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Abstract

This paper explores the interaction between dynamic
loads and power systems. Based on a generic model
of dynamic loads, the frequency response of such load
is discussed. Also, the frequency response of the sys-
tem is investigated. It is shown that the dynamics
of the load provide a feedback path which can influ-

ence the darxlnd)ing of the modal oscillations of the sys- -

tem. This influence is very dependent on load param-
eters as well as the system conﬂguration. Under some
circumstances damping can be improved, but under
other conditions dynamic load may cause a decrease
in damping. : ‘

Keywords: - load dynamics, electromechanical oscil-
lations, system damping

1 Introduction

Electromechanical oscillations have been, ‘and continue
to be, an ongoing source of concern in the operation of
interconnected power. systems [1, 2, 3]. Because of growth
in demand, ancg the difficulty in building new transmis-
sion and generation plant, systems tend to be operating
nearer to their maximum capability limits. This increase
in S{stem loading is often reflected as a decrease in the
level of damping of electromechanical modes.

Electromechanical oscillations occur in interconnected
power systems because of synchronous generators swing-
ng against each other. In an n-machine system there
will be (n-1) electromechanical modes. These oscillation
modes result from the rotors of machines, behaving as
rigid bodies, oscillating with respect to ane another, us-
ing the transmission system between the machines to ex-
change the oscillation energy [4]. Different types of oscil-
lating behaviour are possible. Local mode oscillations oc-
cur between a single machine, or sometimes a small group
of machines, and the rest of the system. Typical oscil-
lation frequencies range from 0.7 to 2.0 Hz [3, 5]. An-
other type of oscillation occurs between large groups of
machines. They are called inter-area or system oscilla-
tions. Inter-area modes are usually in the range of 0.1 to
0.8 Hz [3, 5]. . .
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While the local modes are fairly well understood and
can be analyzed in a satisfactory way, the inter-area
modes, and the factors influencing them, are not fully
understood. There are still questions in respect of the
underlying dynamic processes. .

It is important that power system planners and ofllaera-
tors are able to predict the level of damping of significant
system modes. Otherwise it is possible that a system con-
figuration could be proposed that is actually unworkable
due to poorly damped oscillations [6Le Further Flexible
AC Transmission System devices are being considered as
a method of damping oscillations (7, 8, 9]. To properly
evaluate the usefulness of these devices, and also for their
tuning, planners must have confidence in damping predic-
tions.

However, rescent studies around the world, e.g. 9‘10],
have found that the measured level of damping 1s often
less than that predicted by studies. That is, in response
to a disturbance, the system oscillates for longer than ex-

pected. It is therefore difficult to have confidence in the ,

studies. Generally good agreement has been obtained be-
tween the measure§ and predicted oscillation frequencies.
Where this has not been the case, the s stem has tended
to oscillate more slowly than predicted. Studies have been
corrected by modelling motor load around the system to
increase the overall system inertia. This appears to work
well. Unfortunately similar techniques have not been help-
ful in improving damping predictions. It is difficult to alter
modelling to reduce damping. .

Close attention has always been given to modelling
of generators and associateg’ controls, and transmission
equipment. However the representation of loads has not
traditionally been considered so thoroughly, even though
it has been shown that loads can have a significant impact
on analysis results [11). The accurate modeling of loads
is a difficult task due to several factors [12] such as: large
number of diverse load components, ownership and loca-
tion of load devices in customer facilities that are not di-
rectly accessible to the electric utility, changing load com-
position with time of day and week, seasons and weather,
lack of precise information on the composition of loads,
uncertainties regarding the characteristics of many load
components etc. :

System studies have traditionally used static load mod-

els, given by,
© Py= P(V/V,)" )]
Qa = Qo(V/V,)™ ¢

or combinations of constant impedance, constant current
and/or constant power load modelsv[12,]. However many
loads are not statically dependent on voltage, but actu-
ally have some dynamic characteristic. The generic form
of response of many loads to a voltage step is shown in Fig-
ure 1. The initial power step, the final power mismatc

-and the rate of recovery of the load are parameters which

can vary §reatly across different load types. A mathemat-
ical model of this form of load response is given in [13, 14].
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Figure 1: Typical load response to a step in voltage

In this paper the interaction between dynamic loads and
the power system is explored. Intuitively it is expected
that variation of the load at a bus will cause the voltage
to vary. But variation of the voltage will result in a de-
layed variation of the load. It is shown that this feedback
behaviour can have a noticeable effect on damping.

