
Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, 
Ann Arbor, MI 48109, USA. Email: hiskens@umich.edu. 

 

 
XI SEPOPE 

17 a 20 de Março 2009 
March – 17th to 20th – 2009 

BELÉM (PA) - BRASIL 

 
XI SIMPÓSIO DE ESPECIALISTAS EM PLANEJAMENTO DA 

OPERAÇÃO E EXPANSÃO ELÉTRICA 
 

XI SYMPOSIUM OF SPECIALISTS IN ELECTRIC OPERATIONAL 
AND EXPANSION PLANNING 

 
 

 
Uncertainty Evaluation and Mitigation in 

Electrical Power Systems 
 

I.A. Hiskens 

University of Michigan 

B.C. Lesieutre 

University of Wisconsin-
Madison 

S. Roy 

Washington State 
University 

 

SUMMARY 

Planning and operation of electrical power networks involves extensive simulation-based evaluation of 
system behavior, in order to determine operating limits that are robust to credible contingencies.  The 
resulting decisions have tremendous economic and reliability implications.  It is well known, however, 
that the parameters of many dynamic models are quite uncertain.  Load model parameters, in particular, 
are often a source of appreciable error. 

Load parameter uncertainty can be reduced by structuring models so that they adequately capture the 
load’s physical characteristics. A further reduction in uncertainty can often be achieved by estimating 
parameter values from disturbance measurements. It is common for parameter estimation algorithms to be 
based on a nonlinear least-squares formulation that seeks to minimize discrepancies between 
measurements and simulation. Reliable estimates can only be attained for identifiable parameters. 
Identifiability may be assessed using a subset selection algorithm that considers the conditioning of a 
matrix built from trajectory sensitivities. There are two causes for parameter ill-conditioning (non-
identifiability), 1) the parameter has negligible influence on system behavior, and 2) the influences exerted 
by various parameters are closely coupled. This second situation, where parameters are influential yet they 
cannot be estimated, is particularly troubling. 

A number of approaches are available for assessing and reducing the impact of uncertainty. Trajectory 
sensitivities can be used to form approximate trajectories for parameter sets that are perturbations from the 
nominal parameter values. The influence of parameter uncertainty can then be expressed as a bound that is 
mapped along with the nominal trajectory. The Probabilistic Collocation Method (PCM) uses Gaussian 
quadrature concepts to select appropriate points from the set of uncertain parameters, in order to 
approximate the mapping between parameters and an output of the simulation. Such outputs can take 
many forms, including the maximum voltage dip or proximity to protection operation. Grazing concepts 
can be used to determine the smallest changes in parameters that would cause an event such as protection 
operation. Such information provides another mechanism for assessing whether system behavior is robust 
to uncertainty in parameters. 
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1 Introduction

Analysis of power system dynamic behavior requires models that capture the phenomena of
interest, together with parameter values that ensure those models adequately replicate real-
ity. It is important to distinguish between model fidelity and parameter accuracy. Models
are always an approximation. In many cases, the level of approximation is determined by the
nature of the study. For example, phasor-based models that are used for dynamic security
assessment ignore electromagnetic transient phenomena. In other cases, however, model ap-
proximation is a matter of convenience, with the outcome not necessarily providing a good
reflection of reality. Load modeling provides an example. It is common for the aggregate
behavior of loads to be represented by a voltage dependent model, such as the ZIP model.
This is a gross approximation, given the complex composition of loads on most distribution
feeders. This deficiency is particularly evident in distribution systems that supply a signif-
icant motor load, as the ZIP model cannot capture the delayed voltage recovery associated
with induction motors re-accelerating or stalling.

The choice of models is a decision that should be made based on knowledge of the actual
system composition and the phenomena that are being studied. Determining parameters
for those models, on the other hand, usually relies on comparison of model response with
actual measured behavior. Parameter estimation processes seek to minimize the difference
between measured and simulated behavior. Different choices for model structure will usually
result in different parameter values. This is a consequence of the estimation process trying to
compensate for unmodeled, or poorly modeled, effects. In all cases, the models and associated
parameter sets are approximations, though the goal should always be to obtain the best
possible approximations.

