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Abstract: The transient energy function (TEF) and single machine
equivalent (SIME) techniques have been used successfully over the
years to compute the critical clearing time for faults in the system.
Sensitivity of the energy margin has also been used to find critical
generators for rescheduling of generation. This procedure involves
using trajectory sensitivities explicitly and the computation of the
critical energy V., depends on the system parameters. The need to

compute V. makes it computationally intensive. In this paper we
compute the sensitivity of the energy function to the fault clearing
time ¢t directly. By computing this sensitivity for two values of z,,
the results can be extrapolated to obtain a good estimate of ¢,. The
method is illustrated for a structure-preserving model of a 3-machine,
9-bus system with nonlinear voltage dependent loads.
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I. INTRODUCTION

In the new restructuring scenario of power systems, it is
very important to assess the dynamic stability of the operating
point of the systems in the case of contingencies. The TEF
technique is one of the powerful tools to achieve this
information and has been the topic for research for the last few
decades. Sensitivity approach in dynamic security assessment
(DSA) and its analytical calculations were originally proposed
in [11. In Refs. [2] and [3], sensitivities of the normalized
energy margin with respect to different system parameters
were calculated for analyzing power system stability. The
estimation of stability limits of power systems using
sensitivity of the energy margin was carried out in {4]. In this
paper, we use sensitivity of the energy function itself to the
clearing time to estimate the critical clearing time for a
particular fault. This sensitivity is computed using trajectory
sensitivities. The big advantage in this method is that there is
no need to calculate the critical value of the energy function.
The sensitivity is computed for two values of 7, and then
extrapolated to obtain the estimate of the critical clearing time.
This idea is similar to that of Ref. [5] where based on

simulation the system is reduced to a single machine

equivalent (SIME) and then ¢, is estimated.
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Fairly restrictive modeling assumptions are required to
rigorously establish energy functions. Accordingly, true
Lyapunov stability arguments can only be made for systems
that satisfy those assumptions. However the stability
assessment approach proposed in this paper does not rely on
Lyapunov concepts. Rather, the energy function is used
purely as a metric, or measure, of the "distance" between the
transient state (a point on the trajectory) and the stable
equilibrium point. Therefore no restrictions need to be placed
on system modeling. Additional computational tasks are
involved in calculating the trajectory sensitivities. This results
in extra differential-algebraic equations of a multimachine
system. However, one can exploit the structural similarity in
the Jacobian of both the system and sensitivity models.

The paper is organized as follows. System and sensitivity
models for differential-algebraic equations (DAE) are
discussed in section 2. Section 3 shows the method for
estimation of 7, for DAE models using TEF sensitivity.
Section 4 gives an overview of the energy function and its
sensitivities. Section 5 gives results for a test system using the
method discussed in sections 3 and 4. The test system used
here is a 3-machine, 9-bus power system.

II. SYSTEM SENSITIVITY MODELS

In simulating disturbances, switching actions take place at
certain time instants. At these time instants, the algebraic
equations change, resulting in discontinuities of the algebraic
variables. Following [6], the equations can then be written as
a set of differential-algebraic equations of the form

J'C’—'f(x»)’,ﬂ) (])
0o {g“(x, »h)  s(xy.A)<0 "
gtxy.A)  s(xy,A)>0

and a switching occurs when s(x, y,4)=0.

In the above model, x are the dynamic state variables such
as machine angles, velocities, etc.; yare the algebraic
variables such as load bus voltage magnitudes and angles; and
A are the system parameters such as line reactances, generator
mechanical input power, or fault clearing time. Note that the
state variables x are continuous while the algebraic variables
can undergo step changes at switching instants.
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The initial conditions for (1)-(2) are given by

x(to) =xo
y(to) = yo

3
@
where Y, satisfies the equation
8(x0,y0,4)=0 &)

For compactness of notation, the following definitions are
used

With these definitions, (1)-(2) can be written in.a compact
form as

i=f(xy) 0
0={g‘@ »)  s(xy)<0 -
gt xy)  s(xy>0

The initial conditions for (6)-(7) are

®
®

x(to) = x4
y(®)= o
Trajectory sensitivity analysis studies the variations of the

system variables with respect to the small variations in initial
conditions xo and parameters A (or equivalently x ).

Away from discontinuities, the differential-algebraic system
can be written in the form

(10)
an

i=f(xy)
0=g(x,y)

Differentiating (10) and (11) with respect to the initial
conditions x, yields

(12)
(13)

i, =L, Ox, +f Oy,

0=g:(Nx, +8y("yx,

where f o I , 8z and g, are time varying matrices and are
calculated along the system trajectories. X, (t) and y, (¢)are

the trajectory sensitivities.
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Initial conditions for x, are obtained by differentiating (8)
bt ]

with respect to x, as

£, (0)=1 (14)
where I is the identity matrix.
Using (14) and assuming that gy(to) is nonsingular along

the trajectories, initial conditions for y; can be calculated
from (13) as

Yz, (t0) =g, t0)] " gx(%0) 5)

Therefore, the trajectory sensitivities can be obtained by
solving (12) and (13) simultaneously with (10) and (11) using
(8), (9), (14) and (15) as the initial conditions. At the
discontinuity where s(,g, y)=0, the jump condition in the

sensitivity of x and y are computed as discussed in {7].

