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Abstract

The paper proposes a techniques for locating loads where
dynamics have a significant influence on the damping of
power system inter-area oscillations. A feedback inter-
pretation of load dynamics underlies this technique. It
1s shown that eigenvalue sensitivity and residues can be
used to provide the desired information. This approach is
applicable for the analysis of large systems. Use .of these
ideas allows limited resources to be devoted to obtaining
good models of important loads, rather than trying to ob-
tain adequate models of many extra loads.
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1 Introduction

The accurate prediction of power system dynamic be-
haviour is vital as power systems become more intercon-
nected and as security margins decrease. It is important
that system planners and operators have confidence in re-
sults obtained from analysis tools. The development of
an understanding of the dynamic behaviour of a partic-
ular power system is generally based upon such results.
If the results are incorrect, that understanding may be
flawed, and subsequent decisions may be incorrect.
~ There have however been frequent. reports of instances
where the difference between predictions and actual be-
haviour has been quite significant, e.g., [5, 10]. In many
cases, differences can be reduced by carefully testing (and
accurately identifying the parameters of) major system
components such as generators and their associated con-
trol loops. However loads can also have quite a dramatic
effect on system behaviour [5, 13, 18]. Unfortunately
though the testing of loads is not such a straightforward
proposition.

Often modelled loads represent an aggregation of many
diverse consumers [9]. The composition of the aggregate
load continually varies, so it is only really meaningful to
formulate a statistical description of that load. Producing
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useful statistics can involve enormous resources, in terms
of equipment, people and time. It is therefore often not
viable, even for moderately sized systems, to produce ac-
curate lpad models for all loads. As a way of overcoming
these problems, this paper proposes a technique for 1denti-
fying loads which have a particularly significant influence
on dynamic behaviour. This allows resources to be fo-
cussed where they are most needed. The aim has been to
develop a technique suitable for large systems.

Previous papers {8, 14] have demonstrated that the dy-
namic response of loads can greatly influence the damp-
ing of electromechanical modes, and in particular inter-
area modes. It has been shown that ignoring dynam-
ics, and treating loads as statically dependent on voltage,
can result in quite misleading predictions of damping. It
is therefore important to identify loads which should be
modelled as dynamic, as against those loads where a static
representation would suffice. This is a subset of the overall
problem of identifying significant loads. But it is nonethe-
less an important issue. It therefore forms the focus of this
paper.

Load dynamics can be thought of as a feedback mech-
anism which influetices system behaviour. This is shown
diagrammatically in Figure 1, and is discussed further in
Section 2.2. This representation motivates the use of lin-
ear system ideas which have proved useful in control de-
sign. In particular, residues and eigenvalue sensitivities
have been used extensively in determining the most effec-
tive locations for siting power system stabilizers (PSSs).
This is a similar problem to that of finding locations where
load dynamics have the greatest effect. Therefore, in this
papet we propose the use of these ideas/techniques for lo-
cating dynamic loads which significantly influence damp-
ing. :

The results obtained using residue and sensitivity ideas
are only valid for small parameter perturbations. However
it 1s argued in Section 2 and demonstrated in the exam-
ple of Section 5 that the results provide valuable infor-
mation. Further, these techniques allow for fast scanning
of all loads in large systems. (Having identified signifi-
cant loads, other analysis techniques which are suitable for
large parameter perturbations [8] could be used for more
detailed investigations. Such techniques are more com-
putationally intensive though, so are not.%enerally suited
to the problem of scanning all loads of large systems.)
Another feature of the procedure based on residue and
sensitivity ideas is that 1t effectively allows a decoupling
of a load’s location from the actual load at that location.
It is therefore possible to identify significant locations in
a power system (even though the load there may be rela-
tively small), as well as significant loads. This is discussed
further in Section 3.

The paper is organized as follows. Section 2 provides
some background material on dynamic load modelling.
Section 3 then establishes an analytical framework for in-
vestigating load effects. Based on that material, a proce-
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dure is developed in Section 4 for determining significant
loads. This procedure is illustrated using the 150 bus ex-
ample of Section 5. Conclusions are given in Section 6.

2 Background
2.1 Load modelling

We wish to identify locations where static load mod-
els do not adequately describe load behaviour, i.e., where
load dynamics cannot be ignored. The first step is to es-
tablish generic models which are appropriate for describ-
inig static and dynamic load behaviour. The models need
to be generic because loads are usually an aggregation of
many devices. The aggregate load therefore generally does
not behave like any one component, but rather as a combi-
nation of all the individual component responses. Further,
generic load models are only useful if their parameters can
be identified from measurements.

