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Abstract—The use of Nash equilibria as strategic bidding so- we consider assumes that market participants are rational and
lutions for players competing in a centralized electricity market attempt to maximize their individual profits by untruthfully re-
has been explored in the literature. In addition, the existence of vealing their costs in their offer curves. They are assumed to play

multiple market equilibria, both in pure and in mixed strategies, tati fi fi K | d
when system constraints are taken into account in the market so- a stalic, noncooperative, continuous-kernel game under com-

lution, has been shown for particular test cases. This paper ad- Plete information. The solutions prescribed by this game are
dresses the difficult problem, due to its exponential order, of finding Nash equilibria. Further, a method to find multiple equilibria
multiple equilibria in centralized electricity markets. A systematic  jn pure (but not in mixed) strategies under this model has been
procedure which allows the analysis of multimachine systems is considered [6].

employed. Moreover, some conclusions concerning the existence . . . . -
of multiple market equilibria in real networks are made possible The main problem addressed in this paper is that of finding

by the method presented here. The paper carefully explains the those multiple equilibria, if they exist, in centralized electricity
models and market assumptions under discussion and details the markets. Although their existence for special, small systems has
algorithmic procedure for the search method. The IEEE 30-bus peen shown in [6], their existence in more realistic networks has
and 57-bus systems are used as test cases. yet to be established. This has been so because of the lack of a
Index Terms—Game theory, market equilibria, pure and mixed  systematic and workable procedure to tackle the problem, which
strategies, search algorithms. is of nonpolynomial order. The method for finding those mul-
tiple equilibria and the conclusions that we may derive from its
|. INTRODUCTION application to multimachine systems, constitutes the core con-
.. . tribution of this paper.
INCE competitive bulk power markets were established in The remaindgr gf the paper is organized as follows. In Sec-

arious jurisdictions around the world, a key concern h on II, we revisit the individual welfare maximization (IWM)
been the study of market outcomes or solutions, given speci 'Eﬁ;orithm while formalizing the mathematical framework and
market rules. This study is justified from the standpoints of bo oviding’a game theoretic perspective. Moreover, we extend
the regulatory entities and the market participants. The for &% WM algorithm to the problem of finding an equi’Iibrium in
have the responsibility 9f designing and monitoring the. mark?@xed strategies. The procedure for searching for multiple equi-
to ensure true competitiveness, and hence, social efficiency. itfia is detailed in Section Il and its application is exemplified

Iatt_er.have invested interest in the markgts, and therefore, de%{ multimachine systems in Section IV. Some conclusions are
their investments be recovered at maximum return. By undey-

. rovided in Section V. Appendix B gives an example of an equi-
standing market rules and how these rules are used and explo ! ! I Ppendix = giv xamp aul

. . i iﬁﬂum in mixed strategies.
participants and regulators have the opportunity to carry into ef-

fect their respective roles.
The strategic equilibria (Nash equilibria [1]) framework has Il. INDIVIDUAL WELFARE MAXIMIZATION ALGORITHM
been u'sed' as a too! for finding rational's'olutions for biddin/g. Pure Strategies
strategies in centralized (Poolco) electricity markets-PJM In-
terconnection is a specific example of this market model im- The IWM algorithm assumes that the independent grid op-
plementation. It has been shown that there may be multifiEator (IGO) runs a centralized economic dispatch subject to

strategic solutions for a single market period [2]-[4]. The mod&yStem constraints (OPF) [2], [4]. This OPF, which uses bids
and offers freely submitted by the participants, sets the nodal

) . . ) rices (Lagrangian multipliers) that are used to charge consump-
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stitutes common knowledge as well. The schedules submitigere D represents the set of elastic loads. These quadratic
by the players are valid for one time period of the market, tygost and benefit functions correspond to having piecewise linear
ically 1 h. Therefore, they need to optimize their bid/offer foprice and value functions with only one segment.

