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Abstract—Controllable Series Devices (CSD), i.e.,
series-connected Flexible AC Transmission Systems (FACTS)
devices, such as Unified Power Controller (UPFC), Controllable
Series Capacitor (CSC) and Quadrature Boosting Transformer
(QBT) with a suitable control scheme can improve transient
stability and help to damp electromechanical oscillations. For
these devices, a general model, which is referred to as injection
model, is used. This model is valid for load flow and angle stability
analysis and is helpful for understanding the impact of the CSD on
power system stability. Also, based on Lyapunov theory a control
strategy for damping of electromechanical power oscillations in a
multi-machine power system is derived. Lyapunov theory deals
with dynamical systems without inputs. For this reason, it has
traditionally been applied only to closed-loop control systems,
that is, systems for which the input has been eliminated through
the substitution of a predetermined feedback control. However,
in this paper, we use Lyapunov function candidates in feedback
design itself by making the Lyapunov derivative negative when
choosing the control. This control strategy is called Control
Lyapunov Function (CLF) for systems with control inputs.

Index Terms—CSC and CLF, FACTS, QBT, UPFC.

I. INTRODUCTION

POWER systems exhibit various modes of oscillation due to
interactions among system components. Many of the oscil-

lations are due to synchronous generator rotors swinging rela-
tive to each other. In this paper, the electromechanical oscilla-
tions (initiated by faults) which typically are in the frequency
range of 0.1 to 2 Hz, are considered.

In recent years, the fast progress in the field of power elec-
tronics has opened new opportunities for the power industry via
utilization of the Controllable Series Devices (CSD), such as
Unified Power Controller (UPFC), Controllable Series Capac-
itor (CSC) and Quadrature Boosting Transformer (QBT) which
offer an alternative means to mitigate power system oscillations.
Thus, a question of great importance is the selection of the input
signals and a control strategy for these devices in order to damp
power oscillations in an effective and robust manner.
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Fig. 1. The CSD injection model.

Modern power systems are large scale and complex. Distur-
bances typically change the network topology and result in non-
linear system response. Also, because of deregulation the con-
figuration of the interconnected grid will routinely be in a state
of change. Therefore a control strategy that will counteract a
wide variety of disturbances that may occur in the power system
is attractive. This paper develops a control strategy for the CSD,
based on the Control Lyapunov Function (CLF). The derived
control strategy has the same basic structure for all CSD and it
is based on input signals that easily can be obtained from locally
measurable variables.

This paper is organized as follows. In Section II modeling of
the CSD based on the injection model is presented. Section III
describes the ideas with CLF and its application in power
system. Also, a control strategy for the CSD is developed based
on the CLF. We provide some numerical test results, future
work and the conclusions of this paper in Sections IV–VI
respectively.

II. I NJECTIONMODEL

Fig. 1 shows the injection model for a CSD which is located
between busand bus, see [1, Chapter 4]. For UPFC and QBT,

is the effective reactance seen from the transmission line side
of the series transformer and for CSC it is the reactance of the
line in which the CSC is installed, i.e., .

In Fig. 1, for
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where
;

;
and are control variables, full details are

given in [1].
For CSC

(1)

If the CSC has a steady state set point, then
where is the control modulation. The reactance of the line
in which the CSC is installed, can then be given by

. Thus, in (1) is replaced by with
.

III. CONTROL LYAPUNOV FUNCTION

A. Theoretical Considerations

Power systems are most naturally described by Differential
Algebraic (DA) models of the form and

. The algebraic statesare related to the dynamic states
through the algebraic equations. By virtue of the implicit

function theorem, it can be shown that this model is locally
equivalent to a differential equation model

(2)

if is nonsingular. Under certain modeling assumptions,
e.g., constant admittance loads, local equivalence extends to
global equivalence. This model has become known in the energy
function literature as the Reduced Network Model (RNM). The
presentation of CLF in this paper is based on (2). Most ideas
extend naturally to the DA model though.

Let the origin be an equilibrium point of system (2), i.e.,
, possibly after a coordinate change. A function

is said to be a Lyapunov function for (2), if it is of class (at least)
and there exists a neighborhoodof the origin such that

and (3)

and (4)

If (2) has a Lyapunov function then the origin is locally asymp-
totically stable. Conversely, for any locally asymptotically
stable system, a Lyapunov function exists [2].