A generally accepted static load model for real power is

given by,
Py = Po(V/Vo)™ ' (1)

where P; is the real power load demand. A similar equa-
tion describes reactive power demand. (Throughout the
analysis we shall focus on real power loads. However re-
active power loads, and combinations of real and reac-
tive power loads can be treated similarly [8].) The static
load representation establishes a fixed relationship be-
tween voltage and demand. However loads often respond
dynamically to bus voltage changes: At a step change
in voltage, demand will generally initially undergo a step
change according to a relationship similar to (1). Load
will then often recover back to some steady state value,
see for example [7, 19]. A model which captures this form
of behaviour was proposed in [7] as,

P(V) - Fy (2)
zp + P(V) (3)

Tyz, =
P; =

where P,(V') describes the initial transient response of the

load, and P;(V) gives the steady state load behaviour. It
is convenient to formulate these functions as,

Py(V) = Po(V/ Vo)™ (4)
B(V) = Bo(V/Vo)™ ()

The time constant T}, describes the rate of recovery of the
load. Note that as T, — 0, load behaviour approaches
Py = P,(V). With T, = 0, (2) has the same form as the
static load representation (1), but with n,, replacing n,.
Therefore the parameter T, captures an essential differ-
ence between static and dynamic loads. The sensitivity
of system behaviour to variations of T}, away from zero
reflects, to a large extent, the significance of dynamic load
effects, i.e., a low sensitivity would indicate that a static
representation was adequate whereas a high sensitivity
would indicate that load dynamics played an important
role. We shall therefore use a sensitivity-based framework
for identifying important dynamic loads. This is further
justified by the fact that for inter-area modes, loads with
time constants around 0.3-0.5sec have the largest influence
on system damping [15].

Note that the dynamic load model (2},(3) was originally
proposed for modelling slower load behaviour relevant for
voltage collapse studies. However it is just as appropri-
ate for describing faster load dynamics. Because we are

investigating the effects of loads. on system damping, i.e.,
a small disturbance phenomenon, we shall linearize the
dynamic load model. This gives,

(nptTps + nps)

APy = (P,/V,) T3 D) AV (6)
= (P,]V,)n MAV (7)

of eIt T s 4 1) ~

= L(s,T,)AV (8)

2.2 Feedback interpretation of loads

The load equations, (1) for static loads and (2),(3) for
dynamic loads, couple into the overall power system model
via the power balance equations. For real power we have,

0=P;+ P(0,V) - (9)
where P;(9,V) is the total power received from the system.
A similar equation applies for reactive power. Linearzing
this equation yields, ‘ ‘ '

0=AFP;+ ?ﬁA9+ @AV

86 av (10)

where %—IZL, %3 are elements of the power flow Jacobian.

Consider a bus in the power system where we wish to
investigate the effect of the load. In particular, we are
interested in how changes in real power AP; affect the
bus voltage AV. Equation (10) is part of a differential-
algebraic description of the complete system. Manipula-
tion of this system description yields the state spacé Tep-
resentation [8],

(11)
(12)
where z is the vector of state variables, such as genera-
tor states, FACTS devices, and load states of other loads

%not the particular load of interest). Taking Laplace trans-
orms, we obtain the power system transfer fanction,

AAz + bAP;
Az + dAP,;

Az =
AV =

(1)
(14)

AV = (f(sI—A)"'b+d) AP,
= S(s)AP,

So we see from (14) that changes in power demand AP;
produce changes in voltage AV. But.from (8% we have
that changes in voltage AV produce changes in load AP;.
Therefore together the system S(s) and the load L(s, T},)
have the feedback structure shown in Figure 1. Note how-
ever that the time constant of interest 7, is a parameter
of the feedback (load) transfer function L(s,T,) only.

3 Eigenvalues, residues and sensi-
tivities
The power system transfer function S(s), i.e., the open-
loop system with no load feedback, can be formulated in
a partial fractions expansion as,

R1 R2 Rn

. m R;
S(s) = Goa %) +———(s ) +ot oA = Z G0




S(s) a4V

(power system)

APd

L(s, T,)
(load)

Figure 1: Feedback interpretation of load

where the X; are the eigenvalues of the A matrix in the
state space representation (11),(12). The coefficients R;
are the residues [6] associated with distinct” eigenvalues
A;. For the single input single output system (11),(12),
the residues can be calculated from,

R; = wibciv; (16)
where w! and v; are the left and right eigenvectors asso-
ciated with );, normalized such that wiv; = 1.

