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Abstract

This paper considers the significance of load voltage
dynamics in studies of power system damping. A
generic model of dynamic loads is used to investigate
the influence of active and reactive power dynamics on
the damping of oscillations in a multimachine power
system. The interaction between the load and the
power system is explored in terms of load and sys-
tem transfer functions. It is shown that the power
system transfer function is composed of a static part
and a dynamic part. The static part is derived from
the power flow Jacobian. The investigations indicate
that load voltage dynamics can significantly influence
the damping of modal oscillations. Static load models
can give quite misleading predictions of damping when
loads actually exhibit dynamic behaviour.

Keywords: load dynamics, electromechanical oscilla-
tions, system damping

1 Introduction

Electromechanical oscillations inevitably occur in mul-
timachine power systems. They result from the rotors of
machines oscillating with respect to one another. Oscil-
lation energy is exchanged between machines through the
transmission system [1]. Oscillations are classed as local
mode if they occur between a single machine, or sometimes
a small group of machines, and the rest of the system.
Typical local mode frequencies range from 0.7 to 2.0Hz
(2, 3]. Oscillations can also occur between large groups of
machines. They are referred to as interarea oscillations,
and typically have a frequency in the range of 0.1 to 0.8Hz

"However sustained oscillations are undesirable. They
can lead to fatigue of machine shafts, and can cause exces-
sive wear -of mechanical actuators of machine controllers.
Also, oscillations make system operation more difficult.
Therefore it is desirable that oscillations are well damped.
Unfortunately, as systems become more heavily loaded in
response to economic and environmental pressures, damp-
ing tends to reduce.

95 WM 111-5 PWRS A paper recommended and approved
by the IEEE Power System Engineering Committee of the
IEEE Power Engineering Society for presentation at
the 1995 IEEE/PES Winter Meeting, January 29, to
February 2, 1995, New York, NY. Manuscript submitted
August 1, 1994; made available for printing

January 3, 1995.

It is important that the frequency and damping of os-
cillations can be accurately predicted. The feasibility of
some projects may be critically dependent on the level of
damping of particular modes. For example, an intercon-
nection of two large power systems may be unworkable
if oscillations between the two systems could not be ade-
quately damped [4]. If predictions of damping were opti-
mistic, the project could proceed, but then not meet ex-
pectations due to the poorly damped oscillations. Further,
accurate prediction of damping is essential in the tuning of
ftabilizin control loops of generators and FACTS devices

5, 6,7, 8]

However many power utilities have recently found that
predictions of damping are optimistic when compared
with actual system behaviour, e.g., [9]. In general many
factors may contribute to ‘the inaccuracy of the predic-
tions. In this paper we focus on one factor that can have a
significant effect on the accuracy of system studies, namely
load modelling. The importance of load modelling is well
documented [10-17]. Yet accurate modelling of loads is a
difficult task [18, 19]. It is therefore important that the
sensitivity of system behaviour to changes in load response
be clearly understood. This paper considers that sensitiv-
ity, in terms of the link between system damping and the
dynamic response of loads.

The structure of paper is as follows. Section 2 provides
some background ideas on the analysis of load-system in-
teraction, and on a generic dynamic load model. The
transfer function of the power system is considered in Sec-
tion 3. In Section 4, the influence on damping of real
and reactive power dynamic loads is explored. Results in
this section highlight the inadequacy of static load mod-
els. The effects of load dynamics on local and interarea
modes of a well tuned multimachine power system are also
explored.

2 Background

2.1 Load-system interaction

Load-system interaction can be conveniently analysed
by decomposing the power system into a feedback system
such as shown in Figure 1 [20]. (This figure shows a real
power disturbance AP. In general the ideas remain valid
whether the disturbance is real or reactive power, or a
combination of both. Sections 3 and 4 consider this fur-
ther.) The load provides a feedback path, and so has the
potential to alter the overall system behaviour. Depend-
ing on load and system parameters, this feedback may
improxlre damping. But a deterioration in damping is also
possible.