a specific time period, which is viewed as a snapshot in time.Unlike the original IWM algorithm, we consider the case in
For equilibria in mixed strategies, defined later in the paper, itvghich only the generators game. That is the situation faced by
implicitly assumed that the conditions of a particular snapshptesent-day electricity markets, where loads are still modeled
will repeat in time. as fixed forecast quantities whose consumers have no ability

Each player in the market may find the equilibrium pointto game. For completeness though, Section IV gives examples
through his or her own choice of the parameters of the reportedh elastic load.
schedule and by mimicking the other players’ choices. This isThe game is played assuming that the players use supply-
possible from the common knowledge on rationality and infofunction competition [9], as opposed to Bertrand or Cournot
mation. Hence, the equilibria found by each player alone witbmpetition, and need only to game with one of the parameters
match those found by the other players. This constitutes tbktheir offer functions. For example, gaming may be achieved
main strength of the Nash equilibrium concept. by replacing the true cost variable, by a decision variable,

The IWM problem is cast as a nested optimization problerim the reported price schedule. Furthermore, we associate each
The inner problem is the OPF, and the outer problem is the optiement of the vector of multistrategigsvith an element of the
mization of the individuals’ utility functions subject to the OPFvector of cost parametees> = [ap1, aps, .. ).
solutions. Moreover, each playgrcontrols a vector of,, re- The individual welfare maximization problem, where only
ported variableg), € ®,, where®, is the decision space for generators game and load is considered elastic, may be thus de-
playerp. The outer problem objective function may be called thecribed as
players’ decision rule [7], [8]. To facilitate the following defini-
tions, we defined® = ®, x, ..., x®,, and denot@®; as® with min  f,(P,,\,), VpeP

’ ’

®, removed. Alsog;, € ®; denotesp = (¢,,...,¢,) with ¢, b

removed. s.t.  (Pp,A,) are determined by
Definition 1: A decision rulefor playerp € P = {1,...,n} mn > e Ca(Py, bg) = X gep Ba(Da)
is a correspondench,(-) from ®; to ®,, which associates o st h(x,P,D)=0
the vector of multistrategies (or multidecision vectgr) € g(x,P,D)<0
®; of pIayers;i with the strategy (or decision) vectgy, = 1)
(¢p,--- o) € Sp(#;), which may be played by when all
other playerg are playingg;. where the equality and inequality constraints of the OPF are

Definition 2: A multidecision vectop™ € ®, which satisfies represented bli(-) andg(-), respectivelyP denotes the vector
the static equilibrium conditiog, € S,(¢;),Vp € P,iscalled of all generated powel) denotes the vector of all loads, ard
aset of consistent multistrategies represents the vector of state variables.

The set of consistent multistrategies may be empty when thef the demand were to be considered fixed, then the benefit
decision rulesS(-) do not cross. On the other hand, it may be function B,(-) would vanish and the vector of all load variables
large or a reduced number of multistrategies. It is dependentDnwould be substituted by a vector of fixed quantitl@g,.
the decision rules adopted by the players. This paper addresseg,is assumed in game theory that the players set their pref-
among other issues, the problem of finding multiple points @frences according to some ordering function. We will call such
consistent multistrategies, given a specific decision rule. Thefunction theloss functionf, of playerp such thag” € ® is
decision rule adopted in the games developed here is profit m@xeferred to¢,b € @ if and only if f,(¢") < fp(q;b)' The loss
imization, as established by the IWM algorithm described lat@inction is the profit function negated,(¢) = — f,(¢). In (1),
in (1). The vector of multistrategies represents all the contrgle loss function of each playgris given by the sum of costs
variables reported by all players to the bid-based OPF run Byinus payments for his or her controlled generators. This may
the IGO. These are the variables that affect the trading solutipa written as
and consequently the players’ revenues.

