﬁ must lie on the manifold. If

one element of Bﬁ is then constrained to its actual

value, a slice is taken through the (m-1)-manifold, so
an (m-2)- manifold results. On this manifold lie the
solutions of the equilibrium equations which would

result if all elements of Eg except one were allowed to

vary. Again, all EPs must lie on this manifold.

This process of slicing through the manifold by
successively enforcing PM constraints is continued

until a 1-manifold or curve remains. Following the
same argument,.all EPs must lie on this 1-manifold.
One last slice through this 1-manifold by constraining

This last

slice is simply the intersections of a curve and a
straight line. Clearly, this curve can be presented on

a plane as a relation between the last Pﬁi, and any

the last element of Eﬁ gives all the EPs.

other variable of interest.

3.2 An Efficient EP Search Routine

Whilst the concept behind the algorithm is to start
from the most general space and continually constrain
the solution, the actual algorithm works in reverse.

Starting from a known EP, one element of

released. A 1-manifold results. Points on this curve
are obtained using CONTUR, a program developed by Price

gﬁ is
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[26]. Sucessive points on the curve are calculated
until the power at the generator bus corresponding to
the released constraint again equals its initial value.
An EP of the system has been found. CONTUR can find
all EPs by continuing to track around the 1-manifold.
The 1-manifold is observed to be closed, so the proced-
ure is halted when the starting point is encountered.

Comments

1. The complete description of each EP obtained in
this way is part of the SUNTUR output [26].

2. In general real power loads are voltage dependent.
Around the 1-manifold, voltages are varying, so loads
must also vary. In this case only the initial (i.e.
known) EP corresponds to the generator power constr-

aints Py. At other EPs, generator powers are trans-

formed [15]. This transformation is easily implemented
into the algorithm by allowing the slack at the refer-
ence generator to be distributed across all constrained
generators.  Constraining the remaining transformed
generator power determines the EPs.

Example
V =1.05pu V = 1.05pu
a=0
_® - 20mw
GEN2
1.4
V = 1.05pu
50mw <]
Omvar ___@ _ 20mw
BUSH j0.6 GEN3
Fig.1: One Line Diagram of 4-Bus System.

Consider the small power system of Fig. 1. This
system consists of three generator buses and one load
bus. (It does not meet the numbering convention of
Section 2.1, but usefully illustrates all the concepts
which will be encountered.) The load is taken to be of
constant power type. This is deliberately chosen to
not satisfy the conditions of Appendix A. Thus we
expect multiple sets Ce. By releasing the real power

constraint at generator 2, the 1-manifold of Fig. 2
results. It is plotted with reference to MVAR at gen-
erator 2 to show the large differences in reactive
power requirements between- EPs. The original GEN2
power was -0.2pu, shown by line A-A in TFig. 2. This
line intersects the 1-manifold at two points, 'a’ and
'b*, the only EPs of this system. Point ‘a‘' was the
original EP.

400 05 000 050 100 150 200 250 300 350 400
200 1 I L X L L L 1 200
150 1.50
1.00 4 1.00
0501 050
3
(<%
z A\ d )
3 o 0.00
A | ~—~"
a b
0,50 I-0.50
2
&
©.1.00 I--1.00
150 150
-200 T T T T T T T T -2.00
S0 05 000 050 100 150 200 250 300 350 400
GEM2 L]

Fig.2: GEN2 1-Manifold.
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Notice that if the initial GEN2 power was Opu, the
system would have four EPs given by the intersections
of the x-axis and the 1-manif%ld. o
1V CLASSIFICATION OF EQUILIBRIUM POINTS

4.1 Linearized System Equations

L »0
Let ig 1= Bg(gg7 Lp> IYI) - BM (8)