Consider some sinusoidal variation in bus power AP. A
variation in the bus voltage AV will result. The magni-
tude of that variation, and its phase relative to AP, will
depend on the transfer function of the power system. This
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Figure 1: Load - power system interaction.

is considered further in Section 3. But AV will induce,
through the load, some variation AP;. The magnitude of
this AP;, and its phase relative to AV, are given by the
transfer function of the load. Section 2.2 discusses that
‘transfer function.

If the load variation AP; happened to be in phase, or
nearly so, with the original disturbance AP, then the load
would serve to reinforce oscillations, with a corresponding
reduction in damping. One could also envisage situations
where the load fed back a A P; which was out of phase with
the original disturbance AP. In that case the load would
cause an improvement in damping. Of course the exact
effects depend on the gains of the system and the load

at the oscillation frequency of interest. However it was

shown in [21] that for a weak power system, this feedback
due to load dynamics could reduce damping to the point
where instability occurred.

Note that the view of load-system interaction given by
Figure 1 is uséful for analysing the effects due to a single
load. Power systems in general have many loads though.
The other loads which are not of immediate interest are
treated as part of the system. Their effects are included
in the transfer function of the power system, i.e., the feed-
forward block in Figure 1.

2.2 Generic dynamic load model struc-
ture and parameters

In response to a step change in voltage, loads will gen-
erally undergo a step change in real and reactive power
demand. The load will then recover, over some time, to a
steady state value which may be different from its predis-
turbance value. Important characteristics of this dynamic
behaviour are the initial step change, the final value, and
the rate of load recovery. A generic model which captures
these characteristics was proposed in [22, 23]. That model
can be expressed for real power as,

P(V)— Py ; (1)
Pa—P(V) (2

Tot, =

Tp =

A similar model can be used for reactive power load. The
functions Py(V), Ps(V) define the initial step response,
and the final value of power demand respectively. A con-
venient form for these functions is

P(V) = Po(V/ Vo)~ 3)
Py(V) = P,(V/Vy)r ' (4)

where V,, P, are the nominal voltage and the correspond-
ing real power demand respectively, and n,,,n,; are the
steady state and transient voltage indices. Reactive power
functions @s(V), Q:(V) can be defined similarly, but with
voltage indices ng,,ny: respectively. The time constants
T,, T, describe the rate of recovery of the real and reactive
power loads.

The steady state and transient voltage indices are gen-
erally in the ranges [10, 12, 18, 23, 24, 25]:

0<np: <3
0<ng,: <7
1.5 <np <25
4ant$7

Time constants 7,7, depend on the type of load being
modelled. For industrial, agricultural and air conditioning
loads, consisting predominantly of induction motors [11,
18,19, 25], T,,, T, are in the range of 0.02s to a few seconds.
This depends on' the proportion of induction motors in
the total combined load. For industrial plants such as
aluminium smelters [26], or power plant auxiliary power
systems [27], the time constants are in the range of 0.1s
to 0.5s. For tap-changers and other such control devices
they are in the range of minutes, and for heatingload they
may range up to hours [23]. - ,
In [20], the load model (1),(2) was linearized to give the
dynamic load transfer function of Figure 1. The linearized
model has the form of a lead/lag block, with the lead/lag
time constants dependent on the load parameters. It was -
shown that if np; > nps (ng > nys), which is the normal
situation, then the phase shift through the real (reactive)
load was always positive. The dependence on load pa-
rameters of the gain and phase shift of the load transfer
function was discussed in [20]. )

3 The Power System Transfer
Function -

In establishing the transfer function for the power sys-
tem, we first notice that the power system model has the
differential-algebraic form

= ) (5)
0 = g(z,9) (6)

where the differential equations describe the dynamics of
generators, their controllers, FACTS devices, and dynamic
loads, and the algebraic.equations describe the real and
reactive power balance at buses in the network. The al-
gebraic equations are effectively the power flow equations,
modified to account for interfacing with dynamic devices.
For example, the real power balance equation at-a dy-
namic load would follow from (2) as

5+ P(V)=POV)=0 (T)

where Pi(6,V) gives the real power flow into the load bus
from the network. .