The structure of paper is as follows. Section 2 describes
a nonlinear aggregate dynamic load model and its general
properties. Section 3 discusses the power system proper-
ties viewed through Bode plots of system gain and phase
shift for different operating points. Section 4 gives the
details of dynamic load - power system interaction.

2 Nonlinear dynamic load model

Results from the measurement of actual power system
loads [14] show that the response of the load to a step
change in voltage is of the general form shown in Fig-
ure 1. Real and reactive power have qualitatively similar
responses. They are dynamically related to the voltage. In
the sequel, only the active power response will be treated
as dynamic. The reactive power will be considered to be
statically related to voltage.

The main characteristics of the response are primarily
that a step in power immediately follows a step in voltage.
The power then recovers to a new steady state value. The
recovery is approximately of exponential form. The size of
the step and the steady state value are nonlinearly related
to voltage [14]. A model which describes this form of
response was proposed in [13, 14] as:

nm+mzawnhv (3)
or . .
" TyPi+ Pa= Py (V) + Tpo,(V)V (4)
Let .
v
P(V) =/ op(r)dr +Co (5)
0
where C, is some constant, and let
2z, = Py— P(V) (6)

Then the model can be written as:

Tpl:p:Ps(V)—Pd {7

Ps() - Pi(.)

Tps+1

—_—

Figure 2: Block diagram representation of the dynamic
load model

" Tyd, = —zp + PuV) = PAV) ®)

A block diagram representation of this load model is
shown in Figure 2.
The functions Ps(V) and P(V) can be defined as:

Ps(v) = PO(V/VO)"" (9)

P(V) = Po(V/ Vo)™ (10)

where V, and P, are nominal voltage of the bus and cor-
responding power of the load respectively and np, and np:
are static and transient voltage exponents. They are gen-
erally in the range of 0 to 2, and 1 to 2.5 respectively
[12, 14]. Time constant T, which characterizes the recov-
ery response of the load, can be chosen to represent differ-
ent types of loads. For loads consisting predominantly of
industrial drives, such as conveyer belts, or for responses
of industrial plants such as aluminium smelters, T is in
the range of up to one second. For induction machines,
T, can be in the range of a few seconds, whilst for tap-
changers and other control devices it is in the range of
minutes, and for heating load in the range of hours. In
this paper the predominant interest is in loads that have
time constants which are the same order of magnitude as
modal oscillations, i.e., up to around two seconds. Simi-
lar equations could be used to describe the behaviour of
reactive power, with different time constants and voltage
exponents.

This model has until now_been used in the study of
voltage collapse behaviour [15]. In that situation some dis-
turbance causes a step reduction in system voltage. The
recovery of load from that voltage may lead to further de-
terioration of the voltage, and u timately system collapse.
In the present investigation, the interest is not in step
changes to the voltage, but rather in sinusoidal variation
of the voltage. Referring to Figure 2, one would expect
the load power Py to vary periodically in response to sinu-
soidal variation of the voltage. Variation of Py could then
feedback through the system to reinforce the voltage vari-
ation. This feedback mechanism is described in Section 4.
Crucial to this dynamic process though, is the gain and
phase shift between V and Pj.

In these investigations of system damping, only small
disturbances are considered. Therefore the load model
(6), (8) can be linearized. Linearization yields:

T,AZp, = —Azp + (Po/Vo)(nps — npt) AV (11)
(12)

Introducing the Laplace operator, (11) can be written,

(13)

APy = Az + (Po/Vo)npt AV

(Tps+ Azp = (PO/VO)("ps - "pt)AV
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Figure 3: Block diagram representation of linearized load
model
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Figure 4: Bode plots of magnitude and phase of dynamic
load for different time constants and voltage exponents;
dashed line-n, /n,,=15; solid line-ny; /ny, =2

Substituting (12) into ( 13) and manipulating yields,

p:Tps + nyp,)

APy = (Poyvy) e ar g

or

/ps)Tps +1)

— ((npe
AFa = (Pu/Vomy, 22 ERIES

AV (15)

This relationship is shown in block diagram form in Fig-
ure 3. It can be modelled as 2 lead/lagilock.

