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Systematic Modeling and Symbolically Assisted
Simulation of Power Systems

lan A. Hiskens Senior Member, IEEBRNd Peter J. Sokolowski

Abstract—Large disturbance behavior of power systems often modeling is perfectly suited to symbolic manipulation. The
involves complex interactions between continuous dynamics and jmplementation of symbolic differentiation is discussed in
discrete events. Such behavior can be captured in a systematicgaction |V, Conclusions are presented in Section V. Examples

way by a model that consists of differential, switched algebraic d to illustrat del devel t and impl tati
and state-reset (DSAR) equations. The paper presents a practical are used to illustrate modael aevelopment and iImpiementation.

object-oriented approach to implementing the DSAR model. Each

component of a system can be modeled autonomously. Connec- II. HYBRID SYSTEM REPRESENTATION
tions between components are established by simple algebraic

equations. Simulation of the model using numerically robust A. Model

implicit integration requires the generation of partial derivatives. - . . . S
The object-oriented model structure allows this differentiation to As indicated in Section |, hybrid systems, which include

be achieved symbolically without sacrificing simulation speed. power systems, are characterized by:
Index Terms—Dynamic modeling, hybrid systems, simulation. * continuous and discrete states,

¢ continuous dynamics,

« discrete events, or triggers, and

* mappings that define the evolution of discrete states at
OWER systems frequently exhibit interactions between events.
continuous dynamics and discrete events. They are ks shown in [2] that such behavior can be captured by the

important class ohybrid systemsTypically the continuous DSAR model

dynamics relate to components that obey physical laws.

I. INTRODUCTION

Event-driven discrete behavior results from logical rules that ;= f(z, ¥) (1)

govern the system. Examples in this latter category include -

protection logic, supervisory control and saturation limits. 0=9", ) (2)
Analysis of power system dynamic behavior can be difficult. () (2, ) <0

Even simulation is not always straightforward. Yet the impor- 0= {g o y) Yd,i i=1...,d 3)

tance of clearly understanding such behavior makes system- 9" (z, y) Ya,i >0

atic modeling, analysis and simulation imperative. Historically, ot =h (
analysis of physical systems focused on their continuous be- = ™
havior, with the discrete-event activity remaining largely ex-

Xvh
ternal. Ad hocapproaches to modeling and simulation of the ere

7, y7) Ye: J=0 je{l,....e} (4

discrete interactions were sufficient. However, such methods are x f x
less appropriate with the recent trend toward tighter integration z= |z, f=101, h:= | hy
of continuous and discrete activity. Fresh systematic approaches A - 0 ’ A

to the simulation of hybrid systems are under development [1].
This paper establishes benefits of symbolic differentiation in amd

object-oriented simulation environment. _ ~« z are the continuous dynamic states, for example gener-
Hybrid systems can be modeled by a set of differential,  ator angles, velocities and fluxes,

switched algebraic and state-reset (DSAR) equations [2]. A .  are discrete dynamic states, such as transformer tap po-
summary of this model structure is presented in Section Il.  sjtions and protection relay logic states,

not immediately clear. However, Section Il shows that the  ang angles,

gains and switching times.
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Note that the model does not allow discontinuities in the dy- Tap a(t maé()imum
Ye>

namic states:, i.e., impulse effects are excluded. This is not
a restriction forced by analysis though. The model adopts the
philosophy that the dynamic statesamftualsystems cannot un- Voltage
dergo step changes. acosplable
The model (1)—(4), which is similar to a model proposed in
[3], captures all the important aspects of hybrid system behavior
namely the interaction between continuous and discrete state
as they evolve over time. Between events, system behavior i
governed by the differential-algebraic (DA) dynamical System | (y,>0)—sstum

3

(y2<0)

Voltage
recovers

decrement
logic

&= f(z,y) (5)
9z, y) (v=0) Timetr reaches
1) tap
9 (z, y)
0=g(z,y)= : (6)
’ Fig. 1. Tap-changing transformer AVR logic for increasing tap.
9z, y)

. < . : hesli., (y5 = 0), h ill he ti
where the functiong(® are chosen depending on the signs qrﬁac esliay (y 0), a tap change will occur and the timer

th di | i A tis tri db ill be reset, but not necessarily blocked. If the voltage returns
€ corresponding elements @i. An event is triggere Y an 44 within the deadband, because of smooth system dynamics or a
element ofy,; changing sign and/or an element@f passing

. tap change or some other system event, then the timer is blocked
through zero. At an event, the compositioryathanges and/or P g y

and reset. O

elements of: are reset.