For mechanical and electrical systems, the physical energy
(or energy-like) functions are often used as Lyapunov func-
tion candidates. The time derivatives of these energy functions
are negative semidefinite. Therefore, these functions fail to sat-
isfy condition (4) for Lyapunov function. However, applying La
Salle’s invariance principle or the theorems of Barbashin and
Krasovskii, [2], the energy functions satisfy the asymptotic sta-
bility condition and they can be considered as Lyapunov func-
tion candidates.

Lyapunov theory deals with dynamical systems without
inputs. For this reason, it has traditionally been applied only to
closed-loop control systems, that is, systems for which the input
has been eliminated through the substitution of a predetermined
feedback control. However, some authors, [5]–[7], started
using Lyapunov function candidates in feedback design itself

by making the Lyapunov derivative negative when choosing
the control. Such ideas have been made precise with the
introduction of the concept of a Control Lyapunov Function for
systems with control input [3].

The following discussion largely follows that in [4] and ref-
erences therein. Consider the control system

(5)

We want to find conditions for the existence of a feedback con-
trol defined in a neighborhood of the origin such that
the closed-loop system has a locally asymptoti-
cally stable equilibrium point at the origin, i.e., .
If such a function exists, we say that (5) is stabilizable at
the origin and the function is called a stabilizing feedback
law or a stabilizer. Assume that (5) is continuously stabilizable.
According to the converse Lyapunov’s theorem, there must be
a positive definite function such that

(6)

A function satisfying (3) and (6) is called a Control Lya-
punov Function. Next, consider the affine system

(7)

Note that and have the same dimension, i.e., . For
sake of simplicity, we assume , so that we can take
also . In [5], Artstein proved that there exists a sta-
bilizer for (7), if and only if (7) admits a CLF. In [6],
Sontag presented explicit formulas for . In the case of
using an energy function as a Lyapunov function candidate,
the treatment of system (7) fits better in the framework of the
Jurdjevic–Quinn approach [7]. We say that (7) satisfies a Lya-
punov condition of the Jurdjevic–Quinn type if there is a neigh-
borhood of the origin and a function such that (3)
holds and for . According to the
Jurdjevic–Quinn approach, a stabilizing feedback law is typi-
cally defined componentwise, setting
and , . Thus, the time
derivative of for with respect to the closed-loop
system is given by

(8)

To summarize, just as the existence of a Lyapunov function is
necessary and sufficient for the stability of a system without
inputs, the existence of a CLF is necessary and sufficient for
the stabilizability of a system with a control input [3].

B. Application in Power System

Consider a power network which is modeled by nodes
connected by lossless transmission lines which is represented by
node admittance matrix . The first nodes are the
internal buses of the generators. The nodes to are the
terminal buses of the generators where there may also be loads.
Each generator terminal bus is connected with its internal bus
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Fig. 2. Transient equivalent circuit of a generator.

through a lossless line with reactance equal to, i.e., the gen-
erator transient reactance, see Fig. 2. The remainingnodes are
the load buses. It is assumed that the mechanical input power of
the generator is constant. The machine model considered here
is flux-decay model (one-axis model). Exciters and governors
are not included in this model. The rest of the treatment follows
that in [8] and references therein. The dynamics of the genera-
tors are described by the following differential equations (with
respect to the COI reference frame).

For ,

(9)

where and is the generated
electrical power. Full details are given in [8]. For the lossless
system the following equations can be written at buswhere

is the real power and is the reactive power injected into
the system from bus.

For

For , and are similar, but also take
account of generated real and reactive power [8].

Real load at each bus is represented by a constant load and
reactive load by an arbitrary function of voltage at the respective
bus. Thus, for

Therefore, for the power flow equa-
tions can be written as

(10)

An energy function for the differential algebraic (9) and (10),
is given by

(11)

where

is known as the kinetic energy and as the potential
energy. is a constant such that at the post fault stable equi-
librium point the energy function is zero.

Using the notation for , and sim-
ilarly for the other states, then we have

(12)

(13)

(14)

(15)

Thus, the time derivative of the energy function is

(16)

Now assume that a CSD is located between busesand
in the transmission system. The introduction of the CSD does
not alter the energy function (11). However, it does alter, in
particular the terms (13) and (14) no longer sum to zero. To see
this, consider theth term of (13), i.e., . Without
a CSD connected to bus, , resulting in the
zero summation of (13). However when the CSD is connected,
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power balance gives . Therefore, with the

CSD connected, theth term of (13) becomes

. A similar argument follows for theth term of (13) and
the corresponding terms of (14), resulting in

(17)

(18)

Note that (12) and (15) are unaffected by the introduction of a
CSD.