In terms of the IWM algorithm, the vector of generation con- _ L
trolled by playerp is denoted byP,. The nodal prices applied Tp(Pp, Ap) = ; [Co(Fg: 2pg:brg) = Ag - Fl
to the generation controlled by playemare a byproduct of the ! T " - T
OPF and appear &s . The cost of each generator is, in the IWM =P, -diag{ap,} - P, +bp, P, — A, - Py
model, represented by a quadratic function (2)

where the fixed components have been dropped. The quadratic
parameters are represented in mattixxz{ap, } and the linear

arameters appear in vectbip,. The set of generators con-
whereg represents the set of generators. If the loads are elas?lc PP Pp 9

. . . rolled by playerp is denoted byg,.
they are represented by quadratic benefit functions Note that the cost function in the inner OPF loop uses the

(untruthfully revealed) decision variablds whereas the loss
Bi(Dg) = apq - D3+ bpa-Da+cpa, VYdeD function f,(-) uses the true cost parameteays

Cy(Py) = apg-P;+bpg-Py+cpg, VgeG
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The existence of a consistent set of multistrategies issalution may be reached by all players independently, by itera-
so-called fixed-point problem. We may denote the collectidive readjustment o using Newton’s method
of decision rulesS, asS(¢) = S; x --- x S,. Therefore,
S(¢) provides a mapping o into itself. A consistent set P+ — (k) _ <V2 7 )_1 | (V 7 ) | VpeP. (3)
of multistrategies may be writtepp* € S(¢*). Kakutani's ” r oplp) Akt WNendp) TP =

fixed-point theorem addresses this existence issue [7]. If a stationary point is found, then it is stable with respect to the

Theorem 1: Suppose that the strategy_ S.etép are Convex, selected readjustment scheme and it constitutes, by definition, a
compact subsets (&'») and that the: decision rulesS,(-) are Nash equilibrium

upper semicontinuous with nonempty, convex, closed values.
Then there exists a consistent multistrategy. B, Mixed Strategies

In real electricity markets, system constraints, such as trans-
mission line limits, often influence operations. Therefore, the Sometimes, in the context of the IWM problem, inconsistent
convexity of decision rules required by Theorem 1 is unlikelypets of strategies may be found. This is due to power system con-
However a way of proceeding is to divide the decision sgcestraints, which give rise to discontinuities in the reaction curves
into subsets (oregiony, with the boundaries of these regiond4]- As a consequence, the reaction curves might not cross. Even
composed of points where constraints change status. Therefétgugh equilibria in pure strategies do not exist, it may be pos-
no constraint status changes occur within regions, only betwesle to identify mixed strategies that cause the IWM algorithm
regions. to cycle back and forth across a given constraint (or set of con-

Experience shows that (1) is generally well behaved. If tifdraints). This cyclical behavior describes an equilibrium state
inner optimization problem uses a dc power flow formulatiofPr @ mixed strategy scenario.
and linear constraints, then this inner problem is convex with Consider the compact subsets (regions) of the decision space
respect tax, for fixed ¢, and is also convex with respect¢o ® bounded by the discontinuities. These regions, denotedby
for fixed x. But it is not convex overall. In addition, the outer® = {1,..., s}, are assumed to be convex. Equilibria in mixed
objective function has a bilinear ter] - P, which makes Strategies can be located by convexifying the strategy set by
it neither convex nor concave. Notwithstanding, the searchiagsociating with each region a probability of playing a particular
method presented in Sections Il and IV assumes good behaBategdy in that region. In other words, each set of strategies
(convexity) inside each of the multiple regions. v, = (¢, 4;) € T, = ®,x,...,x®; is associated with

If the multistrategies of all players are chosen according {8€ (s — 1) simplex ofR*
canonical decision rulgsalso known aseaction curvess, :

&, — &, such that R} := {PpERUZP;:l}
rT€ER

S (gp) = {¢; €®, | f,(¢5, ¢p) = inf fp(¢>p,¢p)} where p;, denotes thg probability with which player plays _
bpEPp strategyg,,. If the regions are compact and convex, then their
convex combination is also compact and convex. Moreover, as-
%uming the loss functiong, (-) are continuous and convex, then
their convex combination in each region is also continuous and
convex.
Definition 4: A set of decision vectors* = (vf,...,v}) €
YT=7; x..--x 7T, associated witlR," is called anoncoop-
erative equilibrium in mixed strategies Nash equilibrium in

mixed strategieff

Vp € P, then the definition of a Nash equilibrium arises na
urally.