The following example illustrates the DSAR model structur

Example 1: In order to demonstrate the ability of the DSA
structure (1)—(4) to model logic-based systems, this exampleNumerical integration of DA systems is treated rigorously in
considers a relatively detailed representation of the automdfid: However it is helpful to review some basic concepts before
voltage regulator (AVR) of a tap-changing transformer. Theonsidering the implementation of the DSAR modeland the role
Petri net model [1], [4] of the AVR logic for low voltages, i.e.,0f symbolic differentiation.
for increasing tap ratio, is outlined in Fig. 1. The model can be Consider the DA system (5), (6) which describes behavior

. Numerical Integration

represented in the DSAR form as, over the periods between events. The trapezoidal approach to
numerical integration approximates the differential equations

T1 = Yyyr (5) by a set of algebraic difference equations coupled to the orig-
0=1s— Vs + View inal algebraic equations (6), i.e.,
O=ys—patz 2" ="+ g (f (& ") + M) @
0= Y — 1 + max — nstep/2 ka1 ka1
0=nVi -V 0=g (2", y"*) ®)
0=y —1 y2 <0 where the superscripts k + 1 index the time instants,, #541
0= respectively, andy = ¢,41 — ¢ is the integration time step.
0=ys— 21 } y2>0 Equations (7), (8) describe the evolution of the stategfrom

time instantt;, to the next time instart, ;.

0=yr—1 ys <0 Notice that (7), (8) form a set of implicit nonlinear algebraic
0=ys ye >0 equations. Therefore to solve foF*?, **1 givenz*, 4* re-
0=1ys; — 21+ 21 + Tap ys < 0 qgires the use o_f a nonlinear equation solver._The Newton iter-
0= ys —xy +yut T ys > 0 ative tet_:hnlque is commonly_ used. Rearranging (7) allows the
o . ; P 3 algebraic equations to be written

Zy =&y

n* = N~ + fatep } whenus = 0. F (2", ™)

n k+1 . k+1Yy _ k41 1 k ok k
To assist in connecting AVR logic with the model, Fig. 1 in- =12 I @ Y ) 7 2 ! @ Y ) Tt

dicates variables that are related to particular functions. g (z*tt, yF )
The dynamics of this device are driven by a number of inter- — ¢

acting events that govern the behavior of the timer. If the tap is

at the upper limit{s > 0), or the voltage is within the dead-which has the form

band (> > 0) then the timer is blocked. If the voltage is out-

side the deadbandd{ < 0) then the timer will run. If the timer F(»)=0.
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This equation can be solved iteratively according to Oy {0
[ )
L]
L) L]
vl = #; — Fu(6) " F () ) -...'
- . - B i T e iy
where I, is the Jacobian of" with respect tox, and has the (I
L] .
structure o ¢ °
00... L)
20r . e e
Tp -1 Iy L
F,=|2= 2=y . (10) 1 0:.00:.
9z 9y | ST e
301 e o
Note that: indexes the iterations of the equation solver, and is q *te, .
not related to the time indek. When (9) has converged, the L | ::..::..
solution s providesz*+! andy*+1. ) |'t'.'. """" Connecion Eduations ™~ e, 77T 202,
L] L
L) *
C. Computation of Junction Points 1 ".. '. e .
* L]
Switching and reset events generically do not coincide with %} ! %e, o ’
the time instants of the numerical integration process. However | - . %o .
for many applications it is important to find the exact time, [ e, ¢ .,
between integration time steps, at which an event occurs. This % 10 20 30 40 50 60
is possible through a simple modification to the trapezoidal ne=142
technique.

) Fig. 2. Sparsity structure of Jacobi&h for the power system example.
Referring to the compact DSAR model (1)—(4), {gt= 0

trigger an event. Say; < 0 at time instantt, buty; > 0 at
instantk + 1. Letn* be the (unknown) time from instaktto quantity would appear as an algebraic variahle,,. The con-
the event. The variablg* can be found by solving (7), (8) with Nection is made via the simple algebraic equagipn —yx, »» =
n free to vary, but with the extra constraigt = 0. Because 0. In general, all linking can be achieved by summations of the
the extra variable is matched by an extra constraint, the New{@m
iterative technique can again be used to find the solution.