Consider the feedback system of Figure 1. If we assume
for now that L(s,T},) = 0 for T, = 0 (we will discuss this
assumption later), then the sensitivity of eigenvalue A; to
an incremental change in parameter T, is given by {1, 17],

AN dL(\, Ty)
D)\ = 22 = g7l p)
oT, a7,

(17)

Now A; and R; are an eigenvalue and residue of the open-
loop system. However under the assumption L(s,0) = 0,
and for small variations AT, the eigenvalue variation AJ;
effectively gives the sensitivity of the closed loop eigen-
value. So (17) provides information on the variation of
the damping of a system mode for small changes (away
from zero) in the load time constant 7},. As discussed
earlier, static loads correspond to T, = 0, whilst for dy-
namic loads T, > 0. Therefore (17) effectively describes
the sensitivity of a system mode to the inclusion of load
dynamics.

In establishing (17) we made the assumption that
L(s,0) = 0, i.e., that the load feedback was zero when
T, = 0. Referring to (6), we see that condition is only
strictly satisfied for n,s = 0, i.e., when the load dynam-
ics restore the demand back to its predisturbance value at
steady state. Whilst that is not exactly tlie case is general,
many loads do return to near their predisturbance values,
implying that n,, is small. In fact, it can be seen from (7)
that provided (n,s/ny) is small then L(s,0) = 0, i.e., our
earlier assumption is closely approximated. Many differ-
ent types of loads, from motors [4] to aluminium smelters
[3], have n,, << ny. We conclude that the error in-
troduced into (17) by this assumption can be neglected
(16, 20].

We shall now consider the use of (17) for quantifying
the effects of load dynamics on damping. The sensitivity
D); gives the change in the mode ); for a small varia-
tion of T}, away from zero. It reflects the change in A; as
the load moves from a static to a dynamic representation.
The sensitivity DA; is a complex number. If its real part
is negative, then damping is improved by the change from

257

a static to a dynamic load representation. {(The eigen-
value moves further to the 1eft.z If its real part is positive,
the change in load modelling leads to a deterioration in
damping. The magnitude of D), gives a measure of how
sensitive the mode is to load modelling. A high value of
DA; would flag the load as having a significant effect on
the mode, whereas a small value would indicate the load
was likely to have an insignificant effect. This information
would identify loads which were worthy of further, more
detailed, investigation, and those that were not.

Note that the sensitivity DA; is a function of both the

residue R; and the load sensitivity %. The residue
P

reflects the behaviour of the open-loop power system,

whereas gTL describes load behaviour. Therefore DA; is

P

influenced by both the load and its location. In particular,
the size of the load will be factored into DA;. This may
lead to situations where a large load at a relatively insen-
sitive location has a larger sensitivity DA, than a smaller
load at a more important location. It may therefore be
desirable to decouple the location from the load. A dis-
cussion of the way in which this can be achieved follows.

The eigenvalue sensitivity formulation (17) has been
used for siting and tuning PSSs [2, 11]. From (17), it can
be seen that as the magnitude of the residue R; increases,
the sensitivity of the eigenvalue to parameter changes in-
creases. In the PSS context, this provides information on
locations where the effectiveness of PSSs would be max-
imized. Similar ideas can be used for dynamic loads.
A large residue magnitude for a particular location and

- mode would indicate that the mode was quite sensitive

to a change in T}, and hence to load dynamics. A small
residue would indicate that the mode was quite insenti-
tive to load dynamics at that location. Recall that the
residues are calculated for the open-loop system, i.e., the
power system ‘seen’ by the load. They are (effectively)
independent of the actual load at that location. (There is
however a secondary dependence on the load magnitude
because the loads are coupled in through the power flow
equations §9)) Therefore residue magnitudes provide a
measure of the significance, in terms of the influence of
loads on particular modes, of load locations. Note that
residues can (and in practice do) show that a location may
be fiigniﬁcant for one mode but insignificant for a different
mode.