Load models are further complicated by the fact that load composition is continually
changing. Even if it were possible to obtain a load model that was perfectly accurate at a
particular time, it would be inaccurate a short while later. Developing load models is not
a futile exercise though, as overall load composition tends to behave fairly predictably. For
example, the composition of a residential feeder will (approximately) follow a 24 hour cycle.
But, while composition from one day to the next may be roughly equivalent, morning load
conditions may well differ greatly from those in the evening. Seasonal variations may be even
more pronounced.

As mentioned previously, all models are approximate to some extent. Model structures
for large dominant components, such as synchronous generators, are well established, as
are procedures for determining the associated parameter values. Furthermore, parameter
values for such devices remain fairly constant over their lifetime. Models that represent
an aggregation of many distributed components are much more contentious though, given
the inherent uncertainty in the overall composition of the model. This paper focuses on
uncertainty associated with load modeling. Similar issues arise in the modeling of other power
system components though, with wind generation being a particularly topical example.

2 Sources of Uncertainty

Loads form the major source of uncertainty in power system modeling. Loads are highly dis-
tributed, and quite variable, so detailed modeling is impossible. Aggregation provides the only
practical approach to incorporating loads into power system studies. For static (power flow)



analysis, the approximations inherent in aggregate load models are largely unimportant, as
the composition of the load has little impact on results. On the other hand, load composition
is very important in the analysis of system dynamic behavior. Different types of loads exhibit
quite diverse responses to disturbances. For example, lighting loads vary statically (almost)
with voltage, whereas motor loads exhibit dynamic behavior, perhaps even stalling. In fact,
each different load type displays unique characteristics. Aggregate load models attempt to
blend all those differing responses.

In many cases aggregate load models are required to represent loads that are widely
distributed, physically and electrically. Because of this electrical separation, the voltages
seen by loads may differ greatly. Such voltage differences may critically affect the response of
loads to large disturbances, resulting in diverse load behavior. It is difficult for aggregate load
models to capture such diversity. At best, those topological influences can only be crudely
approximated.

Accounting for switching-type behavior in aggregate load models is also challenging. When
residential air-conditioning compressor motors experience a voltage dip to around 0.6 pu,
they almost instantaneously stall. This can be modeled as a mode switch, from running to
stalled. As mentioned previously, voltage is usually not uniform across a distribution system.
Therefore voltage dips may result in some compressor motors stalling and others not. As
motors stall, the resulting high currents will further depress voltages, possibly inducing further
stalling. The proportion of stalled motors will depend nonlinearly and temporally on many
factors, including the severity of the initiating voltage dip, and the strength and topology of
the distribution system. These attributes are difficult to capture, with any degree of certainty,
in aggregate load models.

Other devices may also switch under disturbed voltage conditions. Contactors provide
an example. They use an electromechanical solenoid to hold a switch in the closed position.
When a disturbance depresses the voltage, the solenoid may not be able to hold the switch
closed, resulting in unintended tripping of the associated load. The voltage threshold at which
such action occurs varies widely. Precise modeling is not possible.

Looking to the future, a number of trends are likely to increase the level of uncertainty
associated with aggregate load models. Distribution systems will see a greater penetration of
distributed generation as fuel cells and solar cells, for example, become commercially viable.
Plug-hybrid electric vehicles (PHEVs) will certainly gain in popularity, and may well become
a significant feature of distribution systems. Not only do PHEVs present a load that moves
from one location to another, but their vehicle-to-grid capability offers the possibility of
highly dispersed generation. All these trends suggest that methods for assessing the impact
of uncertainty are set to become increasingly important.

