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Abstract— Trajectory sensitivities complement time do-
main simulation in the analysis of large disturbance dynamic
behaviour of power systems. They are formed by lineariza-
tion around a nonlinear, and possibly non-smooth, trajec-
tory. The influence of parameter variations on large dis-
turbance behaviour can be estimated (to first order) from
these sensitivities. Large (small) sensitivities indicate that
a parameter has a significant (negligible) effect on behav-
iour. These insights are helpful in analysing the underlying
influences on system dynamics, and for assessing the signif-
icance of parameter uncertainty. Further, trajectory sensi-
tivities provide gradient information for applications such
as parameter estimation, boundary value problems, border-
collision bifurcations, and optimal control.

Keywords: Power system dynamics, trajectory sensitivities,
parameter estimation, inverse problems.

I. Introduction

TOOLS for systematically exploring large disturbance
behaviour of power systems are quite limited. Gener-

ally such analysis relies on time domain simulation and in-
tuition. Whilst simulation provides a vast amount of infor-
mation on the behaviour of system states, it fails to provide
insights into underlying parametric influences. The intu-
ition of experienced analysts can compensate for those defi-
ciencies, however many organizations are suffering a decline
in that experience base.

Further, analysis of power system dynamics is model
based, implying reliance on an accurate knowledge of para-
meter values. Inaccurate parameters can lead to incorrect
(and possibly expensive) conclusions. However determin-
ing the sensitivity of behaviour to parameters has tradi-
tionally relied on repeated simulation, which is extremely
time consuming.

Recent work has shown that trajectory sensitivity analy-
sis can provide valuable insights into the security of power
systems [1], [2]. This paper proposes the use of trajectory
sensitivities to complement time domain analysis of power
system dynamics.

The influence of parameters on the nonlinear, non-
smooth behaviour exhibited by a disturbed power system
is difficult to explore. Normal linearization techniques, in-
volving linearization of the system model about an oper-
ating point, are not applicable. However trajectory sensi-
tivity analysis offers a rigorous approach to exploring the
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effects of parameters [3]. This analysis is based on lineariz-
ing the system around a trajectory, rather than around an
equilibrium point [4], [5]. Therefore it is possible to deter-
mine directly the change in the trajectory due to a (small)
change in parameters. The ideas extend naturally through
discontinuities, provided a few technical conditions are sat-
isfied [3].

The paper is structured as follows. An overview of trajec-
tory sensitivity concepts is provided in Section II. Numer-
ous application are outlined in Section III, and conclusions
are presented in Section IV.

II. Trajectory Sensitivity Concepts

Power system dynamic behaviour often exhibits inter-
play between continuous dynamics and state-driven dis-
crete events. Such behaviour can be captured by a
differential-algebraic model that incorporates impulsive ac-
tion and switching (DAIS model). That model is fully de-
scribed in [3], [6]. However to facilitate a clearer presenta-
tion of trajectory sensitivity concepts, this paper will use
the simpler model

ẋ = f(x), x(t0) = x0. (1)

Parameters λ can be incorporated through trivial differen-
tial equations

λ̇ = 0, λ(t0) = λ0. (2)

It is convenient to describe the response of the model (1)
in terms of the flow of x, defined as

x(t) = φ(x0, t) (3)

where x(t) satisfies (1), including the initial conditions
φ(x0, t0) = x0.

Trajectory sensitivities provide a way of quantifying
the variation of a trajectory (flow) resulting from (small)
changes to parameters and/or initial conditions [3], [4]. To
obtain the sensitivity of the flow φ to initial conditions x0,
the Taylor series expansion of (3) is formed, and higher
order terms are neglected,

∆x(t) =
∂φ

∂x0
∆x0 + higher order terms

≈ ∂x(t)
∂x0

∆x0 ≡ xx0(t)∆x0. (4)
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By incorporating parameters via (2), sensitivity to initial
conditions x0 includes parameter sensitivity. Equation (4)
describes the change ∆x(t) in a trajectory, at time t along
the trajectory, for a given (small) change in initial condi-
tions ∆x0. The time-varying partial derivatives xx0 are
known as trajectory sensitivities.