Then, linearizing SPMo, (3), (4) gives

. -1 1ot
Ao = -M .
g = Mg Dyhe, - M T af,
Ax_ =T A
% T g%
e
8a
A
Ay= 0 Joo Aa,
d Ag = 0] = ;%
an g =0} = Dol Al 9)
g | | e
af af af
% A B %
Bc_ze ad Sa

Solving for Af_ in (9), and substituting yields the

linearized version of SPM, as

A 0 T A A
[A?é] = ["'i'é ....... i..“‘g} = A [‘S} (10)
1) - - Aw Aw
M °TF @ -M
h I B
f f f fgﬂ
a fé) a da.
where P = gh - |E orlr) 8 (11)
£ —L - ag
o,
Comments 8

1. This system is stable (amgle-wise) if and only if
all eigenvalues of A have negative real parts.
2. If det J,,=0, this linearized model breaks down.

This is the same condition as caused lack of voltage
causality in SPMo. As in the case of SPMy, this model
breakdown is a direct consequence of the load bus
variables (in this case linearized) no longer being
dependent on the generator amgles (also linearized).
This is seen by rearranging (%). If det dpp=0, mo

valid relationship exists between Ag,, AlV] and Agg.
4.2 Efficient Determination of EP Types
The process of building the system A matrix and

then finding all its eigenvalues is computationally
expensive. Actually we are not interested in the
values of the eigenvalues, only in the signs of their
real parts. Fortunately two results enable these signs
and hence the EP type, to be determined without any
extra computation at all.

Proposition 1 [20]: Suppose S, a symmetric non-
singular matrix, is factorized using normal Gaussian
elimination as $=LU where L is lower unit triangular,
and U is upper triangular. Then the number of negative
diagonal elements of U is equal to the number of
negative eigenvalues of §.

Proposition 2 [27]: The number of positive eigenvalues

of A is equal to the number of negative eigenvalues of

If a Newton-based iterative technique is used to
obtain the EP, as it is in CONTUR, the Jacobian (9) is

available and factorized. Further, by ensuring it is
ordered as in (9) with Af_ last, after the first 2ng

rows and columns have been factorized, the (m-1)x(m-1)
matrix remaining in the bottom right corner is F, given
by (11). Note that if det Jgp=0, the factorization

process will fail during these initial 2n, steps,
because of a divide by zero error.

Continuing the factorization process to completion,
the last m-1 diagonals correspond to the factorized F
matrix. By Proposition 1, the signs of the last m-1
diagonal elements of U correspond to the signs of the
eigenvalues of F, i.e. if & of the last m-1 diagonals
are negative, then F has & negative eigenvalues.
(Because F is symmetric its eigenvalues are real.)
But, by Proposition 2, that means that A has & eigen-
values with positive real parts. Therefore the EP is
type- €.

We have determined the EP type as a byproduct of
solving for the EP.

Example (cont.)

We now return to the four bus example of Fig. 1.
Classifying points ‘a' and 'b' in the manner described
above, it is found that they are both type-0 EPs, i.e.
they are both small disturbance stable. Further inv-
estigation of these points shows that at 'a' all eigen-
values of J,, are positive, whilst at 'b' ome eigen-

value of Jpp 1s negative.

(angle) stability at all, but practical observation
indicates that ‘'a‘' would be considered the ‘normal’
stable operating point of the power system.

This has no bearing on

Consider the EPs along the x-axis. They are class-

ified as: 'c' is type-0, 'd’ is type-0, ‘e’ is type-1,
‘f' is type-2. At each of the points 'd', 'e', 'f°,
one eigenvalue of Jpp 1s negative. o
Comments

1. The issue of multiple solutions to load flow is
important to discussions of voltage stability [18].
This example shows that care is needed in statements
about voltage and/or angle stability of these solut-
ions.

2. V¥hilst in general a negative eigenvalue of Jee

if the system contains

. . . 985 afy;
devices which are sensitive to 5TV;T or —55;—
SVCs, then unstable behaviour may occur in the modelled
extra states of those devices.