3 Reducing Uncertainty

3.1 Model structure

Load parameter uncertainty can be reduced by structuring models so that they adequately
capture the physical characteristics of the actual loads. A ZIP model, for example, provides
a poor representation of loads that include a significant proportion of air-conditioner motors.
Attempting to replicate motor-induced delayed voltage recovery using such a model is futile.
Tuning the ZIP parameters to best match one disturbance would provide no guarantee that
the parameters were appropriate for another event. The WECC model of Figure 1, on the
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Figure 1: WECC load model structure.

other hand, provides a versatile structure that is capable of representing various different
load types. The issue with this latter model is one of identifying the multitude of parameters
associated with the more complete model structure.

3.2 Parameter estimation

It is often possible to estimate parameter values from disturbance measurements. For example,
simply measuring the active and reactive power consumed by a load during a disturbance
may yield sufficient information to accurately estimate several model parameters. The aim of
parameter estimation is to determine parameter values that achieve the closest match between
the measured samples and the model trajectory.

Disturbance measurements are obtained from data acquisition systems that record sam-
pled system quantities. Let a measurement of interest be given by the sequence of sam-
ples m = [m0 m1 ... mN ], with the corresponding simulated trajectory being given by
x = [x(t0) x(t1) ... x(tN )]. The mismatch between the measurement and its correspond-
ing (discretized) model trajectory can be written in vector form as e(θ) = x(θ) −m, where
a slight abuse of notation has been used to show the dependence of the trajectory on the
parameters θ.

The best match between model and measurement is obtained by varying the parameters
so as to minimize the error vector e(θ). It is common for the size of the error vector to be
expressed in terms of the 2-norm cost,

C(θ) = ‖e(θ)‖2
2 =

N∑

k=0

ek(θ)2. (1)

The desired parameter estimate is then given by minimizing C(θ). This nonlinear least squares
problem can be solved using a Gauss-Newton iterative procedure [1]. At each iteration j of
this procedure, the parameter values are updated according to

Φ(θj)T Φ(θj)∆θj+1 = −Φ(θj)T e(θj)T (2)

θj+1 = θj + αj+1∆θj+1 (3)

where Φ is constructed from trajectory sensitivities [2], and αj+1 is a suitable scalar step [3].



An estimate of θ which (locally) minimizes the cost function C(θ) is obtained when ∆θj+1

is close to zero. Note that this procedure will only locate local minima though, as it is based
on a first-order approximation of e(θ). However if the initial guess for θ is good, which is
generally possible using engineering judgement, then a local minimum is usually sufficient.

3.3 Parameter conditioning

The information content of a measured trajectory determines which parameters may be esti-
mated. Parameters that have a significant effect on the trajectory are generally identifiable.
Conversely, parameters that have little effect on trajectory shape are usually not identifiable.
This information is captured in the trajectory sensitivities Φ.

When developing a parameter estimation algorithm, it is necessary to separate identifi-
able parameters from those that are not, in order to avoid spurious results. This can be
achieved using a subset selection algorithm [4, 5]. This algorithm considers the conditioning
of the matrix ΦT Φ that appears in (2). If it is well conditioned, then its inverse will be well
defined, allowing (2) to be reliably solved for ∆θj+1. On the other hand, ill-conditioning of
ΦT Φ introduces numerical difficulties in solving for ∆θj+1, with the Gauss-Newton process
becoming unreliable.

The subset selection algorithm considers the eigenvalues of ΦT Φ (which are the square of
the singular values of Φ.) Small eigenvalues are indicative of ill-conditioning. The algorithm
separates parameters into those associated with large eigenvalues (identifiable parameters)
and the rest which cannot be identified. The latter parameters are subsequently fixed at their
original values.