The actual sensitivities xx0(t) are obtained by differen-
tiating (1) with respect to x0, giving

ẋx0 = fx(t)xx0 (5)

where fx ≡ ∂f/∂x is a time-varying Jacobian matrix that
is evaluated along the trajectory. Initial conditions are ob-
tained from (3) at t0 as

xx0(t0) = I

where I is the identity matrix.
For large systems, the linear time-varying equations (5)

have high dimension. However the computational burden
is minimal when an implicit numerical integration tech-
nique such as trapezoidal integration is used to generate
the trajectory. More complete details are given in [3], [7].

The development of trajectory sensitivities for the more
complete DAIS model is conceptually similar [3]. The tech-
nical details are more intricate however.

III. Applications

A. Parametric influences on system dynamics

Analysis of large disturbance dynamic behaviour often
raises questions relating to the influence of parameters
throughout the event. For example, investigations of a dis-
turbance on the Nordel system [8] considered (among other
things) the relative influence of certain lines on behaviour.
Useful insights were obtained from the sensitivity of the
angle trajectory to line impedances.

This example illustrates the types of insights that can
be provided by trajectory sensitivities, and which are not
available (directly) from simulation. Sensitivities of any
system state trajectory to any parameter (even parame-
ters describing hard nonlinearities such as limits) can be
obtained for negligible extra computational cost. The par-
ticipation of components in an event can be quickly as-
sessed.

B. Parameter uncertainty

System parameters can never be known exactly. In fact
uncertainty in some parameters, e.g., load models, can be
quite high. Quantifying the effects of parameter uncer-
tainty illustrates the usefulness of trajectory sensitivities.

Because of the uncertainty in parameters, investigation
of system behaviour should (ideally) include multiple stud-
ies over a range of parameter values. However simulation
of large systems is computationally expensive. Such an in-
vestigation would be extremely time consuming. The gen-
erally adopted approach is to assume that a nominal set of
parameters provides an adequate representation of behav-
iour over the full range of values. This may not always be
a good assumption though.
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Fig. 1. Trajectory bounds.

A computationally feasible (though approximate) alter-
native to repeated simulation is to generate a first order
approximation of the trajectory for each set of perturbed
parameters. The first order approximation is obtained from
the truncated Taylor series expansion of the flow φ. Using
(4) gives

φ(x02 , t) ≈ φ(x01 , t) + xx0(t)(x02 − x01) (6)

where xx0(t) is computed along the nominal trajectory
φ(x01 , t). Therefore if the trajectory sensitivities xx0(t)
are available for a nominal trajectory, then (6) can be used
to provide a good estimate of trajectories φ(x02 , t) corre-
sponding to other (nearby) parameter sets. (Recall that
parameters λ are embedded in x0.)

The computational burden involved in generating the
approximate trajectories is negligible. Given the nomi-
nal trajectory and associated trajectory sensitivities, new
(approximate) trajectories can be obtained for many pa-
rameter sets. Therefore a Monte-Carlo technique can be
employed to quantify the uncertainty in a trajectory:
• parameter sets are randomly generated,
• first order approximations are obtained using (6).

Figure 1 illustrates this process for a simple example where
a disturbance initiated interactions between a tap-changing
transformer and a dynamic load. The dark line shows the
nominal trajectory. The bound around that trajectory was
obtained using 200 randomly chosen sets of parameters.
Further details can be found in [9].

Statistics quantifying the uncertainty in system behav-
iour due to parameter uncertainty can be obtained from
the Monte-Carlo simulation. For example, it’s possible to
state the probability that a disturbance would initiate pro-
tection operation or that a voltage would fall below some
predetermined threshold.

Another approach to assessing the significance of para-
meter uncertainty is via worst case analysis [10]. This in-
volves finding the values of parameters (within specified
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bounds) that induce the greatest deviation in particular
system variables, for example voltages. The algorithm can
be formulated as a constrained optimization. Similar opti-
mization problems are discussed in Section III-D.