V  LARGE DISTURBANCE ANALYSIS

does
not imply instability for SPM,,

, €.8.,

In this section, we provide some basic methodology
for determining large disturbance stability of the EPs.
Emphasis is given to new insights on the nature of
energy surfaces in the presence of multiple equilibria.

5.1 Fnergy Function

The development of enmergy functions for the model
SPMo has been studied elsewhere [9,15] using first

integral and Lur'e problem analysis methods. A valid
energy function is

1t L
V(ggy) = 7 o Bou, + I < h(y),dy > (12)

L5

where y'=[azey [V1"), h(x)*=[f,(0)"1,(0) W ") and yg
denotes a stable EP. This function can be evaluated as



Vg IN1) = 3¢ ¥

% g

n n

1
-3 E 2 Bij(IViIIlecos aij-IV?||V§|cos a?j)

i=1 j=1 "

a - Do Vil g, ()
JSrantasy [T ey (13)
e i=t V|t

1
Comments

1. It can be shown that voltage dependence of Pd;

leads to similar analytical difficulties as transfer
conductances in RNMs  [8,15]. The integral

a ~
—I g B(I!l)tdg becomes path dependent. The details of
a

approximating this integral are similar to those for
the path dependent integrals of non-zero transfer
conductances.

2. In general the energy function V is multi-valued.
This is inherited from the relation between ge,lyl and

a .

3. In [15] it is shown that a more general kinetic
energy term can be used. Also if the damping D_ is

zero or uniform [3], various refinements of this term
are appropriate. The zero damping version is equival-
ent to a useful COA angle version [14].

5.2 Stability Results

The following result establishes the connection
between small disturbance stability (Section 4) and
asymptotic stability for EPs of SPM,.

Theorem 2: If an equilibrium point Yo is "small

disturbance stable" in the sense of Section 4.1,
g%ﬁn it is asymptotically stable with respect to
o

The proof of this theorem is given in [20].

In Section 2.2, local solvability of (4) was ext-
ended to solvability over voltage causal regions. The
same concept can be used to extend the region of
validity of the local represemtation of V. In [20],
theoretical estimates of the regions of attraction to
stable EPs are given.

5.3 Multiple Energy Function Sheets

If the energy function (12) is treated in the usual
way as the sum of kinetic and potential energy terms,
then it is only the potential energy term which is dep-
endent on the set Ce. The local potential energy func-

tions are functions of a_ only, and so can be concept-
ualized as (m-1)-hypersurfaces (or sheets) in g -space.
(Recall the potential energy well concept in [28]).)

For each region C, defined by Theorem 1, a unique

local potential enmergy function exists. By the comm-
ents made after that theorem, there could exist up to
2ng+1 such PE functions, each one a sheet in a -space.

It is not difficult to imagine therefore how it is pos-
sible to have a number o asymptoticalgy stable EPs.
(Those sheets with a locally positive definite section
must have an asymptotically stable EP at the lowest
point of that section.) Note that not all sheets need
contain an EP however.
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All the PE sheets join on the impasse surface. To
illustrate this, consider a point y, on the manifold
(4), where det Jeelx =0, i.e., it lies on the impasse

o

surface. ieelxp must have at least one zero eigen-

value. Suppose it has just one zero eigenvalue, and 2
negative eigenvalues. An infinitesimal movement of
that point over the manifold, away from the impasse
surface, will result in the zero eigenvalue becoming
non-zero. If the eigenvalue goes positive, the point
will become an element of Ce, otherwise it will become

an element of Ce+1‘

local PE sheet. Therefore, the sheets can be thought
of as approaching each other infinitesimally closely at
the impasse surface. Because this illustration is not
dependent on &, it follows that all sheets must
approach each other at the impasse surface.