In designing controllers such as PSSs, the residue phase
angle (arg R;) has also proved to be useful [1, 11, 17].
To achieve maximum damping, the phase shift throug
the feedback controller, at the frequency of the mode of
interest, should be,

arg H(jw;) = 180° — arg R; (18)

With this phase shift, the change in the eigenvalue A; after
closure of the feedback loop will be in the 1807 direction,
i.e., in the negative real direction [11]. This maximizes
damping. .

These ideas are again useful in interpreting the effects
of load dynamics. When nps < npy, which is normal for
loads, the load transfer function L({s,T,) always has posi-
tive phase shift [8]. Therefore if the residue lies in the first
or second quadrant, then the load phase shift will move
the sensitivity DA; towards 180°. The load will therefore
tend to improve damping. (With the real part of D; neg-
ative, A; will move further to the left as T}, increases from
zero.) However if the residue lies in the third or fourth
quadrant, then the load phase shift will move the sensi-
tivity away from 180° toward 360°. The load in this case
will tend to reduce damping.
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4 A procedure for determining
significant loads

To assess the influence of a particular load on damping,
that load is treated in the feedback form shown in Fig-
‘ure 1. Then, for the corresponding open-loop system (the
power system ‘seen’ by that load), eigenvalues and the
associated left and right eigenvectors can be determined
from the system A matrix. This can be done by calculat-
ing all eigenvalues and eigenvectors of the system or only
those connected with particular electromechanical modes.
Calculation of all eigenvalues and eigenvectors is time con-
suming and impractical for very large power systems, so
various iterative techniques have been developed to deter-
mine only those modes of interest [12]. After determining
the left (w;) and right (vzg eigenvectors "associated with
the relevant inter-area modes, they are normalized in or-
der to satisfy wiv; = 1. By applying (16), the residues
associated with desired open-loop eigenvalues can be de-
termined. Once these residues have been calculated, the
sensitivities can be quickly found using (17). :

The. above procedure can be built into a loop which
scans through all loads calculating the residues and sen-
sitivities for modes of interest. Their magnitudes identify
significant locations and loads respectively. The phase
angles indicate whether load dynamics cause an improve-
ment or a deterioration in the damping of the various
modes. On the basis of this information the load mod-
elling efforts could be directed to those loads which have
the maximum effect. ,

" Each load ‘sees’ a slightly different. power system, so
residues need to be recalculated for each load bus of inter-
est. This involves different b and ¢ vectors, and a recalcu-
lation of the relevant system eigenvalues and eigenvectors.
The shift in eigenstructure between loads is however quite
small, so the recalculation can be performed extremely
efficiently using an iterative technique [12]. _

It should be noted that the sensitivity information ob-
tained from this procedure is only valid for small parame-
ter changes. Therefore, whilst it is useful as an indicator of
load significance, it doesn’t guarantee any particular trend
for large parameter variations. Having identified impor-
tant loads, more detailed investigations would generally
be required to determine global trends.

5 Example

. To illustrate the method explained in the previous sec-
tion, a 150 bus power system consisting of 10 equivalent
generators (with associated AVR, PSS and governors), 87
loads'and 1 SVC, connected by 289 lines and transformers
was used. (This system was motivated by an Australian
state system.) With all loads modelled statically, the sys-
tem has two inter-area modes, with frequencies of 0.31Hz
and 1.05Hz. Tables 1 and 2 give load magnitudes (P+56),
modal eigenvalues (), residues (R), residie magnitudes
(IR]) and eigenvalue sénsitivities (Sens.) for a number of
representative loads. In Table 2, the first row for each bus
corresponds to the 0.31Hz mode, while the second row
corresponds to the 1.056Hz mode.

In Figure 2 the root loci for the loads that have the
largest (B14) and smallest (B24) effect on the inter-area
mode with frequency of 1.05Hz are given. (The loci cor-
respond  to variation: of load time constants from 0Os to

100s. The arrows indicate the direction of increasing time
constant. They were obtained using large parameter vari-