The dynamic state variables z consist of generator
states, e.g., internal angle, speed deviation and fluxes,

" states of machine and FACTS controllers, and dynamic

load state variables, i.e., z,,#,. The algebraic variables
y are the voltage magnitude and angle at all buses in the
network.
_Linearizing these equations about an operating point
gives
(5= 218y
0 Tl 9 9y

Ay (8)

" From Figure 1 it can be seen that we are interested in

the behaviour of the bus voltage AV for changes in bus



powers AP, A?) The power demand changes are 'inputsv
8).

to the system Also, AV is an element of Ay. So the
linearized system becomes

(D) = [F Fllas]+la all2e]
' 9
AV = [0 eg][ﬁz] (10)

where €1, €9, e3 are column vectors which are all zeros, ex-
cept for a ‘1’ in the appropriate place. In e;,ez, the 1
corresponds to the real and reactive power balance equa-
tions respectively of the bus of interest. For es, the 1
corresponds to the voltage at the bus of interest.

If g, is nonsingular, then we see from (9) that

Ay=-glgAs— gl el [ Rg | (D)

So, from (9)

Ai = f,Az+ f,Ay (12)
= (e~ fy07 0002 ~ fygy ' er 2] | A | (19)

= Adz+B[ Ah | (14)

Also, from (10)
AV = efAy (15)
= —ehg; 9o Az — eggy_l[el es) [ ﬁg ] (16)

CAz+D[ 3 (17)

The transfer function between the inputs AP, AQ and
the output AV is obtained in the usual way using Laplace
transforms '

G(s) [G1(s) Ga(s)]

C(sI—A)"'B+D

(18)
(19)

Note that it consists of two terms. The first term describes
the dynamic aspects of the response of AV to AP, AQ.
The bus power disturbance will excite dynamic devices
such as generators. Their response will cause AV to vary.
The second term provides a direct connection between the
inputs AP, AQ and the output AV. It can be seen from
(16),(17) that the elements of D = [dy d>] are just partic-
ular elements of g,. But gy is the modified power flow Ja-
cobian. So d; will be the element of the inverse Jacobian

corresponding to g—‘;. Similarly, d; will be the element

corresponding to %' ,
The transfer function (19) clearly shows the difference
between the static voltage-power sensitivities obtained

from power flow studies, and the voltage-power sensitivi-
ties which occur when dynamics are included.

The transfer function (115? was established for inde-
pendent inputs AP, A owever it is also useful to
consider disturbances where AP and AQ are coupled
via a constant power factor. Let AP = AScos¢ and
AQ = ASsin ¢, i.e., the load has a power factor of cos ¢.

1783

1

@N |
o

Figure 2: Four-machine eight-bus system
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The transfer function between the power disturbance AS
and the voltage AV is given by

AV = G6)[ ag ] (20)
— [Gi(s) Ga(s)] [ cos g ] AS 1)
= (Gi(s)cos ¢ + Ga(s)sin ¢)AS (22)

The system is now single input single output.

4 Effects of Load Models on
Damping

In this section we shall look at a number of cases which
demonstrate in various ways the importance of correct
load modelling. The system of Figure 2 will be used to
illustrate the 1deas.

4.1 Real and reactive power load dynam-
ics '

The influence of unity power factor loads on damping
was demonstrated in [20]. It is interesting to extend those
ideas to loads which are not unity power factor. The first
step in that extension is to look at the system transfer
function for power disturbances AS which have differing
power factors. The transfer function (22) can be used.

Consider the eight bus example of Figure 2. The system
transfer functions, as seen from buses b and 6, are shown
in Figures 3 and 4 respectively. These figures show the
magnitude of the Bode plot for varying power factor. It
can be seen from Figure 3 that at bus 5, the system is
much more sensitive to real power disturbances (cos ¢ = 1)
than to reactive power disturbances (cos ¢ = 0). However
Figure 4 shows that at bus 6, the system 1s more sensitive
to reactive power than to real power disturbances. These
observations are reflected in Figure 5, where the variation
in damping with load time constant is shown. Each root
locus of Figure 5 shows the movement of the interarea
mode of the eight bus example as the load time constant
is increased from zero. (Note that a time constant of zero
corresponds to a static voltage dependent load model.) In
the cases where both real and reactive loads are dynamic,
a constant power factor has been assumed. For bus 5 the
Eower factor used was 0.91. A value of 0.93 was used for

us 6.