In summary, two situations lead to parameter ill-conditioning (non-identifiability). The
first is where the trajectory sensitivities, corresponding to available disturbance measure-
ments, are small relative to other sensitivities. This group of parameters cannot be estimated
from available measurements. That may not be particularly troublesome though, if this is
the only disturbance of interest, as their influence on behavior is negligible anyway. How-
ever, they may be influential for other disturbances. This should be assessed by considering
a variety of viable disturbance scenarios. The second case arises when the trajectory sensi-
tivities are highly correlated. Consequently, the influence of numerous parameters cannot be
separated. This would be the situation, for example, when varying two parameters in uni-
son gave no overall change in behavior. Both parameters are influential, but neither can be
estimated without fixing the other. This dilemma may be resolvable by considering various
disturbances, in the hope of finding cases where the parameters exert differing influences.

4 Approaches to assessing and reducing the impact of uncer-
tainty

4.1 Trajectory approximation using sensitivities

The dependence of a trajectory on parameter values can be expressed mathematically as the
flow, x(t) = φ(t, θ). By expanding the flow as a Taylor series, and neglecting the higher order
terms, trajectories arising from perturbing parameters by ∆θ can be approximated as

φ(t, θ + ∆θ) ≈ φ(t, θ) + Φ(t, θ)∆θ (4)
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Figure 2: Zone 3 protection operation assessment, worst-case bounds.

where φ(t, θ) is the trajectory obtained using the nominal set of parameters θ, and the corre-
sponding trajectory sensitivities are given by Φ(t, θ). If the perturbations ∆θ are relatively
small, then the approximation (4) is quite accurate. This accuracy is difficult to quantify
though. It is shown in [6] that the higher order terms neglected in (4) become increasingly
significant as the system becomes less stable. Nevertheless, the approximations generated by
(4) are generally quite accurate.

The affine nature of (4) can be exploited to establish two straightforward approaches to
mapping parameter uncertainty through to bounds around the nominal trajectory [6]. The
first approach assumes that each uncertain parameter is uniformly distributed over a specified
range. Multiple uncertain parameters are therefore uniformly distributed over a multidimen-
sional hyperbox. As time progresses, the affine transformation (4) distorts that hyperbox into
a multidimensional parallelotope. A simple algorithm is proposed in [6] for determining the
vertices of the time-varying parallelotope that correspond to worst-case behavior.

An example, based on the IEEE 39 bus system, can be used to illustrate this process.
Parameters describing the load composition were assumed to satisfy a uniform distribution
over a range of ±0.2 around their nominal values. Zone 3 protection on one of the major lines
was considered, with Figure 2 showing the separation1 between the zone 3 mho characteristic
[7] and the apparent impedance seen by the relay. The dashed line in Figure 2 was obtained
using the nominal set of load parameters. It suggests the zone 3 characteristic is not entered.
The sensitivity-derived worst-case bounds on behavior are shown as solid lines, and the true
(simulated) bounds are shown as dash-dot lines. The sensitivity-based predictions are very
accurate over this crucial time period. Every selection of uncertain load parameters results
in a trajectory that lies within the bounds shown in Figure 2. Notice that the lower bound
passes below zero, indicating the possibility of a zone 3 trip.

Often parameter values are not uniformly distributed over the range of uncertainty, but are
better described by a normal distribution. Under those conditions, worst-case analysis gives

1This distance goes negative when the apparent impedance enters the mho characteristic.
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Figure 3: Zone 3 protection operation assessment, 95% confidence interval bounds.

a conservative view of parametric influences. Less conservatism is achieved with probabilistic
assessment.

