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Systematic Modeling and Symbolically Assisted
Simulation of Power Systems
Ian A. Hiskens, Senior Member, IEEEand Peter J. Sokolowski

Abstract—Large disturbance behavior of power systems often
involves complex interactions between continuous dynamics and
discrete events. Such behavior can be captured in a systematic
way by a model that consists of differential, switched algebraic
and state-reset (DSAR) equations. The paper presents a practical
object-oriented approach to implementing the DSAR model. Each
component of a system can be modeled autonomously. Connec-
tions between components are established by simple algebraic
equations. Simulation of the model using numerically robust
implicit integration requires the generation of partial derivatives.
The object-oriented model structure allows this differentiation to
be achieved symbolically without sacrificing simulation speed.

Index Terms—Dynamic modeling, hybrid systems, simulation.

I. INTRODUCTION

POWER systems frequently exhibit interactions between
continuous dynamics and discrete events. They are an

important class ofhybrid systems. Typically the continuous
dynamics relate to components that obey physical laws.
Event-driven discrete behavior results from logical rules that
govern the system. Examples in this latter category include
protection logic, supervisory control and saturation limits.

Analysis of power system dynamic behavior can be difficult.
Even simulation is not always straightforward. Yet the impor-
tance of clearly understanding such behavior makes system-
atic modeling, analysis and simulation imperative. Historically,
analysis of physical systems focused on their continuous be-
havior, with the discrete-event activity remaining largely ex-
ternal.Ad hocapproaches to modeling and simulation of the
discrete interactions were sufficient. However, such methods are
less appropriate with the recent trend toward tighter integration
of continuous and discrete activity. Fresh systematic approaches
to the simulation of hybrid systems are under development [1].
This paper establishes benefits of symbolic differentiation in an
object-oriented simulation environment.

Hybrid systems can be modeled by a set of differential,
switched algebraic and state-reset (DSAR) equations [2]. A
summary of this model structure is presented in Section II.
The utility of such a model for building large systems is
not immediately clear. However, Section III shows that the
DSAR structure is amenable to object-oriented modeling. Such
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modeling is perfectly suited to symbolic manipulation. The
implementation of symbolic differentiation is discussed in
Section IV. Conclusions are presented in Section V. Examples
are used to illustrate model development and implementation.

II. HYBRID SYSTEM REPRESENTATION

A. Model

As indicated in Section I, hybrid systems, which include
power systems, are characterized by:

• continuous and discrete states,
• continuous dynamics,
• discrete events, or triggers, and
• mappings that define the evolution of discrete states at

events.

It is shown in [2] that such behavior can be captured by the
DSAR model

(1)

(2)

(3)

(4)

where

and

• are the continuous dynamic states, for example gener-
ator angles, velocities and fluxes,

• are discrete dynamic states, such as transformer tap po-
sitions and protection relay logic states,

• are algebraic states, e.g., load bus voltage magnitudes
and angles,

• are parameters such as generator reactances, controller
gains and switching times.

The differential equations are correspondingly structured
so that , whilst and remain constant away from
events. Similarly, the reset equations ensure that and
remain constant at reset events, but the dynamic statesare reset
to new values according to . (The notation
denotes the value of just after the reset event, whilst and

refer to the values of and just prior to the event.)
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Note that the model does not allow discontinuities in the dy-
namic states , i.e., impulse effects are excluded. This is not
a restriction forced by analysis though. The model adopts the
philosophy that the dynamic states ofactualsystems cannot un-
dergo step changes.

The model (1)–(4), which is similar to a model proposed in
[3], captures all the important aspects of hybrid system behavior,
namely the interaction between continuous and discrete states
as they evolve over time. Between events, system behavior is
governed by the differential-algebraic (DA) dynamical system

(5)

...
(6)

where the functions are chosen depending on the signs of
the corresponding elements of. An event is triggered by an
element of changing sign and/or an element of passing
through zero. At an event, the composition ofchanges and/or
elements of are reset.

The following example illustrates the DSAR model structure.
Example 1: In order to demonstrate the ability of the DSAR

structure (1)–(4) to model logic-based systems, this example
considers a relatively detailed representation of the automatic
voltage regulator (AVR) of a tap-changing transformer. The
Petri net model [1], [4] of the AVR logic for low voltages, i.e.,
for increasing tap ratio, is outlined in Fig. 1. The model can be
represented in the DSAR form as,

when .

To assist in connecting AVR logic with the model, Fig. 1 in-
dicates variables that are related to particular functions.

The dynamics of this device are driven by a number of inter-
acting events that govern the behavior of the timer. If the tap is
at the upper limit ( ), or the voltage is within the dead-
band ( ) then the timer is blocked. If the voltage is out-
side the deadband ( ) then the timer will run. If the timer

Fig. 1. Tap-changing transformer AVR logic for increasing tap.

reaches , a tap change will occur and the timer
will be reset, but not necessarily blocked. If the voltage returns
to within the deadband, because of smooth system dynamics or a
tap change or some other system event, then the timer is blocked
and reset.