Referring to Figure 5, we shall focus on the root loci
for bus 5. If real power load is modelled as dynamic, then
the system is always better damped than with a static
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Figure 3: Magnitude of Bode plots for bus 5 for different

power factors
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Figure 4: Magnitude of Bode plots for bus 6 for different

power factors

0

frequency [rad/s]

0 frequency [rad/s]

5.14 T T T T T T
100s 1s 100s
5.12r E
5.1+ 1
5.08f \._o& BUSE
Pd=dyn; Qd=dyn "
061 ‘ !
35 0.3s - ¥
= e~
2504 Pd=stat; Qd=dyn
2
5.021
5l Pd=dyn; Qd=stat BUS 5 1
Pd=dyn; Qd=dyn
4.981
0.19
4.96F Pd=stat; Qd=dyn
494 i A . L 1s 04s
038 -0.36 -0.34 -0.32 028 -026 -024 -0.22

03 -
damping [1/s}
Figure 5: Root loci of the interarea mode for varying load
time constants

a
3

jw [rad/s]
o
£

o
S

4.98
{ 0.1s

“Fw 03, os 0%

03 -028 -026 -024 -0.22
damping [1/s]

Figure 6: Root loci for variation of dynamic and static
load parameters

real power load. This is independent of whether reactive
power is modelled as static, or modelled as dynamic with
a constant power factor. However if real power is modelled
as static, and reactive power as dynamic, then for small
time constants, system damping deteriorates. For larger
time constants, damping improves. Similar analysis can
be undertaken of the root loci for bus 6. ,
These results highlight the fact that care must be taken
in modelling loads.

4.2 Static versus dynamic load modelling

The solid line in Figure 6 shows the movement of the in-
terarea mode as the real and reactive power time constants
of the dynamic load at bus 5 are varied simultaneously. It
was pointed out in [201 that when the load time constants
T,,1, were very small, the load effectively behaved as a
static load, with indices n,,;,ny;. When T}, T, were very.
large, the load again behaved as a static load, but this
time with indices npy, ngs. _ .

It is interesting therefore to consider the influence on
the interarea mode of treating the load at bus 5 as static,
and varying the indices from n,,;n4; to 1y, ny. This is
shown in Figure 6 as a dashed curve.

As predicted, the two curves start and finish at the
same points. However they trace out significantly different
paths. It can be seen that dynamic loads with time con- .
stants in the range from 0.1s to a few seconds cannot be
adequately described by a static representation. Note that
this range of time constants corresponds to most dynamic
%oags, e.g., industrial, agricultural and air conditioning
oads.

4.3 Sensitivity of damping to load param-
eters ' ’

The accurate modelling of loads is a difficult task for
a number of reasons, including [18, 19]: large number of
diverse load components, ownership and location of load
devices in customer facilities that are not directly acces-
sible to the electricity utility, changing load composition
with time of day and week, seasons and weather, lack
of precise information on the composition of loads, and
uncertainties regarding the characteristics of many load
components.
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Figure 7: System damping when load parameters ran-
domly chosen for bus 5

In the root loci of Figures 5 and 6, we have seen the vari-
ation in damping when the load time constant is varied.
Also of interest 1s the effect when the other load param-
eters Nps, Npi, Ngs, Ng are varied as well. This is shown

in Figure 7 for the interarea mode. The solid curve is -

the same as that shown in Figure 6. It corresponds to
load parameters nys = 0.1,np; = 2.4,n4s = 2,n44 = 5.
The scattered points in the figure were obtained by ran-
domly varying Tp,, Ty, np¢, g sSimultaneously. The follow-
ing ranges were used:

OST})’TQS5O
1.5 < npt < 2.5
2antS5

The encircled plus signs correspond to 0 < Ty, 7, < 0.1,
the plus signs to 0.1 < 7, T, < 1.0, and the asterisks to
1.0 < T,,Ty < 50. The steady state voltage exponents
Nps, Ngs Were left unchanged.