Since all CSD models have , the time derivative
of the energy function therefore becomes

(19)

This is always valid, irrespective of the generator and load
models used in the development of the various energy functions
in [8]. Different models contribute different terms to the left
hand sides of (17) and (18), but the right hand sides remain
unchanged.

Simplification of for the various devices gives:

where is the absolute value of the current through CSC and
is the absolute value of the voltage over CSC.

The energy function will be a CLF, if is negative.
Therefore, the following control (feedback) laws are suggested,
(note that and are positive):

(20)

(21)

(22)

where and are positive gains which are chosen in-
dividually to obtain appropriate damping. Mathematically, any
positive gain should stabilize the system. In practice, there are
however limitations for these gains, see [1, Section 8.4].

For CSC, and have the same sign, see (1). Therefore,
in (22) can be replaced by , i.e.,

(23)

Note that each individual CSD contributes a term to
. If there are a number of CSDs in the system, the overall

contribution is the sum of the individual terms. Note also that the
control laws (20), (21) and (23) do not require information about
the post-fault stable equilibrium point; and rely only on locally
measurable information. However, these control laws are in the
form of pure derivatives. Therefore, band-pass filters tuned at
the frequency range of interest must be used to avoid adverse
action of the controller.

Regarding the control law (22), a similar analysis can be
found in [9], [10]. For example, using the classical generator
model and assuming constant voltages at all buses, the contribu-
tion to of (18) is zero. The control law for a CSC, given
by (22), becomes .
This control strategy is similar to [10], with the exceptions that
it is not a discrete control law and does not require the post fault
stable equilibrium point, i.e., in [10]. Thus, the control law
in [10] is a special case of the general control law (22). The
results in [9] are based on the statement “controllability implies
stabilizability.” By linearizing the control system, i.e., the
system (5), it has been shown in [9] that the linearized system
is controllable, and therefore, the control law is a
stabilizer for the linearized system, and also for the nonlinear
control system (5). However, the stabilizability of the control
laws in this paper is based on the concepts of Control Lyapunov
Function and nonlinear system analysis.

IV. NUMERICAL EXAMPLE

In this section, two test systems will be used for applying
the control laws (20)–(22). Note that these control laws were
developed assuming classical Lyapunov modeling, but they will
be applied in the examples to “real” systems that are not subject
to those modeling restrictions. All simulations are performed by
using SIMPOW [11] and the results are plotted in MATLAB.

A. Test System I (Two-Area System)

Fig. 3 shows a simple two-area system. The system data can
be found in [12, pp. 813–815]. If not otherwise stated, the exact
data from [12] is used.

In [12], generators are modeled with one field winding, one
damper winding in -axis and two damper windings in-axis.
Saturation is considered. The active and reactive components of
loads have constant current and constant impedance characteris-
tics, respectively. With this example, we would like to study how
the various system models affect the performance of the control
laws (20)–(22) which are derived from a simplified system, that
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Fig. 3. Simple two-area system.

Fig. 4. Variation ofP vs. time in the two-area system.

is, a lossless system in which one-axis model is used for gener-
ator and constant real load is considered.

A three-phase fault occurs at point F. The fault is cleared after
100 ms by opening of the faulted line. The following system
models will be used in simulation.

System Model 1:One-axis model is used for generators
( p.u.) with excitation system (see [12, Fig. E12.9]).

, and . No PSS.
System Model 2:Generators are modeled as in [12] with the

same excitation system as in system model 1. Also, turbine and
governor regulators are used. .

System Model 3:The same as in system model 2, but
MW, i.e., MW.

System Model 4:The same as in system model 3, but active
loads have also constant impedance characteristics.

Fig. 4 shows variation of (p.u) vs. time. is the real power
through the unfaulted line between the CSD and bus 9, see
Fig. 3. The CSDs have the following data. For CSC

, for UPFC p.u and for QBT p.u.
The solid curve in Fig. 4 shows when there was no CSD. The
dotted, dashed and dashdotted curves showfor CLF control
of a UPFC, QBT and CSC, respectively.

The simulation results show the ability of the control laws
to stabilize and damp the proposed power system for different
system models. System model 3 shows clearly that the CSDs
which are controlled by the CLF, enlarge stability region. Ob-
viously, the size of the enlargement depends on the rating of
the CSD. For example in system model 3, having the same
CSD data, the QBT and UPFC cannot achieve first swing sta-
bility when MW and for the CSC when

MW. Also, system model 3 and system

Fig. 5. Nordic32A test system proposed by CIGRE.

model 4 show that the load modeling does not significantly af-
fect the performance of the CLF controlled CSD.