A probabilistic approach to assessing the influence of uncertainty assumes θ is a random
vector with mean µ and covariance matrix Σ. It follows that deviations ∆θ = θ − µ have
zero mean and covariance Σ. The nominal flow and corresponding trajectory sensitivities are
generated with parameters set to µ. From (4), perturbations in the trajectory at time t are
given (approximately) by ∆x(t) = Φ(t, θ)∆θ. It follows from basic statistical properties [8]
that perturbations in state i will have mean and variance

E[∆xi(t)] = Φi(t, θ) E[∆θ] = 0 (5)

Var[∆xi(t)] = Φi(t, θ)Σ Φi(t, θ)T . (6)

Furthermore, if the elements of random vector ∆θ are statistically independent, then Σ will
be diagonal with elements σ2

1 ... σ2
n. In this case, (6) reduces to

Var[∆xi(t)] =
n∑

j=1

Φij(t, θ)2 σ2
j . (7)

Referring back to the earlier example, the load composition parameters were assumed
normally distributed, with mean µ = 0.5 and variance σ2 = 0.01. Equation (7) was used to
determine the variance of the zone 3 protection signal at each time step along the trajectory.
The bounds shown by solid lines in Figure 3 were constructed from points that are±1.96 times
the standard deviation away from the nominal trajectory. The choice of 1.96 corresponds to
the 95% confidence interval.

4.2 Probabilistic collocation method

The probabilistic collocation method (PCM) provides a computationally efficient approach
to building an approximate relationship between random variables and outputs that depend



upon those variables. In assessing the impact of parameter uncertainty, it is assumed that the
parameters of interest satisfy given probability density functions f(λ). The desired outputs
are obtained by running a simulation for each randomly chosen set of parameters. Any feature
of the trajectory could be chosen as an output, for example the values of states at certain
times, and/or the maximum voltage dip.

This section provides an overview of PCM. More complete details are presented in [9].
In order to simplify notation, the discussion will assume a single uncertain parameter. The
ideas extend to larger numbers of parameters, though with increased computations.

For a given probability density function f(λ), a set of orthonormal polynomials hi(λ) can
be determined. The subscript i refers to the order of the polynomial, and orthogonality is
defined in terms of the inner product

< hi(λ), hj(λ) > =
∫

f(λ)hi(λ)hj(λ)dλ.

Underlying PCM is the assumption that the uncertain parameter λ and the output of
interest are related by a polynomial g(λ) of order 2n− 1. This is generally not strictly true,
though such polynomial approximation is not unusual. Given this “true” relationship g(λ)
between parameter and output, PCM determines a lower order polynomial ĝ(λ) such that the
mean value for ĝ(λ) coincides with that of g(λ),

E[ĝ(λ)] = E[g(λ)].

If g(λ) is of order 2n − 1, then ĝ(λ) has order n − 1, and can be written in terms of the
orthonormal polynomials hi(λ) as

ĝ(λ) = g0h0(λ) + g1h1(λ) + ... + gn−1hn−1(λ). (8)

The coefficients g0, ..., gn−1 are obtained by solving



g(λ1)
...

g(λn)


 =




hn−1(λ1) · · · h0(λ1)
...

. . .
...

hn−1(λn) · · · h0(λn)







gn−1
...
g0


 (9)

where the λi are the roots of hn(λ).
In summary, for a given probability density function f(λ) for the uncertain parameter,

PCM requires the following computations. The set of orthonormal polynomials h0, ..., hn,
corresponding to the given f(λ), can be obtained using a straightforward recursive algorithm
[10]. The roots of hn(λ) provide the values λ1, ..., λn which are used in simulations to obtain
the output values g(λ1), ..., g(λn). Also, h0, ..., hn−1 are evaluated at λ1, ..., λn to establish
the matrix in (9), which is subsequently inverted to obtain the coefficients g0, ..., gn−1. These
coefficients are used in (8) to give the desired lower-order approximation ĝ(λ).

4.3 Grazing analysis

Many power system disturbances escalate through events such as operation of protection
devices. In order to assess vulnerability to events, triggering conditions such as protection
operating characteristics can be conceptualized as hypersurfaces in state space. A trajectory
that passes close by a hypersurface, but does not encounter it, will not initiate an event.
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On the other hand, if the trajectory does encounter the hypersurface, an event will occur,
possibly with detrimental consequences.

