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Generalized Line Loss Relaxation
in Polar Voltage Coordinates

Jonathon A. Martin, Student Member, IEEE Ian A. Hiskens, Fellow, IEEE

Abstract—It is common for power system behavior to be
expressed in terms of polar voltage coordinates. When applied
in optimization settings, loss formulations in polar voltage coor-
dinates typically assume that voltage magnitudes are fixed. In
reality, voltage magnitudes vary and may have an appreciable
effect on losses. This paper proposes a systematic approach
to incorporating the effects of voltage magnitude changes into
a linear relaxation of the losses on a transmission line. This
approach affords greater accuracy when describing losses around
a base voltage condition as compared to previous linear and
piecewise linear methods. It also better captures the true behavior
of losses at conditions away from the flat voltage profile.

Index Terms—Piecewise-linear loss models; polar voltage rep-
resentation.

I. INTRODUCTION

CALCULATION of power system losses is a basic re-
quirement of many optimal power flow and power system

control formulations. However, the nonlinear nature of losses
is often difficult to capture within the modelling restrictions
imposed by the problem structure. Early loss formulations
considered system-wide losses, and directly related total losses
to power injections through constant network parameters.
This became known as the B-coefficient method [1]–[3].
A subsequent method relating system-wide losses to power
injections was described in terms of network impedances and
voltage angles [4]. Since that time, various methods have been
proposed which expand upon those early formulations and
describe total losses in terms of power injections using linear
[5]–[7] and quadratic [8], [9] formulations.

Alternatively, losses may be computed on a line-by-line
basis. This paper considers such formulations, where the losses
on each line are expressed in terms of its end-bus voltages.
The coordinate system used to describe network voltages
determines the properties of such loss models. In rectangular
voltage coordinates, the losses on a transmission line are given
by a quadratic function and can be described using a cone
constraint [10]. In polar voltage coordinates, transmission line
losses are quadratic in terms of voltage magnitudes but include
a cosine term capturing the effect of the angle difference across
the line. Since voltage magnitudes typically remain close to
1 pu during normal operation, methods describing losses as
a quadratic in the angle difference have gained popularity
over recent years. Depending on the problem formulation
this behavior can be represented using conic [11], [12] or
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piecewise-linear [13], [14] constraints. The piecewise-linear
approximation given in [15] similarly assumes that voltage
magnitudes are close to unity to approximate current flow with
active power flow. The squared power flow is then used to
compute active power losses on a line.

The assumption that voltage magnitudes remain at 1 pu is
convenient when detailed voltage information is not available.
For example, this may be the only option if a linear dc
power flow formulation is used. However, in situations where
voltage magnitudes are available, including their effects on
losses will improve the accuracy of the loss calculation. Under
heavy loading conditions or in weak sections of a network,
voltage magnitudes may vary significantly. In such cases,
inclusion of voltage magnitude effects becomes vital. First-
order [16] or second-order [17] Taylor-series expansions are
commonly used to express the loss behavior in this higher
dimensional space. Unfortunately, first-order approximations
suffer large errors, as discussed in [17], since they do not
capture the nonlinearity of the loss function and second-order
approximations require quadratic representations.

This paper develops a relaxation method which captures
the nonlinearity of transmission line losses when voltages
are expressed in polar coordinates. It will be shown that an
appropriately chosen set of linear inequality constraints can
provide a convex relaxation that (locally) achieves an accurate
description of transmission line losses. Given the nonconvexity
of losses when voltages are expressed in polar form, care must
be taken when formulating the linear inequality constraints so
that accuracy is preserved.

The paper is organized as follows. Section II describes the
requirements of the proposed loss formulation. Section III
discusses the necessary characteristics of an accurate linear
relaxation. Convexity of the loss function is considered in
Section IV and a linear relaxation is presented. Section V
discusses trends in the eigendecomposition of the loss func-
tion Hessian, while Section VI describes special cases when
voltage magnitudes are fixed. Section VII compares the perfor-
mance of the proposed method to the present state-of-the-art
linear relaxation methods. Section VIII concludes the paper.