B. Numerical Integration

Numerical integration of DA systems is treated rigorously in
[5]. However it is helpful to review some basic concepts before
considering the implementation of the DSAR model and the role
of symbolic differentiation.

Consider the DA system (5), (6) which describes behavior
over the periods between events. The trapezoidal approach to
numerical integration approximates the differential equations
(5) by a set of algebraic difference equations coupled to the orig-
inal algebraic equations (6), i.e.,

(7)

(8)

where the superscripts, index the time instants ,
respectively, and is the integration time step.
Equations (7), (8) describe the evolution of the states, from
time instant to the next time instant .

Notice that (7), (8) form a set of implicit nonlinear algebraic
equations. Therefore to solve for , given , re-
quires the use of a nonlinear equation solver. The Newton iter-
ative technique is commonly used. Rearranging (7) allows the
algebraic equations to be written

which has the form
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This equation can be solved iteratively according to

(9)

where is the Jacobian of with respect to , and has the
structure

(10)

Note that indexes the iterations of the equation solver, and is
not related to the time index. When (9) has converged, the
solution provides and .

C. Computation of Junction Points

Switching and reset events generically do not coincide with
the time instants of the numerical integration process. However
for many applications it is important to find the exact time,
between integration time steps, at which an event occurs. This
is possible through a simple modification to the trapezoidal
technique.

Referring to the compact DSAR model (1)–(4), let
trigger an event. Say at time instant , but at
instant . Let be the (unknown) time from instantto
the event. The variable can be found by solving (7), (8) with

free to vary, but with the extra constraint . Because
the extra variable is matched by an extra constraint, the Newton
iterative technique can again be used to find the solution.

Having found the junction point, the appropriate switches in
the composition of should be made, and/orupdated, then (8)
re-solved to obtain the post-event values of the algebraic vari-
ables . The post-event values ofand provide the initial con-
ditions for the next section of the trajectory. It can be convenient
to use the time step for the first step after the event. This
aligns subsequent points with the specified time step.

III. I MPLEMENTATION

Models of large systems are most effectively constructed
using a hierarchical or modular approach. With such an ap-
proach, components are grouped together as subsystems, and
the subsystems are combined to form the full system. This
allows component and subsystem models to be developed and
tested independently. It also allows flexibility in interchanging
models.

The interactions inherent in hybrid systems are counter to
this decomposition into subsystems and components. However
the algebraic equations of the DSAR model can be exploited to
achieve the desired modularity. Each component or subsystem
can be modeled autonomously in the DSAR structure, with
“interface” quantities, e.g., inputs and outputs, established as
algebraic variables. The components are then interconnected by
introducing simple algebraic equations that “link” the interface
variables. This is similar to the connections concept of [6].
Note that all interconnections are noncausal [7], i.e., no rigid
input–output arrangement of components is assumed.

To illustrate this linking concept, consider a case where the
th algebraic state of component, denoted , is required by

component . In the model of component, the corresponding

Fig. 2. Sparsity structure of JacobianF for the power system example.

quantity would appear as an algebraic variable . The con-
nection is made via the simple algebraic equation
. In general, all linking can be achieved by summations of the

form

(11)

where is . Notice that all connections are external to the
component models.

The linking strategy results in an interesting structure for the
Jacobian . Components contribute square blocks down the di-
agonal of and flattened rectangular blocks along the diagonal
of the upper section of . The lower section of is an inci-
dence matrix, with ’s given by the external connections (11).
Fig. 2 illustrates this structure. (This particular matrix comes
from Example 2, which follows.) A Jacobian structure like that
of was identified in [8], where a similar arrangement of com-
ponents and connections was used in the development of an op-
timal power flow.

The structure and values of the lower connection submatrix
of are fixed for all time. This can be exploited in the fac-
torization of to improve the efficiency of solving (9). The
efficiency improvement is significant as (9) is solved at every
time step.

The proposed modular approach to constructing hybrid sys-
tems has been implemented in Matlab. The following example
illustrates the concepts.

Example 2: The simple power system of Fig. 3 consists of a
dynamic load supplied from an infinite bus via a tap-changing
transformer. The continuous dynamics of the real power load
are given by the recovery model [9],
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Fig. 3. Power system example.

Fig. 4. Data file for transformer-load system.

where is the load state driving the actual load demand.
Tap-changer behavior is described in Example 1.

This system is described by the data file of Fig. 4. Each
component of the system has a corresponding entry in

; the dynamic load and tap-changer are repre-
sented by and respectively, whilst
the models for the infinite bus, network and switched line
are appropriately named. Each model is associated with three
data vectors. These specify initialization values for, and
background parameters respectively.