Having found the junction point, the appropriate switches in Z i, =0 (11)
the composition of should be made, and/emupdated, then (8)
re-solved to obtain the post-event values of the algebraic vatberec, is +-1. Notice that all connections are external to the
ablesy. The post-event values ofandy provide the initial con- component models.
ditions for the next section of the trajectory. It can be convenient The linking strategy results in an interesting structure for the
to use the time step— #* for the first step after the event. ThisJacobiar’,. Components contribute square blocks down the di-

aligns subsequent points with the specified time step agonal 01‘LC and flattened rectangular blocks along the diagonal
of the upper section of,. The lower section of, is an inci-
[Il. | MPLEMENTATION dence matrix, witht-1's given by the external connections (11).

Models of large svstems are most effectively construct Fég. 2 illustrates this structure. (This particular matrix comes
ge sy y $fom Example 2, which follows.) A Jacobian structure like that

using a hierarchical or modular approach. With such an 2% r,, was identified in [8], where a similar arrangement of com-
proach, components are grouped together as subsystems, %r?wdtents and connections was used in the development of an op-
the subsystems are combined to form the full system. Ttﬁ;;:nﬁiil power flow

allows pomponent and subsystem mod'eI.s. to'bef developeq an he structure and values of the lower connection submatrix
tested independently. It also allows flexibility in mterchangm%f F,, are fixed for all ime. This can be exploited in the fac-

models. ttorization of £, to improve the efficiency of solving (9). The

The interactions inherent in hybrid systems are counter & . L .
. e efficiency improvement is significant as (9) is solved at every
this decomposition into subsystems and components. Howeyer

the algebraic equations of the DSAR model can be exploitedt{me step.

achieve the desired modularity. Each component or subsystEecr)nThe proposed modular approach to constructing hybrid sys-

can be modeled autonomously in the DSAR structure, wi ms has been implemented in Matlab. The following example
" . . . illustrates the concepts.
interface” quantities, e.g., inputs and outputs, established a i : . .

X . . xample 2: The simple power system of Fig. 3 consists of a
algebraic variables. The components are then interconnected,b ; . T ) .
. ) . . . o . dynamic load supplied from an infinite bus via a tap-changing
introducing simple algebraic equations that “link” the interfac . )

. LT O : fansformer. The continuous dynamics of the real power load
variables. This is similar to the connections concept of [6]. e given by the recovery model [9]
Note that all interconnections are noncausal [7], i.e., no r|g|cf g y y '

input—output arrangement of components is assumed. 1

To illustrate this linking concept, consider a case where the Tp =7

: , ; : T,

nth algebraic state of componentdenotedy; ,, is required by

component. In the model of componerit, the corresponding Py=z,+ PV{

(P) — F)



232 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 2, MAY 2001

Vo £0 V146, Vally =6, Va3 function ans = load_dynl{x,y.t,ev,p, flag,model_no)
. global empty3
%
iXs if flag =?403 0 % initialization
ans = H
elseif flag == $ calculate f
P (t) ans = [(x(3)-y(1))/x(2) 0 0 0]';
d elseif flag == 2 % calculate f_x
Qi=0 ans(l,:) = [1 2 -(x(3)-y{1))/(x(2)*x(2))];
ans(2,:) = [1 3 1/x(2)]);
Supply Bus 1 Bus2 Bus 3 elseif flag == 3 % calculte f_y
Point ans(1,:) = {1 1 -1/x(2)]; - )
elseif flag == 4 % calculate g
! ans = (x(1)+p (1) *{y(2) *y (2} +y (3} *y(3)) ~(x(4) /2) -y (1);...
Fig. 3. Power system example. YL +(y(2) *y(4) +y (3) *y(5)) ;
y(3)*y(4) -y (2) *¥(5)];
elseif flag == % calculate g_x
model_data = {'load_dynl’ [0 5 0.4 2.0] [0.4 1 0 -0.4 0] {0.4] : ans(l,:) = [111];
‘tap_changer®' (0 -1 1.0375 20 0.0125} ... V = y(2)*y(2)+y(3)*y(3);
(0000001010 -0.400.40] ... ans(2,:) = {1 4 p(1)*log(V)/2*V~(x(4)/2)]);
[1.04 1.1] ; elseif flag == 6 % calculate g_y
‘network' (] [1 0 00 . % Infinite bus ans{l,:) = {11 -1];
Ji g '82 8 : gus 321 fac = p(1)*x(4) *(y{(2) *y(2)+¥ (3) *y(3)) ~ (x(4) /2-1);
. . % Bus ,1) = 2 *y(2)1;
L e e s e £ 3'.‘ff§utf-_>“ facty @1 Line discussed
SITeg, e rens e g ey, n o e
‘infinite_bus' (] (1.05 0) [1.05} ; anst.s,:) = Y ;
*switched_line' [0] [1 0 0 0 ... % From bus elseif flag == 7 % calculate h
1000 ~-1] ... % To bus ans = X;
[0 0.40625 0 10] ; elseif flag == 8 $ calculate h_x
‘out_Vmag' [] {1 0 1) [] }: ans = [[1:4]' ([1:4])"' ones(4,1)]:
connections = ({1 2 3 -13) gz . elseif flag == 9 $ calculate h_y
{133 -14) ¥ = ty3;
{143 -15} ... Connection vector endans emety
{153 -16) ... discussed in the text.
273 -5] ...
{g 23 :g} Fig. 5. Component fildoad_dyn1.
{2 16 3 -10] ...
{2113 <7571 ... L . .
(2123-858 ... Note that the actuaj, matrix is never built explicitly, but rather
(2 14 3 -12] ... is stored sparsely.
(413 -1] ... . N . .
(423 -21 ... The version of the model shown in Fig. 5 describes a single
R (load) component. However a straightforward modification
HEE I " of the code, using Matlab vectorization, allows an arbitrary
ea3n.. number of components to be described simultaneously. This