From (14) -or 515) it can be seen that the relationship
between AP; and AV is influenced by the load time con.
stant T, :—)‘m‘ij the voltage exponents npe and n,,. Bode
plots of this relationship, for two different values of the
ratio n,;/n,, and a number of different values of T, are
given in Figure 4. Notice from (15) and Figure 4 that at
low frequencies, the gain approaches (P, [Vo)npe, i.e., the
steady state load characteristic dominates, At high fre-
quencies, the gain approaches (P,/ Vo)np,, S0 the transient
load characteristic dominates. This is consistent with our
undel'standin}g1 of the load response. At intermediate fre-
quencies, both the characteristics have an influence on be-
haviour. It is then that there is some phase shift through
the load. The maximum phase shift is dependent on tie
ratio ny, /ny,. As the ratio becomes larger, so does the
maximum phase shift.

The effect of the variation of the time constant T, is
also interesting. For a very large Ty, i.e., a load which
responds slowly, the transient load characteristic has the
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Figure 5: System representation
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Figure 6: Bode plots of magnitude and phase for the sys-

- tem with Py=0.9 p.u.;P;=0.6 p.u. and trans. line length

200km

predominant influence on behaviour. For small values of
T}, i.e., a fast load, the steady state characteristic is dom-
inant. This can again be explained from the general form
of behaviour exhibited by the load model, see Figure 1.
If T, is large, then the load will take a long time to re-
cover from its transient value to the steady state value.
Therefore, except at very low frequencies, the load will
never have time to approach the steady state characteris-
tic. For small T,, the load will recover very quickly. So
except for very high frequency variation of voltage, the
load will always have time to recover to the steady state
characteristic.

3 Power System description:

It is well known that a change in load demand causes
a change in voltage of the system. To study the effects
of dynamic loads, one needs to be able to quantify the
relationship between load changes and voltage variations.
To do this the frequency response of the system can be
used. Consider the representation of the system shown
in Figure 5, where load power is the input and voltage
of the load bus is the output. The frequency response of
the system in the form of Bode plots, which is an appro-
priate way of looking at this characteristic, can be easily
obtained: Typical Bode plots for two different operating
points are given in Figures 6 and 7.

This approach to looking at the system is applicable
for any sized system. However Figures 6 and 7 were pro-
duced for a single machine infinite bus system of the form
shown in Figure 8. This simple system was used as it al-
lowed easier exploration of the system—load interaction.
The generator was represented by a third order machine
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Figure 7: Bode plots of magnitude and phase for the sys-
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Figure 8: Single-machine infinite-bus system

model, and the transmission line was assumed to be loss-
less. Only the active power load was considered as having
dynamics. Reactive power load was set to zero. This al-
lowed a modified Heffron - Phillips model [1, 16] to be
developed. The detailed derivation of the model is given
in [17].

It can be seen from Figures 6 and 7, that Bode plots
can be quite different for different operating points. These
plots clearly highlight the natural resonant frequency of
the system. Also it can be seen that the system which is
more heavily loaded, Figure 7, has a larger peak in gain.
This indicates that the system is more sensitive to load
variations. It is reflecting the fact that as systems be-
come more heavily stressed, they become more sensitive
to parameter changes. There is also a noticeable move
of the peak toward lower frequencies. That is another ob-
served characteristic of heavily loaded systems. The effect
of an increase in load on the frequency response is shown
in Figure 9. This figure shows the trend toward higher
peak gains at lower frequency as the system becomes more
heavily loaded.

The traditional view of the sensitivity of system voltage
to load changes relates to step changes in load. Such sen-
sitivity is primarily determined by the fault level of the
bus. In terms of the frequency response of the system in
Figure 5, it should be noted that that sensitivity corre-
sponds to the DC component of the responses, given in
Figures 6, 7 and 9. If load variation is oscillatory, then
dynamics of the system will also influence the sensitivity.
Hence the peak at the system resonant frequency. Notice
that resonance can greatly amplify the sensitivity.
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Figure 10: Load - power system interaction

4 Power System - Load Interac-
tion

In Section 2 we focused on dynamic loads and discussed
the behaviour of the load power for voltage variations.
Figure 3 described this relationship. In Section 3 we fo-
cused on the power system and considered the behaviour
of voltage for load variation. Figure 5 depicted this case.
We are now interested in system behaviour when a dy-
namic load is connected to the power system. Figure 10
captures diagramatically the interaction.