Notice that the static load representation, given by the
point at the start of the curve, 1s not near the region cov-
ered by the random points. Further, comparing Figures 6
and 7, we see that the dashed curve of Figure 6 which
corresponds to variation of the static load model, lies in
a region devoid of random points. This is further con-
firmation that the static load model can give misleading
results. : '

In producing Figure 7, only the load parameters at bus 5
were varied. Figure 8 shows results ‘when the parameters
for dynamic loads at the non-generator buses of the ex-
ample system were randomly varied. The same parameter
ranges were used as above. In the figure, the small circle
shows the location of the interarea mode when loads were
represented statically. All other points correspond to dy-
namic loads. Notice that the dynamic load points cover
quite a wide area. But the static load point does not lie in
the covered region. Depending on load parameters, it is
possible to have very good damping or very poor damping.
In fact it is possible to obtain points that lie in the right
half plane, i.e., values of load parameters which cause the

“system to be unstable. Optimization techniques, similar
to those developed for coordinated tuning of controllers,
could be used to determine the values of load parameters
which give the worst or best damping.
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domly chosen for non-generator load buses
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Figure 9: Root loci for the two least damped modes

4.4 Effects on multiple modes

. Until now we have only considered the influence of dy-
namic loads on a single mode. The ideas extend naturally
to multiple modes though. Figure 9 shows the root loci for
the two least damped modes of the eight bus system. In
this case the loads at all non-generator buses were mod-
elled as dynamic. The time constants of the bus 5 load
were varied to give the curves.

As the load time constant was increased, the interarea
mode (labelled 1) became slightly worse damped, then
damping improved. But the damping of the local mode
(labelled 2) steadily decreased. In fact, for time constants
greater than 1.5s, mode 2 became the least damped mode.
Also, it was found that the participation of generators
in those modes changed as-the time constant increased.
For small time constants, mode 1 had strong participation
from generators 2 and 3, but for large time constants, the
mode predominantly involved generators 1 and 2. Mode 2
though involved generators 1 and 2 for small time con-

. stants, but generators 1,2 and 3 for large time constants.
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5 Conclusions

The paper has demonstrated the need for accurate mod-
elling of loads. A static representation of loads that ex-
hibit dynamic behaviour can give quite misleading results.

The influence of non-unity power factor loads has been
explored in the paper. Depending on system conditions,
the dynamic behaviour of the reactive part of loads can
be more significant than the real power part.

The significance of load model uncertainty was consid-
ered. To do this, load parameters were randomly varied,
with damping being determined for each set of parame-
ters. This study indicated that the calculated values of
damping could be quite wide spread.

It was shown that dynamic load models could not only
affect the damping of electromechanical modes, but could
also have an influence on which generators participated in
the mode. As load parameters vary, this participation can
also vary. :

References

[1] E.V. Larsen, et. al., “Applying power system stabilisers”,
IEEE Trans. Power Apparatus and Systems, Vol. 100, 1981,
pp. 3010-3046. .

[2] G.C. Verghese, et. al., “Selective modal analysis with appli-
cations to electric. power systems, Part II: The dynamic sta-
bility problem*, IEPEE Trans. Power Appaeraius and Systems,
Vol. 101, No. 9, 1982, pp. 3126-3134.

[3] M. Klein, et. el., “A fundamental study of inter-area oscilla-
tions in power systems”, IEEE Trans. Power Systems, Vol. 6,
No. 3, 1991, pp. 914-921. '

[4] T. George, et. al., “Options for an interconnection between the
power systems of Queensland and New South Wales”, 1993

CIGRE Regional Meeting, South-East Asia and Western Pa-
cific, Paper No. 7.4, Gold Coast, Australia, October 1993.