Definition 3: A decision vectow* € @ is called anonco-
operative equilibrium in pure strategies Nash equilibrium in
pure strategiesf

fol¢™) = inf f, (p.0}). VpEP.

PpEP,
A Nash equilibrium (or noncooperative equilibrium) is a so¢,(v*, p*) = inf o (5. 905) - 1y H pi* | VpeP
lution that is an individual’'s best response to strategies actually ppERS ® ieP
played by his or her opponents. In other words, it has individual ra€R @)

s_,ta_blllty. Suff_|C|ent conditions f_or the existence of a Nash equici e ® denotes all combinations ofg € R, andP de-
librium are given by the following theorem.

m,qER
Theorem 2: (Nash) Suppose the seds, are convex and com- notesP with p removed. [An example illustrating (4) is given

pact and the loss function$ are continuous and convexy € in Appendix A.]

‘P. Then there exists a noncooperative equilibrium. A solution for an equilibrium in mixed strategies is, there-
So in order to determine an equilibrium in pure strategiefyre, one that maximizes the expected profit of all players by

assuming the conditions of theorem 2 , each player runs the agsociating optimal strategies, and probabilities of playing those

timization problem as cast in (1). It is run for his or her owstrategies, with each region.

strategy vector and for his or her opponents as well, by mim-Itisimportant to note that the use of equilibria in mixed strate-

icking their optimization of their multistrategies. This is madegies is a departure from the static game. Since the definition in-

possible by the common knowledge assumption. A stationarglves the use of probabilistic (random) strategies, it is implicit



1420 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 18, NO. 4, NOVEMBER 2003

that the game will be repeated. Therefore, when oscillationstben the IWM algorithm for pure strategies would be run for
the algorithm (1) across system constraints indicate the prése original problem (1), using the constrained equilibrium as a
ence of an equilibrium in mixed strategies, the convex comlstarting point, to check its feasibility.

natione,(-) is substituted forf, (). As a consequence, the IWM A drawback of this procedure is the need to check all pos-
problem assumes the form sible regions given by all combinations of system constraints.
The problem is of combinatorial nature and the number of pos-
sibilities may render a nonmanageable problem. In addition, by
extending (in the modified problem) each region beyond its true
boundaries, equilibria in mixed strategies are not detectable.

min e,(II,,A,), VpeP

?

s.t. (IL,, Ap)are determinedlr € R by

wprpe 2 Co(Pydy) = X Ba(Dp) Consequently, any method of searching for multiple equi-
st h-‘zfj P, D") =0 deb libria, both in pure and in mixed s_trategies, has to addres_s_ tvyo
(X,,’ PT7DT) <0 problems. First, the number of regions to be tested for equilibria
XL - 5 must be dramatically reduced. Second, the algorithm should be
) given the opportunity to start each search inside each of these
wherell, — (P! P:) andA, = (Al X*) are, respec- different regions without artificially enforcing or relaxing any
, b Py , b A ,

tively, the matrices of generated power and nodal prices for gﬁ the sy_stem constraints. . .

. . o . Reducing the number of regions may be viewed as a problem
regions spanned by the (mixed strategy) equilibrium. An equi: .., . . .
librium in mixed strategies is found using Newton’s metho fflltenng power flow §o|ut|on§ to det.ermmethose that are fea-
substitutinge, () for £,(-) in (3) Sible for specified regions while subject to the OPF run by the

ngep\ pL) N LS). . Jgo.