B. Test System II (Nordic32A)

Nordic32A (Fig. 5) is a test system for simulation of transient
stability and long term dynamics proposed by CIGRE Task
Force 38.02.08 [13]. The exact data from [13] is used with
the exception that no PSS is used in the system. The system
contains 32 high voltage buses. The main transmission system
is designed for 400 kV. There are also some regional systems
at 220 kV and 130 kV. Both hydro power plants and thermal
power plants with a total of 23 generators are modeled. The
hydro power plants are located in the North and External
regions of the system and are equipped with salient pole gen-
erators whose models include models of AVR, saturation, one
field winding, one damper winding in-axis and one damper
winding in -axis. The thermal power plants are located in
the Central and South regions and each plant includes a round
rotor generator whose model includes all features included in
the salient pole model but also a second damper winding in
-axis and saturation in the resulting air-gap flux. Only the

hydro power units are using governors. The generators have no
inherent damping, i.e., the damping constantis zero. The
active and reactive components of loads have constant current
and constant impedance characteristics, respectively.

Two loading cases are considered, namely LF32-028 and
LF32-029. In LF32-028, the transfers are high from North to
Central. The load level is at peak load. The case is sensitive
to many types of faults. In fact the transfer situation is above
that recommended by normal reliability standards. LF32-029
is similar to LF32-028 but transfers from North to Central are
decreased. It is made by an extra generation at bus 4051 and a
decreasing of generating powers in some generators in North.

Two CSCs are used in the system. The first CSC is located
in line 4011–4022 and the second one in line 4032–4044. The
steady state set points of both CSCs are 12.8. For the first
CSC, and for the second one .
Various faults and contingencies have been studied for both
LF32-028 and LF32-029. For all cases the CLF controlled CSCs
damped power oscillations in an effective and robust manner.
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Fig. 6. Variation ofP vs. time in the Nordic32A system.

Also, various load characteristics were applied for this system
and simulation results showed that the damping effect of the
CLF controlled CSCs was not sensitive to the load modeling. In
this paper, we only show the simulation results of one case, that
is a three-phase fault imposed on transmission line 4011–4021
at a position very close to bus 4021. The fault is cleared by dis-
connecting both ends of line 4011–4021 after 100 ms.

In Fig. 6, the solid and dashdotted curves show variation of
(p.u), identified in Fig. 5, when the CSCs are uncontrolled,

and controlled using CLF, respectively. Note that these two CLF
controlled CSCs do not adversely affect each other. The reason
is that each device contributes to make the time derivative of the
energy function negative.

V. FUTURE WORK

The model used in the development of the control laws
(20)–(22) had a very specific form. It was convenient for
obtaining a Lyapunov function, but only approximately de-
scribes actual power system behavior. The issue of modeling
approximations, and their influence on the stabilization of
power systems, is yet to be fully addressed. It is an important
focus of the authors’ current research. The model (2) will be
used to illustrate these ideas.

Assume that the model used in the development of the CLF
has the form

(24)

whereas the actual system is described by . Simple
manipulation gives

(25)

Since it is difficult to find a Lyapunov function for (25), a Lya-
punov function is derived for (24), i.e., when , and a
control law established which makes that Lyapunov function a
CLF. The following questions arise. How does this control law,
derived for (24), affect ? In the context of CSD control, how
good are the control laws (20)–(22) when the system is lossy,
and more detailed models are used for generators and loads?

The simulation results in this paper, and from various other
studies, provide a partial answer. They indicate that the control
laws are not sensitive to the model approximations. However it
is important to obtain an analytical justification of this observa-
tion. Theorem 5.3 and the concept of total stability in [2] may
provide a partial answer. It remains to extend these theorems to
differential algebraic systems.

VI. CONCLUSION

It has been shown that the Controllable Series Devices (CSD)
provide an effective means of adding damping to power systems.

Also, control laws for CSDs based on Control Lyapunov
function (CLF) concepts have been derived. The control laws
rely only on locally measurable information and are inde-
pendent of system topology and modeling of power system
components. For these control laws, knowledge of post fault
stable equilibrium points is not required. Finally, it has also
been shown that CSDs with CLF control do not adversely
affect each other.
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