ML ESTIMATION OF CRITICAL CLEARING TIME
USING TRAJECTORY SENSITIVITIES

In the literature, trajectory sensitivities have been used [8] to
compute the energy margin sensitivity with respect to system
parameters such as interface line flow, system loading. In
these cases, V. depends on the parameters and hence
computation of v, is necessary. This is computationally a
difficult task. On the other hand, if the objective is to only get
an estimate of £, then we can avoid the computation of v, .
Because the energy function Wx) is used as a metric to monitor
the system sensitivity for different ., we can use it to estimate

t., directly as follows. The sensitivity S = v

cl

for two different values of 7., which are chosen to be less than
t... Because the system under consideration is stable, the
sensitivity S will display larger excursions for larger ¢;. Next,
the reciprocal of 77 the maximum deviation of S is computed as
1
max(§)~min(S)
two points (t,,-u ,m) and (tdz,nz). The estimated critical
clearing time .., is the intersection of the constructed
straight line with the time-axis in the (t,,7)-plane as shown
in Fig. 1

The energy function used in this paper is for the structure-
preserving model with classical machine representation and

nonlinear load representation which is discussed in the next
section.

is computed

n= . A straight line is constructed from the
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Fig. 1: Estimate of 1.,

IV. SYSTEM MODEL, ENERGY FUNCTION
AND SENSITIVITY

In the rigorous justification of the structure-preserving
energy function, all synchronous machines are assumed as

1 , 1 Ny,
@y =—— ) Mo, and &g =—— Y M0
MT g ' g, MT ; g‘

In this paper the COA is chosen as reference. Therefore, the
rotor angles and bus phase angles referred to the COA are

9, =5‘ "60 i=1,..., n (18)
By defining
By, =g — o i=l...m (19)

The power system can be represented by the DAE model as

Ongss =@y, i=l.am (20)

n
X ) M;
M;wg, = PM, - E B,.o+,-_,-V,,0+,-V,- sin (6,,0+i —0,-)--Aﬁ PCOA

=1
classical models, i.e., they are represented by constant voltage i=lo.m
in series with the transient reactance. Loads are assumed to e
have constant real power and voltage dependent reactive 2D
power. Furthermore, assume that reactive power load at the i- & . )
th bus can be expressed in the form Fa, +2 BViv;sin(6: —6;)=0 i=1,...no (22)
j=
a n
CutVi) = Q;_(E] 16y Q4= ByViV;cos®i~6,)=0 i=l...m @3)
{3
V,"S j=
where Q7 and V,® are the nominal steady state reactive power where
load and voltage magnitude at the i-th bus, and ais the m n
reactive power load index. P, = P, - ¥ B,VV,sin6, —6,)
Let the power system consists of n, buses, with generators < % % M E grey b
attached to mof the buses. Hence there are ny—m load
buses with no generation. The power system is augmented by The corresponding energy function is established as [9]
m fictitious buses representing the generator internal buses.
The total number of buses in the augmented network is . IS L,
therefore n=ny +m. v(@, ’a»V)=Ethwg,
The network is assumed to be lossless, so that all lines are n =l
modeled as series reactances. The bus admittance matrix Yis _ _ps i s
therefore purely imaginary, with elements Y, = jB;, . ;PM’ Groti =0 )+ < Fa, 6: =67)
Let the complex voltage at the i-th bus be the phasor V,Z£4; ) , w0 24)
where &, is the bus phase angle with respect to a ——z-i Ba(V? -V§ )+2—"s';.(vi" -v&%
synchronously rotating reference frame. 1= i=1 aV;
The center of angle (COA) of a m -machine, n,-bus system n-l on
is defined as =Y. Y By(ViV; cos8; —V£V cos 6)
i=l j=i+l
1 m
S =_M_ZM"5"0+" (17) where 6; =6, -6,.
T =t The sensitivity S of the energy function v(x) with respect to
where M. = i M. . Tt follows that clearing time (A =1, ) is obtained by taking partial derivatives
Tt of (24) with respect to #;
0-7803-6420-1/00/$10.00 (c) 2000 IEEE 606
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The partial derivatives of @, ,6 and V with respect to t;

are the sensitivities obtained from (12) and (13).
We now illustrate this technique using a 3-machine test
system.

V. NUMERICAL RESULTS

A 3-machine, 9-bus power system is used to illustrate the
technique [10]. For this system, a self-clearing fault is
simulated at bus 5 and cleared at two different values of 1.
The corresponding values of 77 are computed, and the results

are shown in Fig. 2. The reactive power load index a is
chosen as 2.
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Fig. 2. Estimate f., for fault at bus 5

By using the technique described in sections 3 and 4, the
estimated critical clearing time is ¢, ., = 0.354 s. The actual
critical clearing time obtained by successive simulations is ¢,
= 0.352 s. Sensitivities of the energy function corresponding
to the two values of f; are shown in Fig. 3 and Fig. 4.
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Fig. 3: Sensitivity of the energy function for #;=0.32 s
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Fig. 4: Sensitivity of the energy function for £, =0.335 s

The procedure is repeated for the same system with the fault
at bus 8. The results are shown in Fig. 5. The estimated
critical clearing time is .., = 0.333 s. By successive
simulations the critical clearing time is found to be ¢., = 0.334
s in this case.
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Fig. 5. Estimate f., for fault at bus 8

These examples show that the technique given in sections 3
and 4 gives a good way to estimate the critical clearing time of



faults. A similar process can be used to estimate the critucal
value of any parameter.

VI. CONCLUSIONS

In this paper, a direct technique to compute the critical
clearing time for faults in power systems is proposed. The
numerical results on a 3-machine, 9-bus system have shown
that the technique gives fairly accurate results. We have
extended the technique to larger systems and the results are
encouraging. The procedure presented in this paper can be
adapted to provide the critical value of any parameter.
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