On each of these sets is a unique

Given that the potential energy sheets lie one on
top of the other, and are joined at the impasse sur-
face, it seems reasonable to expect that the lowest
sheet, which corresponds to Gy, must be deeper in terms
of the potential emergy well, than those stacked above
it. Therefore the stable EP of C, must have a larger
stability margin than other stable EPs (if any exist).
This is consistent with the fact that load bus voltages
on the sets Ce, 2#0, are depressed when compared with

those on Cp. These depressed voltages reduce the power
transfer capabilities, and hence stability margins, for
the other stable EPs.

Example (cont.) 5o

GENQ Angléydeg)

-
1
r-\. 1Y ST AT WO A RN Sy
20 40] 60 80 100]120 140 |1sn 180 200
/ GENzMgte(deg)\/

Sustained fault trajectory

/L

Potential Energy Surface, Point ‘a’.
140,
.

100
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o]
.
4
2
s
/20—723‘
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Fig. 3a:

\
GEN3 Angle (deg)

\

L ' PR S T T
200\380_s166 140 -120 700 &0 S%0 40 20 O 20 40f 60 80 wo/ 120 140 160 180 200
GEN2 Angle (deg)!

+~ Sustained fault trajectory

a0
Fig. 3b: Potential Energy Surface, Point °b'.



1530

The impasse surface of this system can be found,
using (A3) of Appendix A to be |V,]=0.3873pu. By (4),

that corresponds to a,=+117.12°. Now, recall that the
system of Fig. 1 has two stable (in terms of small
disturbance analysis) EPs but no unstable EPs. By
Theorem 2, those two points must be asymptotically
stable so the system must have at least two PE sheets.
They are shown in Figs. 3a and 3b. The potential
ener%y of both figures is calculated relative to the
stable EP *a’' of Fig. 2. This assists in imagining the
sheets lying one above the other, pinched together at

the impasse surface a,=+117.12°.

Both PE sheets are locally positive definite. This
agrees with the fact that the minimum energy points of
both sheets are asymptotically stable. Figs. 3a and 3b
confirm the fact that no unstable EPs exist for this
power system. The impasse surface truncates the PE
sheets before they fold over to form saddle points (un-
stable EPs). What are the consequences of this for
large disturbance stability? We will come back to this
point later. Over the PE sheet of Fig. 3a, all eigen-
values of Jee are positive. Over the other PE sheet,

one eigenvalue of lee is mnegative. The potential

energy well is deeper in Fig. 3a than in Fig. 3b. This
is consistent with the hypothesis that the stable EP of
Co has a larger stability margin than other stable EPs
of the system. o

5.4 Large Disturbance Behaviour

Two types of behaviour can occur for disturbed
systems modelled by SPM;.
(1) Local behaviour within a set C,, i.e. the system

remains on a single potential eneigy sheet.
5.2 this behaviour was discussed for the case where Ce

contained a stable EP. If it does not contain a stable
EP, stability must be lost either by angle separation
or by loss of voltage causality. The type of unstable
behaviour depends on the presence and location of
unstable EPs.

(ii) Jumping between sets C,y i.e., from one sheet to

another. Movement between sheets cannot occur smoothly.
To do so, the system trajectory would have to pass
through the impasse surface, which we have shown to be
impossible. However, the system can jump between
sheets upon step changes to system conditions, e.g.
disturbance onset or clearing.” The dynamics of tﬁe
system during the step are in practice largely unknown
and are not modelled in SPM,. It is not possible
therefore to predict whether a jump will occur, and if
it does, to which sheet. Consequently stability assess-
ment must assume the system remains on the same sheet
during disturbances.

In Section

5.5 Consequences for a Stability Assessment Algorithm

Previous comments sug%est that a stability assess-
ment algorithm should be based on the usual concept of
comparing attained energy with a critical value, Vcrit'
crit for SPMy has some difficulties
not previously encounted using traditional RNMs. A
robust algorithm must be able to obtain an estimate for
Vcrit on any sheet, and in the presence of the impasse

surface.  Unstable EPs have played a vital role in
determining Vcrit in most algorithms to date. lowever

the situation can now arise where a sheet contains a
stable EP, but no unstable EPs (see the example).