[5] A. Roman-Messina and B.J. Cory, “Enhancement of dynamic
stability by coordinated control of static VAR compensators”,
Int. Journal of Electrical Power and Energy Systems, Vol. 15,
No. 2, 1993, pp. 85-93.

[6] L. Wang, “A comparative studﬁ of damping schemes on
damping generator oscillations” , IEEE Trans. Power Systems,
Vol. 8, No. 2, 1993, pp. 613-619.

[7] HF. Wang, et. al., “Stabilization of power systems by gov-
ernor-turbine control”, Int. Journal of Eleciric Power and En-
ergy Systems, Vol. 15, No. 6, 1993, pp. 351-361.

[8] M. Noroozian, “Damping of power system oscillations by con-
trollable components, IT - study of a multi-mode system”, PFC
Progect, Dept. of Electric Power Systems, Royal Institute of
Technology, Stockholm, August 1993.

[9] B.R. Korte, A. Manglick and -J.W. Howarth, “Interconnec-
tion damping performance tests on the South-east Australian
power grid”, Colloguium of CIGRE Study Commitiece 38, Pa-
per No. 3.7, Florianépolis, Brazil, September, 1993.

[10] R.H. Craven and M.R. Michael, “Load representations in the
dynamic simulation of the Queensland power system”, Journal
of Electrical and Electronics Engineering, Vol. 3, No. 1, 1983,
pp. 1-7.

[11] M.H. Kent, et. al., “Dynamic modelling of loads in stability
studies”, IEEE Trans. Power Apparatus and Systems, Vol. 88,
No. 5, 1969, pp. 756-763.

[12}] N.D. Rao and S.C. Tripathy, “Effects of load characteristics
and voltage-regulator speed-stabilizing signal on power system
dynamic sta.bi%
pp. 613-618.

[13] W. Mauricio and A. Semlyen, “Effect of load characteristics
on the dynamic stability of power systes”, IEEE Trans. Power
Apparatus and Systems, Vol. 91, 1972, pp. 2295-2304.

ity”, Proceedings IEE, Vol. 124, No. 7, 1977,

[14] C-J. Lin, et. al., “Dynamic load models in power systems us-
ing the measurement approach”, IEEE Trans. Power Systems; .-
Vol. 8, No. 1, 1993, pp. 309-315. '

[15] W.W. Price, et. al., “Load modelling for power flow énd tran-
sient stability computerstudies”, IEEE Trans. Power Systems,
Vol. 3, No. 1, 1988, pp. 180-187.

[16] E. Welfonder, H. Weber and B. Hall, “Investigations of the
frequency and voltage dependence of load part systems using a
digital self-acting measuring and identification system” , IEEE
Trans. Power Systems, Vol. 4, No. 1, 1989, pp. 19-25.

[17] L.V. Zhezhelenko and V.P. Stepanov, “Development of meth-
ods for calculating electrical loads”, FElectrical Technology,
No. 1, 1993, pp. 75-89.

[18] IEEE Task Force Report, “Load representation for dynamic
performance analysis”, IKEE Trans. Power Systems, Vol. 8,
No. 2, 1993, pp. 472-482.

[19] C. Concordia and S. Thara, “Load representation in power sys-
tem stability studies”, IEEE Trans. Power Apparatus and Sys-
tems, Vol. 101, No. 4, 1982, pp. 969-977.

[20] J.V. Milanovié¢ and I.A. Hiskens, “Effects of load dynamics on
power system damping”, IEEE PES Summer Meeting, Paper
No. 94 SM 578-5 PWRS, San Francisco, 1994.

[21] J.V. Milanovié¢ and I.A. Hiskens, “The effects of dynamic load
on steady state stability of synchronous generator”, Proc. Int.
Conference on Elecirical Machines ICEM’94, Paris, France,
September 1994.

[22] D.J. Hill, “Nonlinear dynamic load models with recovery for
voltage stability studies”, IEEE Trans. Power Systems, Vol. 8,
No. 1, 1993, pp. 166-176.