Trajectories φ(t, θ) are parameter dependent. For a certain set of parameters, the trajec-
tory may miss the event triggering hypersurface. The hypersurface may be encountered for
a different set of parameters though. These two situations are separated by trajectories that
only just touch the hypersurface. This is illustrated in Figure 4. The critical condition, which
separates two different forms of behavior, is referred to as grazing [11].

It is shown in [11] that grazing conditions establish a set of algebraic equations that can be
solved using a Newton process. Each iteration of the Newton algorithm requires simulation
to obtain the trajectory and associated sensitivities. Such solution processes are known as
shooting methods [12]. Full details for grazing applications can be found in [11, 13].

Referring to the example illustrated in Figures 2 and 3, grazing analysis can be used
to determine the smallest changes in load-composition parameters that cause the apparent
impedance trajectory to just touch the mho characteristic. Such information provides another
mechanism for assessing whether system behavior is robust to uncertainty in parameters.

Figure 5 provides a parameter-space view of grazing conditions. The line is composed
of three sets of parameters, each of which results in grazing. Further grazing points could
be found, using a continuation process, to establish a smoother line in parameter space.
Proximity to that line would suggest vulnerability to grazing, and hence to event triggering.
This is illustrated in Figure 5. The point corresponding to the nominal parameter values is
shown, together with a dashed line that indicates uncertainty of ±0.15. The region describing
parameter uncertainty overlaps the line of grazing points. This suggests a finite probability
that the mho characteristic will be encountered, and hence that protection will operate.

This grazing-based approach to assessing robustness to uncertainty can be extended to
an arbitrary number of parameters. The information derived from such analysis is useful for
exploring the relative impact of uncertainty in the different parameters. For example, it may
show that a small variation in one of the parameters may induce grazing, whereas a much
larger variation could be tolerated in a different parameter. These concepts are explored in
[13] in the context of power electronic circuits. Adaptation to power system applications is
conceptually straightforward, though has not yet been undertaken.
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5 Conclusions

All models are an approximation, to some extent. Uncertainty in model-based analysis is
therefore unavoidable. Model design should take into account the nature of the phenomena
under investigation, with well designed models minimizing the impact of unmodeled effects
and of uncertainty. In power systems, the major source of uncertainty arises from the modeling
of loads. Accurate modeling is particularly challenging due to the continual variation in load
composition.

Trajectory sensitivities provide a numerically tractable approach to assessing the impact
of uncertainty in parameters. Such sensitivities describe the variation in the trajectory re-
sulting from perturbations in parameters. Small sensitivities indicate that uncertainty in the
respective parameters has negligible impact on behavior. Large sensitivities, on the other
hand, suggest that the respective parameters exert a measurable influence on behavior. It is
important to minimize the uncertainty in the latter group of parameters. This can be achieved
by estimating parameter values from measurements of system disturbances. The parameter
estimation process seeks to minimize the difference between measured behavior and simulated
response. This difference can be formulated as a nonlinear least squares problem, with the
solution obtained via a Gauss-Newton process. Trajectory sensitivities provide the gradient
information that underlies that process.

The impact of uncertain parameters is generally not significant for systems that are un-
stressed. As the stability margin reduces, however, system behavior becomes much more
sensitive to parameter perturbations. It is particularly important to consider cases that are
on the verge of protection operation. In such cases, uncertainty may make the difference
between protection operating or remaining inactive, with the consequences being vastly dif-
ferent.

Various numerical techniques are available for assessing the impact of parameter uncer-
tainty. Trajectory sensitivities can be used to generate approximate trajectories, which in



turn allow parameter uncertainty to be mapped to a bound around the nominal trajectory.
The probabilistic collocation method can be used to determine (approximately) the statistical
distribution associated with important features of a trajectory. This method can also be used
to establish an uncertainty bound around the nominal trajectory. The likelihood that uncer-
tain parameters may induce undesirable events, such as reactionary protection operation, can
be assessed using techniques that build on grazing concepts.
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