Determination of V

Example (cont.)

We now return to our example of Fig. 1. This
system was disturbed by the temporary loss of the

feeder between GEN! and BUS1. The effect of this
disturbance is shown in Figs. 3a and 3b for initial
conditions at points ‘a' and ‘b’ of Fig. 2 respect-

ively. Both these figures show the sustained fault
trajectory, and system trajectories resulting when the
disturbance was critically cleared, and cleared

slightly later. Notice that in both cases critical
clearing ensures stability. When cleared later, the
System encounters the impasse surface, and voltage
causality is lost.

Notice also that the critical clearing time is
larger for the system with initial conditions at point
‘a’ than for the other case. This is consistent with
the earlier remark that the lowest energy function
sheet would have the largest stability margin. o

VI CONNECTIONS WITH VOLTAGE COLLAPSE

The concept of voltage causality (see Section 2.3)
requires that load bus voltages behave in a predictable
fashion, i.e., they follow the generator angles. How-
ever voltage causality says nothing about t%e voltages
staying in a desired region around the normal operating
point. The example of Fig. 1 is again a useful illus-
tration. Fig. 4 shows t%e response of the voltage at
BUS1 to the disturbance described in Section 5.5. When
the disturbance was critically cleared, the voltage
deviated quite dramatically, but was always dependent
on generator angle movement. As the system settled to
the stable EP the voltage returned to normal. That was
not the case for delayed clearing. In that case the
voltage fell to 0.3873pu, which coincided with the
impasse surface, and voltage causality was lost. 1In
this case the voltage certainly collapsed.
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Fig. 4: Voltage Trajectories for Feeder Disturbance.

If all loads meet the conditions of Appendix A4,
voltage causality is ensured, except in the rare
occasions when bus voltages fall to exactly zero. This
does not mean that voltage excursions will be limited
in any way during and after disturbances. It does
however mean that if the system returns to a stable EP,
voltages will settle to ‘mormal’ values.

It remains to completely explore the connections to
the bifurcation theory view of ‘voltage collapse' [18,
191. However, we note here that sudden reductions of
voltage can occur simply as a consequence of system
dynamics causing proximity to impasse surfaces. (The
explanation in [18,19] gives significance to steady-
state proximity to bifurcation points.) When the traj-
ectory comes close to the impasse surface, jumps to
different energy levels and lower voltages become
likely.



VII CONCLUSIONS

This paper has explored the implications of usin%
direct stability methods with power system models whic
include nonlinear loads. These so-called structure
preserving models are a set of differential-algebraic
equations. This introduces some new anmalytical issues
over those encountered previously. These include mul-
tiple stable equilibria (which correspond to multi-
sheeted energy surfaces) and voltage causality, with
implications for voltage collapse behaviour in the net-
work. Decause of these difficulties, existing methods
of determining and classifying equilibrium points are
unsuitable. A new practical method is developed to
achieve this. For a large class of load models, the
analytical difficulties are not encountered. llowever,
they must be considered for some realistic load
conditions.
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APPENDIX A

Load Modelling to Ensure Voltage Causality

Let the voltage dependent loads be modelled as

Py; = PO IV, 1P i=1,...,10 (A.1a)
0 .
Qg; = 0g;1V; 1% (A.1D)
instead of (2). Then it can be easily shown that

of .

2i _ 00 q. 2
of .

2 0 -1
5TV§T = Pg; IV, 1P oy 1) (A.2b)
%; 0 -1
5&?’= -Py; IV IPi (A.2¢)
ag.