A continuation process is generally required to locate the de-
sired mixed strategy equilibriufv*, p*). The continuation al- A
gorithm gradually varies the value of a line limit from an initial o ] ) ) o
(high) value chosen to ensure the existence of a pure strategwe initial step in Iocatujg multiple equilibria is to searqh for
equilibrium. In other words, at initialization, the line limit hag'€asible power flow solutions that correspond to specified re-
no influence on market behavior. As the line limit is reduce@ions- A feasible power flow inside a specified region, if it ex-
from that initial value to its final true value (where the constrairftS: may be found from a particular base case power flow via
induces mixed strategy behavior), the solution of (5) evolvé&slinear programming (LP) problem, when the power flows are
smoothly along the continuation path to the desired solutigl§Scribed by dc power flow equations. If regions are character-
(v*, p*). ized by line constraints but not load limits, then for each region

The rationale for such a method is the fact that the loss furfc€ - the problem has the form
tions in mixed strategies, (-) must have continuous first-deriva- " - ¥ -
tives and can be assumed convex only inside a small decisio Z APy + AP, +AD; +AD,

. Feasible Regions

rl]nl n

subspace where the constraints do not cause discontinuities. The
high sensitivity of the loss functions with respect to the offer pa- S.t.
rameters and probabilities makes it extremely difficult to guess

an initial solution inside that convex region. Appendix B pro-
vides a simple example to illustrate this continuation process.

[ll. SEARCHING FORMULTIPLE EQUILIBRIA

The strategy set®,, for all players are convex but, as shown
earlier, the loss functiong,(¢,, ¢;) are generally not convex.
The functions are continuous and differentiable if the set of
system constraints does not change. When some system con-
straint changes status though, the first derivatives of the loss
functions suffer a discontinuity and the players’ reaction curves

Vgeg vdeD

> AP} -AP; —ADJ +AD; =0
Vg€G,deD
J,- (AP — AD) = ¢} - pmax _ pbase ¢ pr
J,- (AP — AD) < pax — pbase v g pr
~J,- (AP — AD) < P 4 pPase ;g pr
0 < AP < pmex _ pbase
0 < APy < pbase
0 < AD} < Dy — p§ase

0 < AD; < Dphase (6)

S(¢) may also exhibit a discontinuity. Nevertheless, we assumdiere APQ+ and AP, represent the positive and negative
that the loss function&¢) are convex inside each of the regionghanges of active power generated by gener@,t(zﬁ;D;r and
given by different combinations of system constraints. Theré&D are the positive and negative changes of active power
fore, it is necessary only to look for a single equilibrium insideonsumed by load (for fixed load this variation is zero)l;

each of those regions.

denotes the row vector of sensitivities of the flow on linto

If we were only concerned with equilibria in pure strategieghanges in the controls, anxl? andA D denote the vectors of
we could run the IWM algorithm for pure strategies for eachll active power generation and load, respectively.
region of the bidding space by forcing the system to operateWe denote byL” the set of lines defining a particular re-
in that particular region. We would only have to enforce thgionr. Moreover, we associate each regiowith a case’, =

system constraints defining that region. Those constraints woyld , . . .

,cr, b wherec] denotes the state of constrairfor that

be made equality constraints while the remaining ones would gecific region. In this case, where we take into consideration
relaxed. If an equilibrium was found for this modified problemonly the active power flow line limitg» will denote the number
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of lines in the system and’ € {0,1, —1} represents the pos- Base case (0, 0, ...
sible states of the active power flow on lihfer regionr. Values ! I
of 1 or —1 indicate the line is congested with the active power
flow in the corresponding (forward or reverse) direction. A value '
of ¢; = 0 indicates that ¢ £".1 The bidirectional limit on ac-
tive power flow on linel is given by P™**, while the limits on
active power generation of generagpand active power con-
sumption of load! are given byP;"** and D7***. The base case
line flows, generation, and consumption are denotedpye,
PP and D}y, respectively.

If a full power flow was substituted for the dc equations, a

Propagate

sequential method could be used. In this case, mdtiwould Frone T

be replaced by the sensitivities obtained from the Jacobian. ~——1
~——

B. Feasible, Optimal Regions Feasible, optimal cases

The second step is the screening of the feasible power flow [

solutions to determine feasible, optimal power flow solutions. N T
This further filters the number of regions that have to be tested Piscard ]
for equilibria and, in addition, provides the initial solutiopis’ Equilibria

to be used in the IWM algorithm for the surviving regions. Be-
cause these initial solutions are inside specified regions, they
appropriate for finding equilibria in mixed strategies.