[23] D.Karlsson and D.J. Hill, “Modeling and identification of non-
linear dynamic loads in power systems”, IEEE Trans. Power
Systems, Vol. 9, No. 1, 1994, pp. 157-166.

[24] S.A.Y. Sabir and D.C. Lee, “Dynamic load models derived
from data acquired during system transients”, IEEE Trans.
Power Apparatus and Systems, Vol. 101, No. 9, 1982, pp. 3365-
3372.

[25] CIGRE Task Force 38.02.05, “Load modelling and dynamics”,
Electra, No. 130, May 1990, pp. 122-141. . .

[26] C.P. Arnold, K.S. Turner and J. Arrillaga, “Modelling recti-
fier loads for a multi-machine transient-stability programme”,
IEEE Trans. Power Apparatus and Systems, Vol. 99, No. 1,
1980, pp. 78-85. . .

[27] C. Shackshaft, O.C. Symons and J.G. Hadwick, “General-
purpose model for power-system loads”; Proceedings IEE,
Vol. 124, No. 8, 1977, pp. 715-723.

Ian A. Hiskens (S’77,M’'80) received the B.Eng.(Elec.) degree
and the B.App.Sc.(Math.) degree from the Capricornia Institute
of Advanced Education, Rockhampton, Australia in 1980 and 1983
respectively. He received the Ph.D. degree from the University of
Newcastle, Australia in 1990. He worked in the Queensland Elec-
tricity Supply Industry from 1980 to 1992. Dr Hiskens is currently a
Senior Lecturer in the Dept. of Electrical and Computer Engineer-
ing at the University of Newcastle. His major research interests lie
in the area of power system analysis, in particular system dynam-
ics and control, security, and numerical techniques. Other research
interests include nonlinear systems and control.

Jovica V. Milanovi¢ received Dipl.Ing.(Elec.) and M.E.(Elec.)
degree from the University of Belgrade, Yugoslavia, in 1987 and 1991
respectively. One year he worked with “Energoproject-MDD” Co.
in Belgrade as an engineer in designing power plants and substa-
tions. In 1988 he joined the Faculty of Electrical Engineering of the
University of Belgrade, Yugoslavia, first as associate teaching assis-
tant and then as teaching assistant at the Dept. of Power Converters
and Drives. Since March 1993 Mr Milanovié has been with the Uni-
versity of Newcastle, Australia, as a PhD student at the Dept. of
Electrical and Computer Engineering. His major research interests
includes synchronous machine and power system transients, control
and stability. '



DISCUSSION

D.M. VINOD KUMAR (Department
of Electrical Engineering, Regional Engi-
neering College, Warangal, INDIA) :

The authors’ are to be congratulated for
their paper which presents the load mod-
elling studies for the power system damp-
ing. The paper is well written.

The modelling of the.loads is complicated
as the load composition were known ex-
actly, it would be impractical to repre-
sent each individual component as there
are usually several such components in the
total load suplied by a power system [A].
The purpose of constructing load models
is to obtain an accurate mathematical rep-
resentation of loads to be incorporated in
system stability and dynamic analysis

Artificial Neural Networks (ANN) approx-

imation theorems were applied to ANN

based load modelling problem with the
knowledge of error bounds, and the results

of ANN model load dynamics are accurate
[B].

Hence authors’ can make use of Al based
(such as ANNs etc.,) dynamic load mod-
elling for power system damping to over
come misleading results of the classical
load modelling,.
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Y. Liang and C. Nwankpa (ECE Department, Drexel
University, Philadelphia, PA):

The authors should be commended for having clearly shown
both theoretical and numerical effects of different load models
on power system damping. The result of this paper indicates
that dynamic load models should be applied in studies on
power system damping. It is obvious that the degree of this
effect depends on the parameters of the model. It is interesting
to note in Figure 5 of the paper that the timé constant of the
dynamic load model which has the most significant damping
effect on the system oscillation is around 0.3 seconds which
is relatively close to the period of the system oscillation
(about 1.1 seconds). Is this coincidence? In other words, is this
true in most other cases? We don't believe this to be
coincidence. This is because load models with time constants
significantly less or geater than the system oscillation period
have minimal interactive effect on system oscillations and vice
versa. If the authors agree or disagree with our point, is there
theoretical explanations based on the closed loop transfer
function of Figure 1? Finally, we would like to ask if the
authors have thought about the effect of reverse reactive power
recovery on system oscillation? We think this is an important
question, since the reverse reactive power recovery occurs in

heavily compensated power systems[1].