0 -2

5T¢}T'= 0g; 1V 1947 *(q;-1)-By5 (A.2d)

Consider the case of a single load bus connected

between two generator buses, as in Fig. 1.  Then
det lee:O is equivalent to
(a DU - a50p30q57 05+ DB = 0 (4.3)
where uBi:BiiIVi|2' Further manipulation yields
((ldj+ll[;i)2+(qi- 2) (Q31+Qdiuﬂi)+(pi- 1-)1‘31 =0 (A.9)
Voltage causality is ensured if 1no non-zero

voltages satisfy (A.%g and (A.4). Load parameters

which ensure this are found from (A.3),
Pi» 9; 21 (A.5a)
QdiuBi <0 (A.5D)

Further, from (A.4), it is obvious that if qi=2,
condition (A.5b) is not neceded.

In [20], the analysis is extended to general load
bus networks. It is shown that to ensure voltage
causality: .

i The admittance matrix of the load bus network must
be negative definite. (This is the case in all
practical power systems.)

ii p; 2 1 i=l,...,no

iii q; = 2 or Qd.z 0, i=1,...,np, 1i.e. either load
i
pover factor must be high, or the load must behave

almost as constant ~admittance for voltage
variations.
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Discussion

R. Fischl, J-C Chow and F. Mercede (Drexel University, Philadelphia,
PA): The authors are to be congratulated for introducing some new
analytical issues which enable the establishment of a connection between the
transient stability, multiple stable equilibria and voltage behavior. We have
a few comments and questions and would appreciate the authors’ response.

1. The example illustrates the theory for the case when Eq. (A.5a) is
violated. It would be interesting to see what happens when Eq. (A.5a)
is satisfied while Eq. (A.5b) is violated. Specifically, what will the
results shown in Figs. 2 and 3 look like?

2. It is our understanding that the CONTUR program requires some
value of a target function. What is the value of the target function used
to plot the curve in Fig. 2? Moreover, can one obtain a similar curve
when replacing the GEN2 MVAR by GEN2 |V, |? If so, how does the
1-manifold change and can we use the same procedures to obtain the
EP’s?

3. It would be useful if the authors would show the relationship between
the generator angle and voltage time history in Figure 4 for the two
clearing times. Of particular interest is the voltage profile when the
clearing time is 1.2 sec., which is the case when voltage causality is
lost. Maybe by plotting both the generator angle and voltage profiles
for this case, will give us a better understanding as to the difference
between the angle stability and voltage stability.

In closing, we would like to complement the authors for an excellent
paper.
Manuscript received February 27, 1989.

L. A. Hiskens and D. J. Hill: We wish to thank the discussors for their
comments and questions. We shall answer the questions out of order.

Question 2

The traditional use of the CONTUR program involves the release of two
system constraints and the introduction of one new constraint, namely the
target function. A 1-manifold of course results as there is one more
unknown then constraint. In our use of CONTUR for finding EPs, we have
released the desired generator real power constraint plus any other system
constraint. The target function then becomes that other system constraint.
This results in a net reduction of one constraint, so a 1-manifold results.

This procedure allows generator real power to be plotted with reference
to any function of state variables. GEN2 MVAr was chosen in Figure 2.
Other choices could include generator angle, i.e., to produce a power-angle
curve, or even system energy given by (13). GEN2 voltage would not be a
useful choice as it is a fixed value.

Question 3

The relationship between generator angles and load bus voltages is
governed by (4), i.e., the algebraic equations of the SPM, model. Because
of the structure of the example system it is possible to obtain from those
equations a simple relationship between GEN3 angle and BUS| voltage of
the form

h(es, [Va)=0

Notice that BUS1 voltage is dependent only on GEN3 angle, not GEN2
angle. The equation (14) is plotted in Figure 5.
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Fig. 5. Generator Angle/Bus Voltage Manifold-Constant Power Load.