A feasible, optimal power flow inside a regiere R may be
found, if it exists, by means of a modified version of the IWM Problem (7) is solved using diagonally scaled steepest de-
algorithm scent with stepsize selection using the golden section method

[10]. One crucial point while searching iteratively for a deci-
ming Z (P, — C;leaX)z + Z |si| - (P, — SlplmaX)z sion vectorg that makes the system operate inside a specific

[
%ge. 1. Procedure for equilibria search.

lecr Igcr region is to keep all the generators controllable. For this reason,
—1: P < —ppmax every time a generator hits its active power generation limit, the
wheres; = { +1: P, > P corresponding control variablg, must be kept at the kink. In
0, otherwise other words, the control variable is updated such that the gen-
s.t. P;is determined by eration is as close as possible to the limit, but not at the limit.
ming pp Y Cy(Pydg) — 3 Ba(Da) The reason for doing this is to keep every generator from prema-
geg deD turely “giving up” contributing for a feasible, optimal solution
S.t. h(x,P,D)=0 inside a specified region during the steepest descent method.
gx,P,D)<0 The IWM algorithm will, in the end, be run for only the fea-

(7) sible, optimal regions that correspond to a database of feasible,
optimal cases. Fig. 1 summarizes the entire procedure, from the
where the IWM objective function is substituted by a penaltyase case to obtaining a database of equilibria. Because of the re-
function penalizing the active power flow on lines where limitgion-based initial solutions provided by the filtering procedure,
are violated. In this formulatiorg(-) denotegg(-) with the re- the IWM algorithm (1) will be given the opportunity to search in
moval of all active power flow limits on lines. every feasible, optimal region for an equilibrium either in pure
The outer penalty function is consistent with determiningrin mixed strategies. For the former, the algorithm will provide
whether the players have the ability to drive solutions tg specific solution, whereas for the latter it will exhibit oscilla-
specified regions by changing their decision vector. If thgons implying that the algorithm in (5) must be employed.
regions were imposed in the inner problem, through equality
constraints, then the IGO would be specifying the regions in
advance and the solutions could differ from those in the origin
problem. In summary, the existence of a solution in the origin

problem (1) implies the existence of a solution in the modified
problem (7) but the converse is not true. The algorithm described in Sections IlI-A and B is of non-

polynomial order, being of orde®(3™) if only the line con-
straints are taken into account. Therefore, it is impossible to
manage any real life example in the absence of a method for
carefully propagating and pruning the cases. Fortunately, the
two-step filtering process, together with careful propagation and
1The linel may or may not be congested, as determined by the associa[%rdming’ allow the elimination of a substantial number of cases.
inequalities of (6). The tree of Fig. 2 illustrates the sequence in which the cases

§||' Propagation and Pruning
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TABLE |

[0,0,0,..] FEASIBLE, OPTIMAL REEQONSBRND
/\ Test System || Fixed load | Elastic load
[1,0,0,...] [-1,0,0,...] [0,1,0,...] [0,—1,0,...] ... 0
(6 players) (5),1 (9),1
IEEE-30
(3 players) (5),1 (9),1
1,1,0,..] [1,-1,0,..] [1,0,1,0,...] [1,0,—1,0,...] ... TEEE-57
[ I ] (7 players) (8),2 (4),1
IEEE-57
\/ (3 players) (8),1 (4),1

[1,1,1,0,...][1,1,-1,0,...) [1,1,0,1,...] [1,1,0,—1,...] ...

where the ownership was divided among three players. The line
limits were fixed close to the flows established by the solution
for fixed load, maximum number of players, and truthful revela-
tion of costs. However, the line limits were not chosen too close
to those flows, so the generators were given some room to game
must be generated in order to maximize prurfingvery new the system. The power flows on lines were determined using dc
child case is generated from the parent cases that survive plewver flow equations.
feasibility and optimality tests of the previous level. They are The results for eight different experiments are summarized
formed by including more congested lines further to the righit) Table 1. The number of feasible, optimal regions found for
until the last represented line is reached. This order of geneg&ch test system is shown in parenthesis, along with the number
tion avoids repetition or formation of cases that have no pare@sequilibria for that particular experimehtNaturally, these re-
on the previous level. sults could vary for changes in the line limits, costs, and benefits.