It can be seen that the load provides a feedback path
, and hence has the potential to alter the overall system
behaviour. Depending on the load characteristic this feed-
back may improve damping. But it could also destabilize
the system and cause a deterioration in damping. Con-
sider the case where there was a negative phase shift °
through the power system, i.e., AV lagged AP; by 6°.
From Figure 4 we can see that dynamic load can only
ever have a positive phase shift. (This is based on the
assumption that nye > np,. If nye < np, phase lag would
occur.) So the dynamic load must feed back a compo-
nent of AP, which is less than 6° oyt of phase with the
original oscillations. For example if the phase lead of the
load was 8°, then the load would feed back oscillations
that were exactly in phase with the original oscillations.
Such reinforcement would tend to decrease the damping
of the system. The exact effect would depend on the gain
through the load. The influence of the load would be re-
duced for load phase shifts which were not equal to 6°.

Now consider the case of a positive phase shift through
the power system. Because of the positive phase shift
through the load, the oscillations in P; due to the load
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Figure 11: Root locus of the system’s electromechanical
mode for P,=0.9 p.u.;P4=0.6 p.u. and trans. ‘line length

200km, and for different np,/n,, ratio

would be out of phase with the system oscillations by more
than 0°. The contribution of the load to réinforcement of
- the oscillations would therefore be greatly reduced. In
fact, the load contribution could be n anti-phase to the
system oscillations. The load would then have a positive
effect on damping. o
The systems considered in Figures 6 and 7 can be used
to illustrate these effects, as well as the effects due to
parameter variations. As is shown in Figure 4, variation
of time constant and voltage exponents of the load results
in variation of the phase shift and gain introduced by the
load. It can be expected therefore that the influence of
the load on system behaviour will vary with changes to
these parameters. In Figures 11 and 12 the effects of time
constant and voltage exponent variation are shown as root
locuses of the system electromechanical mode.
Consider Figure 11 which relates to the system of Figure
6. It can be seen that as the time constant T}, increases,
damping reduces, and reaches its minimum for 7,=0.1s.
After that damping increases with the increase of time
constant. This behaviour can be explained by looking at
the Bode plots of the load, Figure 4. For 7,=0.1 s the
load has maximum phase shift near the system resonant
frequency and the gain is about 0.8 p.u.. With further
increase of time constant the phase shift for that partic-
ular frequency decreases and the gain is almost constant.
Note that the system has negative phase shift and the
load has positive, therefore the system oscillations are be-
ing reinforced by load ‘behaviour. Obviously the level of
the reinforcement is determined by the gain through the

system and the gain through the load. As the gain of the

system gets greater, for weaker systems, the effect of the
feedback through the load increases. Also it can be seen
from Figure 4 that for the larger ny/n,, ratio, the load
has a larger phase shift and larger gain, which has as a
consequence larger variation of damping of the electrome-
chanical oscillations of the system. ‘
The root locus of the electromechanical mode for the
weaker system, is given in Figure 12. As would be ex-
pected from the system phase and gain responses, Fig-
ure 7, the effect of load dynamics on damping is more sig-
nificant in this case, and the range of changes of damping
with time constant variation is greater. In this case the
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Figure 12: Root locus of the system’s electromechanical
mode for P,;=-0.3 p.u.;P4=0.6 p.u. and trans. line length
300km

system has positive phase shift and the load too. There-
fore the system oscillations are being first damped by load
behaviour for small time constants, up to Tp=0.2 s. For
this range of T, the load has large phase shift and smaller
gain at the system resonant frequency. As T}, increases fur-
ther, the oscillations begin to be reinforced, so damping
deteriorates. In this case the phase shift becomes negligi-
ble, and the gain is large. In Figures 11 and 12, the arrows
on the root locus plots denote the direction of movement

of electromechanical mode of the system with increase of

T, from zero to 100 s. With T,=0 s, the static load model
is effectively presented. These results illustrate the dis-
crepancies that can qgccur if a dynamic load is modelled
as being static. :

The effect of load modelling on the damping of power

systems oscillations is illustrated in Figure 13. A static -

load model was used for the better damped case. Worse
damping can be observed when the load was modelled
dynamically. :

5 Conclusions

It has been. shown in this paper that loads which re-

spond dynamically to voltage variations can have an in-
fluence on the damping of e%
A generic nonlinear dynamic load model has been used
to Investigate the gain'and phase shift between sinusoidal
variation of voltage, and the periodic response of the load.
It is shown that the load can be represented as a lead/lag
block. The parameters of the load model have a significant
influence on the frequency-response of the load.