This example illustrates a number of interesting concepts. As mentioned
in the paper, the impasse surface is given by a3 = +117.12°, i.e. points A
and B in Figure 5. At these points the load bus voltage becomes infinitely
sensitive to generator angle, i.e. a small change in angle results in a large
change in voltage. This is characteristic of voltage collapse. Further, above
the line AB J;, has no negative eigenvalues, whilst below AB Jy has one
negative eigenvalue. Therefore, referring to Theorem 1, the curve between
points A and B above line AB is the function ., whilst the curve below AB
is ¥, This information is useful in interpreting the results of the disturbance
of Section 5.5.
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Fig. 6. Angle Trajectories for Feeder Disturbance.

The generator angle time responses for that disturbance are shown in
Figure 6. When the disturbance was critically cleared, the impasse surface
was not encountered, so the system trajectory remained within C,.
Therefore, the relationship between BUS1 voltage and the generator angles
during the whole period was given by | V4| = y(c3). This is confirmed by
comparing Figures 4, 5 and 6. Notice how sensitive BUSI voltage is as
GENS3 angle approaches the impasse surface. It is not surprising that the
small increase in clearing time (to 1.2 seconds), which caused the angles to
deviate just a little more, caused such a large voltage deviation.

In the delayed clearing case, point A of Figure 5 was encountered.
Because of the singularity of Jj at that point, the numerical integration
technique failed.

Notice from Figure 3a that all points on the PEBS for the example system
have high potential energy when compared with points along the impasse
surface. It is therefore much more likely that the impasse surface, rather
than the PEBS will be encountered by a disturbed system trajectory. Hence
the most likely outcome of any disturbance of this system is loss of voltage
causality. In general it is expected that the impasse surface and the PEBS
will contain points of comparable potential energy. The ultimate form of
instability, i.e. angle or voltage, will then depend on parameters such as
disturbance type, location and length.

Question 1

Conditions (A.5) ensure global voltage causality. However, it is possible to
find power systems where the conditions are not satisfied yet global voltage
causality persists. This is particularly so with condition (A.5b).

To illustrate why (A.5b) can often be violated without Jj, becoming
singular, consider the case of a load with indices of p; = q; = 1. Equation
(A.3) becomes

Qéi - QB,Qdi =0
Further manipulation yields the result that voltage causality is lost when
0
[Vil =4
B

i

(15)

In normal situations the reactive load at a bus is small in comparison with
the fault level, so this voltage is quite small. Such low voltages can seldom
be achieved in realistic power systems, so voltage causality is not lost.

The example system of Figure 1 can be used to illustrate firstly that if
(A.5b) is not satisfied then voltage causality is not ensured, and secondly
that only under comparatively rare circumstances does (A.5b) become
important.

Consider that system with a load at BUS1 of 50 — j30 MVA. If this load
is modeled with voltage indices of p = g = I, then from (15), voltage
causality is lost when |[V,| = 0.09 pu. The plot of the algebraic equation
(14) for this case, shown in Figure 7, does in fact indicate a breakdown in
the voltage-angle relationship at { V4| = 0.09 pu, i.e., points A and B. This
situation is somewhat of a special case, as the location of the load bus
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midway between two generators allows the voltage to fall to such a low
level. Note that because of this special situation, the voltage does in fact fall
to zero.

Figure 7 also shows a plot of the algebraic equation when load was 50 +

j30 MVA. As predicted by (A.3), the voltage sensitivity becomes infinite

only when |V,| = 0.0 pu.

In the capacitive load case, the GEN2 MW-MVAR plot was similar to
Figure 2 up to the points where BUS1 voltage became zero. At those points
the desired manifold intersects the manifold of constant zero voltage at
BUSI, and CONTUR fails to converge. Also, the potential energy sheet for
the “‘normal’’ stable EP is very similar to Figure 3a. The question of the
form of the second potential energy sheet, i.e. whether it is similar to Figure
3b, has not been investigated. At such low voltages, i.e. less than 0.09 pu,
the model is not a good representation of the power system.

In concluding, we wish to thank the discussers once more for their
interest in our paper.

Manuscript received April 13, 1989.