On each level, every case represents an equal number of corln these experiments, all cases resulted in equilibria in
straints; one for level one, two for level two, and so on. The agure strategies without binding line constraints. No general
dition of new congested lines from left to right (it could be frong€onclusions can be drawn from that observation though. One of
right to left) requires the existence of all necessary parents in the cases, the IEEE 57-bus system with seven players and fixed
previous level. If any of the parents are not present, the new c#gd, produced a second equilibrium in pure strategies with
is not generated. The rationale is that if there is no solution fopae binding line constraint. This second equilibrium dominates
specific set of constraints then there is no solution for that sagigategically the first equilibrium, which makes it the only
set of constraints with additional constraints added. Checkirgjevant equilibrium in terms of the players’ strategic game.
the existence of parents is achieved using a binary search onfth@m a strategic point of view, equilibria that are dominated
set of feasible, optimal cases of the previous level. The binaijay be ignored or eliminated, because none of the players will
search must be able to compute the correct order of casesgein anything by playing it.
each level, as shown from left to right in Fig. 2. This simple Definition 5: In the gamef: ® — R, let¢ € ®, andg., €
procedure avoids repetition of cases. ®, be strategies for player. Stratequbf) is strictly dominated

For real systems where players have the ability to congéststrategyp,, if, for all vectors of multistrategieg; € ®;, p’s
a reduced number of lines, this method proves very efficiefoss from playingg; is strictly less thap's loss from playing
Mc_)reovgr, the method may be !mplemented W|th_ high para;lrz, Thatis,f,(¢;. ¢,) < fp(d)z?qﬁp), Ve, € D;.
lelism given the fact that cases within one level are independentAn example of a possible variation of the experiments
Besides, this search has to be performed only once for a giygiesented here would be to decrease some line limits to the
load profile. Once the feasible, optimal regions are known f@iint where there is no equilibrium without binding constraints.
that load profile, itis possible to try a different number of playerSne could then possibly see the appearance of an equilibrium

Fig. 2. Propagation of cases.

and/or different cost parameters. in mixed strategies spanning two regions. However, this again
would most certainly be either a unique equilibrium, or one of
IV. EXAMPLE very few equilibria for that system.

We chose a version of the IEEE 30-bus, six-generator test
system and a version of the IEEE 57-bus, seven-generator test
system for our examples [11]. These systems yield a sufficiently This paper addresses the problem of finding multiple market
high number of possible regions to make them interesting. equilibria for multimachine systems that potentially yield an un-

The two systems were run for both fixed load and elastic loahanageable number of search regions. The method proposed
served entirely by the players. For the experiments with elaséitminates the majority of those regions through successive fil-
loads, we considered no upper limits for these loads. Furthégring from power flow solutions to feasible, optimal power flow
more, two scenarios of generator ownership were consideradlutions.
one where each generator belonged to a different player, anotheklthough the existence of multiple equilibria in realistic net-

works is possible, both in theory and in practice, they are not to

V. CONCLUSION

2Fig. 2 showg’,. for each case, with entrieg determining line congestion
status. 3A maximum of 50 iterations were allowed before assuming nonconvergence.
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TABLE I 007
PRICE SCHEDULE PARAMETERS
0.06
ap bp
Generator ($/MW2 h) | ($/MWnh) 0.05
T [ 00l [ 100 £
2 Il 0.01 [ 10.0 g0
Q0.03

TABLE I 002
VALUE SCHEDULE PARAMETERS X

0'0[;.01 0.02 0.03 0.04 0.05 0.06 0.07

Load ap bp 4, (BMW?h)
o3 ($/MW?2h) | ($/MWh)
1 [ -004 30.0 Fig. 3. Reaction curves faP™*> = 115 MW.

be expected in large numbers. This is illustrated by the examples
in the paper. Even if the realistic parameters used were changed,
we expect similar results in terms of the number of equilibria at-
tained.