significantly improves execution speed for systems with
Fig. 4. Data file for transformer-load system. muItlpIe |-nstances qf the same compongnt.
As indicated earlier, the models are interconnected through
. - interface variables. Consider the connection of components
wherez,, is the load state driving the actual load demafd |1\ s the load to the network. The masetwork provides a

Tap-changer behavior is described in Example 1. nodal representation of the network constraints, and introduces

This system is described by the data file of '_:'g' 4. Eacflaur algebraic variables at each bwéz., real and imaginary
component of the system has a corresponding entry (!Bmponents of bus voltag¥,, V; and injected current,.,
model data; the dynamic load and tap—changer are repr(};_ The modelload dynl describes load behavior in terms
sented byload dynl and tap_changer respectively, whilst of terminal bus algebraic variablé€., V;, I, and I,. The

the models_for the infinite bus, netwqu and _SW'tChe_d IInf';mk between network and load variables is established via
are appropriately named. Each model is associated with three

dat i Th ity initializati lues i d connections. Each vector inconnections contains pairs of
ata vectors. These specify ini lalization valuesderyo and i, gices which set up an equation of the form (11). Referring
background parameters respectively.

. o the data file of Fig. 4, the first vectoft' 2 3 —13],” for
The actual Matlab fil&oad _dyn1 (shortened and compacted}xample, introduces the equation

to save space) is provided in Fig. 5. This file calculates values for

f,gandh, and sparsely stored elementsi‘%f iy, 9oy -+ hy. 0=1vy12—¥3 13

The parametetlag determines which quantity is returned at _ )

each function call. wherey; ; refers to theith algebraic variable of th&h model.

Relative indexing is used within models for Jacobiafhis particular equation ensures that the real part of the voltage
elements, as each component model is autonomous. (B§€N by the loady, ) is equal to the appropriate network
connection information is externally defined.) The modefoltage(us, 13). ) ] o )
load_dyn1 of Fig. 5 provides an illustration. Consider the line The structure of’;, for this example is shown in Fig. 2. Itis
“ans(12, :) = [3 5 —y(2)],” which is executed during the clearly sparse. As mentioned earliét, is composed of blocks

calculation ofg,. This specifies that the 12th nonzero elemetowWn the diagonal, together with the cross couplifigandg.,

of the localg, matrix is g,(s 5 = —v». The simulation kernel and the connection submatrix. The mat;_‘%, which occupies
uses these relative indices (3, 5), along with knowledge of thiee top left corner of,, has dimensioR°*1°, The last 20 rows
dimensions ofy andy for all models, to generate the locatiorcorrespond to the connection equations. They interconnect the
of this element in the fully, matrix, i.e., the absolute indices.diagonal blocks of,.
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T T T T T T T f equations

il 14 £1 = xl*yl~2
o98f Jo4a £2 = 0
g equations
o098+ Jo42 gl = y3-pl/x1
ev- y5
g2 = yl+x2
ev+

g2 = tan(log(xl)/y4)
h equations
ev vyl
hil
h2

x1
y2+4x2

Fig. 7. Input model representation for component file building.

s ' s . s ‘ .
] 20 40 60 80 100 120 140 160 180 200
Time (sec)

function ans = picaix,y.t,ev,p, flag,model_no
global empty3

Fig. 6. System response to disturbance. :s flag == o initialisation
ans = (2 2 (5 -11}); .
elgeif flag == 1 % calculate f
. . . ans = [x{1)*y(1)~2 ; 0);
A disturbance was applied to the power system to illustra else:xfsfll‘f’) == [21 L ymm{ calculate £ x
the interactions between continuous dynamics (due to the 10 elseif fiag == 3 % calculate f_y