The actual Matlab file (shortened and compacted
to save space) is provided in Fig. 5. This file calculates values for

, and , and sparsely stored elements of, , .
The parameter determines which quantity is returned at
each function call.

Relative indexing is used within models for Jacobian
elements, as each component model is autonomous. (All
connection information is externally defined.) The model

of Fig. 5 provides an illustration. Consider the line
“ ,” which is executed during the
calculation of . This specifies that the 12th nonzero element
of the local matrix is . The simulation kernel
uses these relative indices (3, 5), along with knowledge of the
dimensions of and for all models, to generate the location
of this element in the full matrix, i.e., the absolute indices.

Fig. 5. Component fileload dyn1.

Note that the actual matrix is never built explicitly, but rather
is stored sparsely.

The version of the model shown in Fig. 5 describes a single
(load) component. However a straightforward modification
of the code, using Matlab vectorization, allows an arbitrary
number of components to be described simultaneously. This
significantly improves execution speed for systems with
multiple instances of the same component.

As indicated earlier, the models are interconnected through
interface variables. Consider the connection of components
such as the load to the network. The model provides a
nodal representation of the network constraints, and introduces
four algebraic variables at each bus,viz., real and imaginary
components of bus voltage , and injected current ,

. The model describes load behavior in terms
of terminal bus algebraic variables , , and . The
link between network and load variables is established via

. Each vector in contains pairs of
indices which set up an equation of the form (11). Referring
to the data file of Fig. 4, the first vector “ ,” for
example, introduces the equation

where refers to the th algebraic variable of theth model.
This particular equation ensures that the real part of the voltage
seen by the load is equal to the appropriate network
voltage .

The structure of for this example is shown in Fig. 2. It is
clearly sparse. As mentioned earlier, is composed of blocks
down the diagonal, together with the cross couplingsand ,
and the connection submatrix. The matrix, which occupies

the top left corner of , has dimension . The last 20 rows
correspond to the connection equations. They interconnect the
diagonal blocks of .
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Fig. 6. System response to disturbance.

A disturbance was applied to the power system to illustrate
the interactions between continuous dynamics (due to the load)
and discrete event dynamics (resulting from the tap-changing
transformer). At sec, the feeder with impedance
was tripped. The behavior of the voltage at bus 3 is shown in
Fig. 6, along with the load demand . The nonsmooth nature
of the trajectory is clearly evident.

In general, components and subsystems of any form can be
modeled, provided they are structured with interfacing algebraic
variables that can be linked to other components. Noise and/or
random disturbances can be added to the model by linking com-
ponents that generate random signals.

IV. SYMBOLIC DIFFERENTIATION

As indicated in Section II-B, simulation of hybrid sys-
tems using numerically stable implicit integration techniques
requires the generation of the partial derivative matrices

. In the implementation described in this
paper, these values are calculated and stored sparsely by
component files of the form shown in Fig. 5. Hand derivation
of these partial derivatives can be tedious for large complicated
models. Therefore the process has been automated through the
use of symbolic differentiation.

The generation of a component file, like Fig. 5 for example,
begins with an analytical model in the DSAR form. The ana-
lytical model must be unambiguously mapped into a character
representation that can be manipulated symbolically. It is also
important that this mapping does not restrict the implementa-
tion of the DSAR form. Fortunately the DSAR model structure
is well suited to such translation. For example, the model

when

Fig. 7. Input model representation for component file building.

Fig. 8. Symbolically generated component file.

is fully described by the representation of Fig. 7. All elements
of the model are clearly and uniquely identified: ,

, .
A Matlab function has been developed for translating the

input model representation, of the form shown in Fig. 7, into a
component file that can interact with the simulation kernel. For
example the component file produced from Fig. 7 is shown in
Fig. 8 (compacted to save space). Building the, and equa-
tions involves relatively straightforward character string manip-
ulation. Generating the partial derivatives is more challenging.
Firstly, equations and variable strings are converted into sym-
bols. Symbolic differentiation produces partial derivatives that
must be simplified and converted back into strings. If the final
expression is zero, the derivative is discarded, as the matrices
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are stored sparsely. Final processing adds parentheses for vari-
able indexing, e.g., becomes .

Component files are generated “off-line.” Therefore symbolic
manipulation has no influence on simulation time.

V. CONCLUSION

Many systems exhibit interactions between continuous
dynamics and discrete events. The paper illustrates that the
dynamics of such hybrid systems can be captured by a model
which has a differential-algebraic-discrete (DSAR) structure.

Models of large systems are most effectively constructed
using a modular or object-oriented approach. However the
integrations inherent in hybrid systems make that difficult
to achieve. The paper shows that the desired modularity can
be achieved in a practical way with the DSAR model. Com-
ponents and/or subsystems are modeled autonomously, with
connections established via simple algebraic equations. The
object-oriented model structure allows partial derivatives to be
generated symbolically without sacrificing simulation speed.
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