C. Parameter estimation

System-wide measurements of power system distur-
bances are frequently used in event reconstruction to gain a
better understanding of system behaviour [11], [12]. In un-
dertaking such studies, measurements are compared with
the behaviour predicted by a model. Differences are used to
tune the model, i.e., adjust parameters, to obtain the best
match between the model and the measurements. This
process requires a systematic approach to,

1) identifying well-conditioned parameters that can be es-
timated reliably from the available measurements, and

2) obtaining a best estimate for those parameters.
It is shown in [13] that trajectory sensitivities can be

used to guide the search for well-conditioned parameters,
i.e., parameters that are good candidates for reliable es-
timation. Large trajectory sensitivities imply the corre-
sponding parameters have leverage in altering the model
trajectory to better match the measured response. Small
trajectory sensitivities, on the other hand, imply that large
changes in parameter values would be required to signifi-
cantly alter the trajectory. Parameters in the former cat-
egory are well-conditioned, whereas the latter parameters
are ill-conditioned. Only parameters that influence mea-
sured states can be identified. A parameter may have a
significant influence on system behaviour, but if that in-
fluence is not observable in the measured states, then the
parameter is not identifiable. The concept of identifiability
is explained more formally in [14].

The use of trajectory sensitivities in parameter estima-
tion is not new [4]. In the power systems context, similar
ideas have been used for estimating parameters of gener-
ators and AVRs/exciters [15], [16], [17], [18]. In fact, the
estimation process has been adapted to model reduction
[19]. The number of parameters that could be estimated
using those earlier ideas was limited though, because tra-
jectory sensitivities were generated numerically [17], [18].
By exploiting more computationally efficient methods of
calculating trajectory sensitivities [3], it is possible to con-
sider many system-wide parameters.

A parameter estimation algorithm that is based on a
Gauss-Newton iterative procedure is presented in [13]. The
algorithm minimizes the nonlinear least-squares cost

V(θ) =
1
2
‖x̆(θ) −ms‖2

2

where ms are the sampled measurements of the distur-
bance, x̆(θ) are the flows provided by the model that corre-
spond to the measured quantities, and θ are the unknown
parameters. This minimization can be achieved (locally at
least) by the iterative scheme

S(θj)tS(θj)∆θj+1 = S(θj)t(x̆(θj) −ms) (7)

θj+1 = θj − αj+1∆θj+1
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Fig. 2. Parameter estimation.

where αj+1 is a scalar that determines the parameter up-
date step size1. The matrix S is built from the trajectory
sensitivities x̆θ, i.e., sensitivity of model flows x̆ to para-
meters θ. The invertibility of StS relates directly to iden-
tifiability [14].

The parameter estimation process is illustrated in Fig-
ure 2. A voltage measurement from a disturbance on the
Nordel system [13] is shown. The figure also shows the sim-
ulated voltage trajectory for the initial parameter values,
and the tuned values obtained after convergence (in four
iterations) of (7). The improvement is clear.
Remarks:

1) Parameter estimation via (7) is not restricted to
smooth systems. In fact, it is possible to estimate
parameters that underlie event descriptions (provided
measurements capture an occurrence of the event.)

2) For large systems, feasibility of the Gauss-Newton al-
gorithm is dependent upon efficient computation of
trajectory sensitivities. This underlines the impor-
tance of systematic modeling.

D. Inverse problems

System analysis is often tantamount to understanding
the influence of parameters on system behaviour, and ap-
plying that knowledge to achieve a desired outcome. The
‘known’ information is the desired outcome. The parame-
ters that achieve that outcome must be deduced. Parame-
ter estimation, as described in the previous section, is a
classic example [21].

Because of the inverse nature of such problems, the
process has traditionally involved repeated simulation of
the model. This can be time consuming and frustrating,
as the relationship between parameters and behaviour is
often not intuitively obvious.

1Equation (7) could be solved by inverting StS, however faster and
more numerically robust algorithms are available [20].