[Bus [ (PHQ)(p.u) |

BOL | 4.010041.8270
B0Z | 2.6327+12.3545
BU6 | 1.14124j0.7278
BI4 [ 0.7919+;0.5150
B74 | 0.5159+]0.4487

Table 1: Bus loads

[Bus [] X [ R [ TIR[ ] Sems. ]
B0l -0.1592+)2.0022 0.0063-j0.0047 0.0078 | +0.1523
-0.6358+4)6.5020 0.0023+4j0.0139 0.0141 -1.6490
B0Z -0.1457+;1.9223 0700114j0.0047 0.0048 | -0.1633
-0.5896416.6161 -0.0037-30.0064 0.0074 | 40.7786
BOé -0.1299+]1.9656 0.0062-;0.0038 0.00737| . +0.0397
-0.5925+4)6.5810 0.0019+4j0.0161 0.0162 -0.6572
Bi4 -0.1489+;1.9500 0.0015-70.0002 0.0015 | +0.0007
-0.71024)6.6995 0.0472-;0.0855 0.0977 | +2.4062
B24 -0.1427+]1.9459 | -0.0008+)0.0004 |~ 0.0009 -0.0025
-0.58954)6.5867 | -0.00344-10.0037 | 0.0050 -0.0775

Table 2: Residues and sensitivities for some representative
load buses

ation techniques.) Agreemient between predictions based
on sensitivities and residue magnitudes and phases, and
the actual root loci behaviour can be seen by comparing
the loci with the values given in Table 2.. The root locus
of the 1.05Hz mode when loads at the five most sensi-
tive locations were modelled as dynamic is also given in
Figure 2. ~

7.4 —T T T —

jw [rad/s]

i ; i i i i
-1 -0.9 -0.8 0.7 -0.6 -0.5 -0.4: <0.3
damping [1/s],

Figure 2: Root loci of 1.05Hz mode

In Figure 3, root loci are given for the loads that have
the largest (B01) and smallest (B24) effects .on the inter-
area mode with frequency of 0.31Hz. ‘Also shown is the
root locus for the case where loads at the five most sen-
sitive locations were modelled ‘as dynamic. . The arrows
again denote the direction of movement of a mode as the
time constants of the dynamic loads were varied from 0s
to 100s. .

The root loci in Figures 2 and 3, and the predictions
of eigenvalue behaviour given by residues and sensitivi-
ties 1n Table 2, show complete agreement. All root loci
initially move in accordance with predictions based on
residue phase angles and sensitivities. For residue phase
angles which are smaller than 180¢ initial movement is to
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Figure 3: Root loci of 0.31Hz mode

the left, i.e., an increase in damping. In these cases sensi-
tivities are negative. For residue phase angles larger than
180°, initial movement is to the right, i.e., a decrease in
damping. In these cases sensitivities are positive.

The magnitude of the residue provides an indication of
the sensitivity of the load’s location. However the overall
effect on dampingis due both to the sensitivity of the loca-
tion and the size of the load at that location. To illustrate
this, consider the 0.31Hz mode and buses B02 and BO06.
Comparing residue magnitudes and sensitivities for loads
at buses B02 and B06, given in Table 2, one can conclude
that the location of load B06 is almost twice as sensitive.
However the load at B02 is much larger than that at B06.
From Table 2, it can be seen that the sensitivity of the
mode to dynamics of the load at B02 is higher, so the re-
sulting effect is that the system is more sensitive to load
dynamics at B02. This can be seen by comparing the
sizes of the corresponding root loci in Figure 4. The ar-
rows again denote the direction of movement of the mode
when the time constants of the dynamic loads were varied
from Os to 100s. Note that the results of Table 2 indicate
that the 0.31Hz mode will be a little more sensitive to load
dynamics at B02 than at B06. The camparative sizes of
the loci of Figure 4 reflect that result.

Figure 5 illustrates the significance of appropriate load
modelling, and especially modelling based on residue and
sensitivities predictions. It can be seen that for a large
disturbance, in this case a single-phase-to-ground fault,
the power system experiences different damping depend-
ing on the type of load dynamics. In producing the results
shown in Figure 5, the 21 most influential of the 87 loads
were modelled as dynamic.. The results show that the
power system with those loads modelled as dynamic can
be more (load time constants, T=10s) or less (load time
constants, T=0.3s) damped than the power system with
all loads modelled as static (load time constants, T=0s).
The damping of the system clearly depends on the dy-
namics of its loads.