. . . . ans(l,:) = [1 1 2*x{(1)*y(1));
and discrete event dynamics (resulting from the tap-changi eiseis flag -4 ¢ calaulate
. . . ans = =] X H
transformer). Att = 10 sec, the feeder with impedang&l, - it evu()z:! f’“ .
. . . ans = +x i
was tripped. The behavior of the voltage at bus 3 is shown else Y

. . 2y = (log{x(1))/y(4));
Fig. 6, along with the load demard;. The nonsmooth nature  egq =™ = F2tiesxt0

'S

<

of the trajectory is clearly evident. O T 1 sy e &
In general, components and subsystems of any form can ¥ SGL<Y L 22,
modeled, provided they are structured with interfacing algebre — ***%.. 2.4y = (2 1 (1ecan(log(x(1)) /¥ (4))°2) /(1) /¥ (&) 15
. ) ; .
variables that can be linked to other components. Noise and ;.eit t1ag == ¢ caleulate gy
random disturbances can be added to the model by linkingco 3800 £ (23 2
ponents that generate random signals. gl @) = 2k
ans(2,:) = (2 4 -(1+tan(log(x(1))/y(4))"2)*log(x(1))/y{4)"2]);
d
elseei‘; flag == 7 % calculate h
IV. SYMBOLIC DIFFERENTIATION ams e X,
ans{l) = x(1);
As indicated in Section I1I-B, simulation of hybrid sys- — _  ess@) =y@x2):
tems using numerically stable implicit integration technique elseif flag == 8 = % calculere hx
requires the generation of the partial derivative matrice it N i,
iﬁ, iy, 9z, -~ hy. In the implementation described in this g T = 2230
paper, these values are calculated and stored sparsely elseif flag == 9 % calculate hy

= ty3;
component files of the form shown in Fig. 5. Hand derivatio :?se:ns:?f : s 22
of these partial derivatives can be tedious for large complicat e ™
models. Therefore the process has been automated through _.._
use of symbolic differentiation. . . .
. . . . Fig. 8. Symbolically generated component file.
The generation of a component file, like Fig. 5 for example,

begins with an analytical model in the DSAR form. The ana-

lytical mode_l must be unamblgu_ously mapped Into & cha_\rac}grfu”y described by the representation of Fig. 7. All elements
representation that can be manipulated symbolically. It is al ? the model are clearly and uniquely identified; g

important that this mapping does not restrict the implementg—

(i—) oG+ - : i
tion of the DSAR form. Fortunately the DSAR model structur g =g " Ydi t Loy dh by, Ye gy =1, C.}'
. ] . A Matlab function has been developed for translating the
is well suited to such translation. For example, the model . ; R ;
input model representation, of the form shown in Fig. 7, into a

component file that can interact with the simulation kernel. For
& =1y example the component file produced from Fig. 7 is shown in
Fig. 8 (compacted to save space). Building fhe and.: equa-

T2 =0 tions involves relatively straightforward character string manip-
0=ys —p1/e1 ulation. Generating the partial derivatives is more challenging.
_ {yl + 72 Y5 <0 Firstly, equations and variable strings are converted into sym-
tan(log(z1)/ya) 5 >0 bols. Symbolic differentiation produces partial derivatives that
i = a7 h —0 must be simplified and converted back into strings. If the final
¥ =y, +a5 } wheny, = expression is zero, the derivative is discarded, as the matrices
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are stored sparsely. Final processing adds parentheses for vari-

able indexing, e.gy1 becomes/(1).
Componentfiles are generated “off-line.” Therefore symbolic
manipulation has no influence on simulation time.

V. CONCLUSION

Many systems exhibit interactions between continuous

(1]

(2

(3]

(4]

dynamics and discrete events. The paper illustrates that thél
dynamics of such hybrid systems can be captured by a mode[IG]

which has a differential-algebraic-discrete (DSAR) structure.
Models of large systems are most effectively constructed

using a modular or object-oriented approach. However the[

integrations inherent in hybrid systems make that difficult

to achieve. The paper shows that the desired modularity can

be achieved in a practical way with the DSAR model. Com-

(8]

ponents and/or subsystems are modeled autonomously, with
connections established via simple algebraic equations. The

object-oriented model structure allows partial derivatives to be
generated symbolically without sacrificing simulation speed.

(9]
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