0-7803-7322-7/02/$17.00 (c) 2002 IEEE



4

Time (hr:mn)

V
o

lt
ag

e

Fig. 3. Oscillations in distribution system voltage.

Systematic modeling allows the development of new tools
that can solve inverse problems directly, albeit via iterative
techniques. The DAIS model [6] is conducive to the efficient
generation of trajectory sensitivities. They underlie the
development of gradient-based algorithms.

The following subsections present a range of inverse
problems. Algorithms that address those problems are out-
lined. This list is not exhaustive, but seeks to provide an
overview of the possibilities.

D.1 Boundary value problems

Boundary value problems per se are uncommon in power
systems. However an application of increasing importance
is the calculation of limit cycles (sustained oscillations).
Oscillations have been observed in a variety of power sys-
tems, from generation [22] to distribution. This latter case
is illustrated in Figure 3, where the oscillations were driven
by interactions between loads, transformer tapping and ca-
pacitor switching.

Boundary value problems take the form

r
(
x0, x(tf )

)
= 0 (8)

where tf is the final time, and x(t) is the trajectory that
starts from x0 and is generated by (1). The initial values x0

are variables that must be adjusted to satisfy r. (Though r
may directly constrain some elements of x0.) To establish
the solution process, (8) can be rewritten

r
(
x0, φ(x0, tf )

)
= 0, (9)

which has the form r̃(x0) = 0. Boundary value problems
can be solved by shooting methods [23], [24], which are a
combination of Newton’s method for solving (9) along with
numerical integration for obtaining the flow φ. Newton’s
method requires the Jacobian

J =
∂r

∂x0
+

∂r

∂φx
xx0(tf ), (10)

which is dependent upon the trajectory sensitivities evalu-
ated at tf .

To solve for limit cycles, (9) can be reformulated as

x0 − φx(x0, T ) = 0

where x0 lies on the limit cycle and T is its period. Solu-
tion of this boundary value problem via a shooting method
requires xx0(T ), which is exactly the Monodromy matrix
[23], [25]. The eigenvalues of this matrix determine the
stability of the limit cycle.

D.2 Border collision bifurcations

When a system trajectory encounters the operating char-
acteristic of a protection device, a trip signal is sent to
circuit breakers. If the trajectory almost touches the oper-
ating characteristic but just misses, no trip signal is issued.
The bounding (separating) case corresponds to the trajec-
tory grazing, i.e., just touching, the operating characteris-
tic but not crossing it. This is a form of global bifurcation;
it separates two cases that have significantly different out-
comes. Numerous names exist for this phenomena, includ-
ing C-bifurcation, switching-time bifurcation and border-
collision bifurcation.

Examples of such bifurcations can be found in many
other application areas. They are particularly important
in power electronic circuits, where zero-crossings are fun-
damental to control strategies, and to the switching of self-
commutating devices [26]. In fact it has been shown that
border-collision bifurcations can provide a path to chaos in
simple DC-DC converters [27].

Identifying the critical values of parameters that corre-
spond to a border-collision bifurcation is an inverse prob-
lem. Let the operating/switching characteristic be de-
scribed by b(x) = 0. A trajectory will be tangential to
that characteristic at the point x∗ = φ(x∗0, t

∗) given by

b(x∗) = 0
bx|x∗ f(x∗) = 0.

The critical values of parameters are given by x∗0. This is
a special form of boundary value problem. Gradient-based
algorithms can be established to solve this problem.

Knowledge of the critical parameter values can be used
in security assessment to determine the likelihood of con-
tingencies initiating undesirable protection operation.

D.3 Optimal control

Optimization problems arise frequently in the analysis
of power system dynamics. Examples range from tuning
generator AVR/PSSs to determining the optimal location,
amount and switching times for load shedding [28], [29].
All these problems can be formulated using a Bolza form
of objective function

min
θ,tf

C(x, y, θ, tf ) (11)

where

C = ϕ
(
x(tf ), y(tf ), θ, tf

)
+

∫ tf

t0

ψ
(
x(t), y(t), θ, t

)
dt,
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θ are the design parameters, i.e., the parameters adjusted
to achieve the objective, and tf is the final time.