In addition, this paper formally defines equilibria in multiple
strategies in the context of power systems and in the presence of
system constraints. It shows, through a simple example, how to
find these equilibria by means of a continuation method. Once
the spanned regions are known, this method establishes a path
from an initial solution to the desired equilibrium.

APPENDIX A Fig. 4. Reaction curve®™** = 80 MW.

ILLUSTRATION OF ¢,, IN DEFINITION 4 secti_on of the di§continu0us reaction cut¥¥(¢,) touch the
) ) . continuous reaction curvg (¢-).4 As a consequence, the pure
Consider a situation where there are three players and tWp ey algorithm cycled between the congested and noncon-
regions. Ther® = {1,2,3}, R = {1,2}, and gested regions, instead of converging to an equilibrium solution.
For this small system, the expressions for the expected loss
— 1 1 1 111 1 4,2 41 1 .21 !
ei(v,p) = 1 (¢1,¢3, ¢3) p1pzp3 + fi (41, 3. 63) P1P2P3 (5), when the two regions spanned by the discontinuity are con-

r=1,g=[1,1] r=1,q=[2,1] sidered, become
+ J1 (01,62, 83) pro2ps + f1 (61,03, 63) p1303 o1 =ph f1 (d1,5) + (1= pd) - 11 (b1, 62)
2r=11,q=[11,2]2 . r=1,q=([2,2] es Zp% - fo (¢1, ¢%) + (1 - P%) f2 (¢1> ¢%)
+f1 (¢1, ¢3. b3) /’1/’2/’334‘3 more terms, ps €[0,1].
r=2,q=[1,1]

This has a simplified form because only player 2 encounters
with e, andes following a similar pattern. Because there ar@ultiple regions, and hence, presents a discontinuity in his or
only two regions in this case? = (1 — pl). her reaction curvess(¢1). In fact, player 1 exhibits a contin-
uous reaction curv8; (¢,), implying that his or her strategy is
independent of regions. This is implemented by settihg- 1,
giving p? = 0, and so forcing player 1 to always play the same
strategy.
The continuation algorithm proposed in Section Il was used
The IWM algorithm was run for a two-bus, one-line systerto obtain the mixed strategy equilibrium for the situation de-
(z = 0.0485 p.u.) with two generators and one load, as specpicted in Fig. 4. An initial value ofPf3** = 107 MW was
fied in Tables Il and lll. Choosing a sufficiently high line flowchosen, and the line limit was subsequently decreased in steps of
limit resulted in convergence to the equilibrium in pure strat€®.01 MW. Initial values for the optimization (strategy and prob-
gies given by{¢1, #2} = {0.0256,0.0256}. Fig. 3 shows the ability) variablesey, ¢3, #3, andps were obtained as follows.

APPENDIX B

Two-Bus EXAMPLE

reaction curves for the two players for a line limit Bf3»* = The value forp} was chosen to equal 1 since this corresponds
115 MW. The equilibrium corresponds to the intersection of tht® an equilibrium in pure strategies in the absence of the line
reaction curves? (¢2) andS;(41). constraint. Therefore, the values for and¢: were also set to

However, upon lowering the line limit t&5** = 80 MW, 4 . ) . ) L N
h fi fthe two plavers no lonaer intersect. This.i The right section of5; was obtained by initializing the IWM algorithm in
the reac; IOI‘_I curves o ’ play ; geri ) : 1148 noncongested region, whilst the left section corresponds to the congested
shown in Fig. 4. Instead of intersecting, the end-points of eachgion.
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0085 - highlights the potential difficulties of attempting direct solution,
@ and justifies the use of a continuation process.

o
5

g
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