As a comparison, Figure 6 shows the same case, but
with the 21 least influential loads (as predicted by the
procedure of Section 4) modelled as dynamic. It is clear
that load dynamics have little effect in this case: Figures 5
and 6 highlight the importance of identifying loads which
have a significant influence on system dynamics, and the
need for correct modelling of those significant loads.
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Figure 5: Dynamic response for different load dynamics -
most influential loads '

6 Conclusions

Dynamic behaviour of loads can have a significant influ-
ence on the damping of inter-area oscillations of power sys-
tems. Ignoring load dynamics, by treating loads as stati-
cally dependent on voltage, can lead to errors in damping
predictions. But not all Ioads influence system behaviour
to any great extent. Therefore it is important to be able to
identify loads and locations which are significant. Then
the resources required for producing better load models
can be focussed where they are most needed.

The dynamic behaviour of loads can be thought of as
a feedback mechanism which influences system damping.
This representation motivates the use of linear systems
ideas. It is shown in the paper that residues and eigenvalue
sensitivities can be used to identify locations where load
modelling is important, and loads which have a significant
influence on damping. Even though these techniques are
strictly only valid for small parameter variations, a 150 bus
example llustrates that the ideas reliably provide useful
information.
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Figure 6: Dynamic response for different load dynamics -
least influential loads
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Discussion

Y. Liang and C.0. Nwankpa(Drexel University,
Philadelphia, PA 19104): The authors are to be commended
for having systematically developed an approach for locating
dynamic loads which significantly influence power system
damping. Based on locating results, both labor and time can be
saved in modeling dynamic loads which usually involves
measurement device installation and data recording. The
proposed method is simple and straightforward to implement.
Concerning the details of this paper, we have some comments
and questions presented below.

The appropriateness of a dynamic load model depends on
which study it is applied to. In different power system studies,
different load models should be employed. This is mainly
because of the interested time interval of study and the
interested state variable oscillation frequency. In particular,
when system oscillation frequency is considered, selection of
the load model will depend on the interested mode. In this
paper, the authors chose the nonlinear dynamic load model
from [D1] for all the modes under investigation. Have the
authors verified that this load model is suitable to their
interested mode of oscillation damping study?

According to our observations[D2][D3], the load recovery
after a step voltage disturbance exhibited oscillation
immediately following the disturbance, which suggests that
higher order model may be used, if this early stage behavior is
important to the application. Having examined the oscillation
damping modes, we find that they are in the range of 1-3
seconds compared to most of the dynamic load recovery
behaviors whose time constants range from tens of seconds to
minutes[D2,D3]. This implies that higher order dynamic load
model is a better choice to capture the early stage oscillation
behaviors. This idea was justified in {D4]. Where the first
order dynamic load model[D4] was first applied and found not
to be accurate enough. A second order dynamic load model
was then applied which yielded satisfactory results. We would
the authors’ comments on whether of not this has been
observed by them in their studies and how is it addressed by
their methodology.
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I.A. Hiskens and J.V. Milanovié: We wish to thank
the discussers for their thoughtful comments and ques-
tions.

We agree that the appropriateness of a load model is de-
pendent upon the study in which it is applied. Certainly,
the load model which we have used was originally devel-
oped to capture longer term load recovery, such as occurs
with heating load [D1]. However it is a generic model
which is valid whenever load responds to a voltage step
by undergoing an initial step change followed by an ex-
ponential form of recovery. Many different types of loads
exhibit that form of response, including loads with quite
small time constants, e.g., 1,7, = 0.1 — O0.4sec. It is
these loads which have an influence on the damping of
electromechanical oscillations, as verified in (8,14].

The techniques proposed in the paper were motivated by
the feedback interpretation of the load influence, as illus-
trated in Figure 1. The paper used the (linearized) recov-
ery load model. However the methodology is effectively
independent of that particular load model.

The higher order dynamics of slower recovery loads could
influence the damping of electromechanical oscillations.
We have not studied such cases where the higher order
dynamics were important. However the ideas in the pa-
per extend naturally to those situations. The higher or-
der dynamics are modelled by a higher order load transfer
function [C1]. In the analysis of damping, the load model
is linearized, yielding a higher order linear transfer func-
tion. Because of the linearity of the small disturbance
model, the methodology of the paper remains valid. It
may however become necessary to check the sensitivity
of oscillatory modes to extra parameters, i.e., to produce
sensitivities of the form (17) for a number of parameters.
These parameters could presumably be the time constants
associated with the recovery dynamics and the higher or-
der dynamics. This is not difficult to do, as the major
computational burden is in determining the residues R;.
The load transfer function derivatives @%\7;’—"), where 7 is
a parameter vector, involve little extra computation.
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