It is useful in the investigation of load-system interac-
tions to treat. the system as a transfer function, with load
deviation as the input, and voltage deviation as the out-
put. The interaction can then be investigated by deter-
mining the frequency response of the system and compar-
ing it with the frequency response of the load.

It has been.found that depending on load and system
parameters, a dynamic load can reinforce oscillations, and
so cause a deterioration in damping. It is also possible
though, that the load may oscillate out of phase with the
system, and so lead to an improvement in damping. It

ectromechanical oscillations.
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Figure 13: Power response to a step in field voltage for
the system with P;=0.9 p.u.;P4=0.6 p.u. and trans. line
length 200km, for static load and for dynamic load with
Tp=0.1s and np;/ny,=12.5

has also been found that as systems become weaker, they
are influenced more by the dynamics of the loads.
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DISCUSSION

S.C. SRIVASTAVA, K.N. SRIVASTAVA, S.N. SINGH
and S.K. JOSHI (Department of Electrical
Engineering, Indian Institute of Technology,
Kanpur, INDIA): The discussers would like to
commend the authors for exploring the
effects of load dynamics on Power system
overall damping. The effect of a dynamic
load model from ref.[A] has been studied by
several other researchers [B,C,D]. It has
been shown that wunder variation of a
parameter such as load demand, the power
system undergoes Hopf bifurcation giving

rise to subcritical or a supercritical
periodic orbit. These periodic orbits
further wundergo several other kinds of

bifurcations, such as cyclic fold bifurcati-
on, period doubling bifurcation etc, leading
to chaotic oscillations. It has also been
shown [B,C,D] that the system voltage may
collapse as a result of boundary crisis. In
view of this, the discussers would like to
know the nature of dynamic instability the
authors have encountered with the dynamic
load model considered in their study.

The authors have considered the
reactive power to be statically related to
bus voltages. The reactive power balance
equations will, therefore, appear as
algebraic constraint to the solution
trajectory defined by differential equation
of the system dynamics. The discussers would
like to know how the authors’ finding will
be affected in case of singularity induced
bifurcation when the jacobian matrix of
partial derivatives of “reactive power bus
injections with respect to bus voltages
becomes singular.

The authors have studied a very simple
power . system model of two bus considering a
linearised third order model of synchronous
generator. It will be advantageous to know
if the authors’ finding will remain valid
for larger systems. Discussers would like to
request for authors’ valuable comments.
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A thorough investigation of the types of dynamic in-
stability that can occur when load is modelled as in this
paper has not yet been undertaken. In the line of work
reported in this paper, we have only been interested in
Hopf bifurcations, 1.e., oscillatory instability. The load
model has also been used extensively in the analysis of
voltage collapse [15]. In that case, interest has been in
simple monotonic and oscillatory instability. However we
have recently begun investigations of more exotic forms
of behaviour. The load mogel of this paper is similar to
that of [A], except that it includes a term to describe load
recovery. There is no reason to suspect that the forms
of behaviour mentioned by the discussors could not occur
with this load model.

The load model used in this paper is composed of a
differential equation (7) and an’ algebraic equation (6).
Therefore each load introduces an algebraic constraint
from the dynamic load model, and an a gebraic constraint
describing the reactive power balance. A detailed analysis
of algebraic singularity conditions for this model is given
in [E]. In general, operating points do not coincide with
a singularity induced bifurcation. Algebraic sin ularity
only becomes an issue as the system responds dynami-
cally to some large disturbance. Then the trajectory may
encounter the impasse surface, i.e., a surface of algebraic
singularity, and terminate. In this paper we are interested
in small disturbance analysis of operating points. So, in
general, algebraic singularity is not an issue. It would
only become an issue if the operating point lay on the im-
passe surface. However one would then conclude that the
modelling was inadequate.

Subsequent to this paper, we have explored the be-
haviour of an eight bus, four generator power system [F].
The generators were modelled using a sixth order machine
model, and AVR/stabilizer control loops were included.
Similar findings were obtained. The significance of the
machine modelling is explored further in [G].
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