[11 S. G. Casper, C. O. Nwankpa, R. Fischl, A.
DeVito and S. C. Readinger, "On Substation Tests‘
for Load Modéling", Proceedngs of the 26th
AnnualNorth American Power Symposium,

Manhatten Kansas, September 26-27, 1994.
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I.A. Hiskens, J.V. Milanovié. We wish to thank the
discussers for their kind comments and interesting discus-
sions. We will provide a separate response to each discus-
sion.
Y. Liang and C.O. Nwankpa

We agree with the discussers that the load time con-

stant which has greatest effect on damping and the period
of the system oscillation will generally be of the same or-
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der of magnitude. As mentioned in the paper, if the time
constant 1s much smaller than the system oscillation pe-
riod then the load will effectively behave as a static load,
with indices given by the steady state characteristics, i.e.,

Nps, Ngs. In response to the slow voltage changes caused -

by the system oscillations, the load will recover back to its
steady state characteristic very quickly. So-it will appear
as a static load. Similarly, if the load time constant is
much greater than the system oscillation period, then the
load will respond very slowly to voltage deviations. So it
will appear as a static load with indices np:, ng: given by
the transient characteristics. '

The relationship can be explained further by referring
to Figure 3 of | fwhich is given here as Figure A. This
figure plots gain and phase for the linearized dynamic load
model for various load parameters. Interaction between
the system and the load is generally dependent on there
being significant gain and phase shift through the load at
the system modal frequency. It can be seen from Figure A
that as the frequency of interest (i.e., the modal frequency)
increases, the time constant which gives maximum phase
shift at that frequency decreases. Note though that it is

a combination of gain and phase shift that dictates the
overall effect. :

Y
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Figure A: Bode plots of dynamic load for different time
constants, T,. Dashed line - nyy/n,s = 25, solid line -

Npt [Nps = 2.

We have not explored in any detail the effects of reverse
reactive power recovery on system ¢lectromechanical os-
cillations. However we believe the effects could be very
interesting. From [20], the linearized load model for reac-

tive power is given by,

gtTys + ngs)

AQu=@rMgE e Ay

It can be seen from (1) that if ng; or ng was less than zero,
indicating transient reverse behaviour or steady state re-
verse recovery respectively, then the load model would be
non-minimum phase, i.e., would have a right half plane
zero. Such systems can exhibit complicated and quite
non-intuitive behaviour. In a different line of work, we
have found that for load systems, reverse recovery can
lead to sustained oscillations, i.e., stable limit cycles. Fur-
ther work is cerfainly required to explore the effects on
electromechanical oscillations.

If both ng, and n,; were negative, then from (1), there
would be an additional 180° phase shift through the load.
It would appear that load - system interaction would be
similar to ‘normal’ behaviour, but with the additional load
phase shift.

D.M. Vinod Kumar

Artificial neural networks appear to provide a method
of modelling the dynamic behaviour of loads. Other
more traditional approaches, based on system identifica-
tion techniques, can also provide useful models. In all
cases, the models are only as good as the available data,
and the statistics describing those data.

One important observation is that loads at certain loca-
tions within a power system may have more of an influence
on electromechanical oscillations than loads at other loca-
tions. Figure 5 of the paper illustrates this. In that case,
BUSS5 is a much more significant location than BUS6. It is
therefore important to 1dentify the more significant loads
and locations within a system, and devote most resources
to modelling them. '

[A] J.V. Milanovié¢ and I.A. Hiskens, “The influence of
load dynamics on power system oscillations”, Proc.

FElectrical Engineering Congress, Sydney, Australia,
November 1994. '

Manuscript received May 2, 1995.