The solution of (11) may be complicated by discontin-
uous behaviour at events. However these complications
largely disappear under the assumption that the order of
events does not change as θ and tf vary, i.e., no border-
collision bifurcations occur. This assumption is common
throughout the literature, though it is expressed in vari-
ous ways: transversal crossings of triggering hypersurfaces
are assumed in [30], existence of trajectory sensitivities is
assumed in [31], and [32] assumes all flows have the same
history. All statements are equivalent.

Under that assumption, and other mild assumptions, it
is concluded in [32] that if C is continuous in its arguments
then a solution to (11) exists. Further, [31] shows that if
C is a smooth function of its arguments, then it is continu-
ously differentiable with respect to θ and tf . The minimiza-
tion can therefore be solved using gradient-based methods.
Trajectory sensitivities provide the gradient information.

If the event ordering assumption is not satisfied, C may
be discontinuous. The optimization problem then takes
on a combinatorial nature, as each continuous section of C
must be searched for a local minimum.

Other optimization problems do not naturally fit the
form (11) of the objective function. Cascaded tap-changing
transformers provide an interesting example [33]. Minimiz-
ing the number of tap change operations is equivalent to
minimizing the number of crossings of triggering hypersur-
faces. Such a problem, by definition, does not satisfy the
earlier assumption requiring constant ordering of events.
This minimization is best addressed using switching con-
trol design techniques [34], though the solution process is
not yet well established.

E. Stability assessment

The stability margin for a particular disturbance can be
thought of as the smallest “distance” between the system
trajectory and the stability boundary. A large margin in-
dicates the system is very stable (for that disturbance),
whereas a margin of zero implies impending instability2.
It has been observed [36], [37], and can be mathemati-
cally justified, that as the stability margin reduces, trajec-
tory sensitivities undergo larger excursions. Further, for
unstable cases, trajectory sensitivities increase much more
rapidly than the underlying system trajectory.

It follows that rapid growth in trajectory sensitivities
can be associated with an underlying stability problem.
Sensitivities can therefore be used as an early indicator of
impending instability. This forms the basis for a filtering
process that can rapidly separate the critical dynamic con-
tingency cases from those that are uninteresting.

Trajectory sensitivities can also be used to predict criti-
cal values of parameters [38], i.e., values that (theoretically)
drive the system trajectory onto the stability boundary. In
this application, sensitivities are generated for two values

2Energy function methods have been commonly used to estimate
the stability margin [35].
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Fig. 4. Prediction of critical parameter value.

of the parameter of interest. A factor η is calculated as the
inverse of the maximum deviation in the sensitivities. As
indicated above, the peak values of the trajectory sensitiv-
ities are inversely related to the stability margin. There-
fore it should be expected that η will approach zero at the
critical parameter value. This relationship is illustrated in
Figure 4. It has been observed across numerous examples
that the λ − η relationship is almost linear. This allows
accurate predictions of critical parameter values. The jus-
tification for this linearity is not clear though, and is a focus
of on-going research.

IV. Conclusions

Analysis of large disturbance dynamic behaviour of
power systems is largely reliant on time domain simulation.
However underlying parametric influences cannot easily be
deduced from such analysis. The paper therefore proposes
the use of trajectory sensitivities to complement time do-
main analysis. Trajectory sensitivities can be obtained as
a by-product of implicit numerical integration techniques.
They incur little additional computational cost.

Trajectory sensitivities can be used directly to provide
insights into the influence of parameters on system behav-
iour. They also facilitate efficient assessment of the signif-
icance of parameter uncertainty. Further, trajectory sensi-
tivities provide gradient information that underlies a num-
ber of inverse problems, including parameter estimation,
boundary value problems, border collision bifurcations, and
optimal control.

Trajectory sensitivities are described by their own dy-
namic system. Their behaviour can provide an early in-
dication of impending system instability. This property
also motivates an approach to determining critically stable
parameter values.
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