II. FORMULATION REQUIREMENTS

The proposed loss modelling approach is motivated by ap-
plications where the following requirements must be satisfied:

1) applicable within a linear constraint environment,
2) voltages are expressed in polar form (magnitudes and

angles),
3) tight around a given base voltage condition,
4) describe losses for a specific line.
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None of the loss modelling approaches listed in Section I meet
this specification except the first-order Taylor-series expansion,
but it fails to adequately capture the nonlinear behavior of the
loss equation.

Since transmission line losses are nonlinear in terms of
voltage magnitudes and angles, the first requirement necessi-
tates the use of a relaxation underbounding the true nonlinear
relationship. This condition also eliminates the use of quadratic
constraint formulations. The second requirement excludes
methods which only account for voltage angle differences but
ignore the effects of voltage magnitude changes. The third
requirement assumes the availability of a base voltage profile.
The fourth requirement rules out methods that only compute
total system losses.

The approach developed in Section IV meets all four
requirements and affords greater accuracy than a simple lin-
earization. Given base voltages (in polar coordinates) for the
end buses of a transmission line, the first step is to linearize the
loss equation at that voltage condition. The second step is to
choose several nearby sets of end-bus voltages and linearize
the loss equation at each of those additional voltage condi-
tions. Each of the linearizations is relaxed into an inequality
constraint and together they provide an underbound for the
loss function. The process for selecting the additional sets of
voltages is discussed in the following sections.

III. FORMING A SET OF LINEAR RELAXATIONS

The main objective in forming a relaxation using a set of
linear inequalities is to approximate a nonlinear constraint
while using a linear solver. The linear approximation must
provide a balance between simplicity and accuracy.

A. Simplicity

Every constraint added to a set of linear inequalities in-
creases the associated computation. Building a large set of
linear inequalities to approximate a nonlinear function may
achieve high accuracy but will increase solution time. The
improvement in accuracy may not justify the increased compu-
tational complexity. Fewer constraints which are well selected
may achieve similar accuracy while maintaining simplicity.
Furthermore, linear inequality constraints that are not located
in a relevant region of the solution space, and so are never
binding, should be avoided. They add to the computational
cost but contribute nothing to solution quality.

B. Tightness

Consider a set of linear inequalities that is obtained by
linearizing a nonlinear function at a number of points. Each
linear constraint provides the most accurate estimate of the
nonlinear function around its linearization point, and therefore
should be binding in the vicinity of that point. For example,
assume that linear inequalities are generated at the points,
xi, i = 1, ..., n, and form an approximation which seeks to
underbound a nonlinear function f . The resulting piecewise
linear approximation of f returns the value,

fapp(x) = max
i∈{1,...,n}

{
f(xi) +

∂f

∂x
(xi)(x− xi)

}
. (1)

f(x
)

xi xj

(a) Linear relaxation of a convex function.

f(x
)

xi xj

(b) Linear relaxation of a concave function.

Fig. 1. A set of linear inequality relaxations underbounds a convex function
but not a concave function.

If the i-th constraint is binding then at the point xi, (1)
becomes fapp(xi) = f(xi) which describes the best possible
underbound of the true nonlinear function. This situation is
illustrated in Fig. 1a. However, if the linearization around the
point xi is not the binding constraint then,

fapp(xi) = f(xj) +
∂f

∂x
(xj)(xi − xj) > f(xi), (2)

for some j 6= i. This can occur if the function is nonconvex
between xi and xj , with Fig. 1b providing an illustration.
Examining the second-order Taylor-series expansion around
xj with ∆x = xi − xj offers further insight,

f(xi) = f(xj)+
∂f

∂x
(xj)∆x+ 1

2∆xᵀ
∂2f

∂x2
(xj)∆x+h.o.t. (3)

The error in the approximation, fapp(xi) − f(xi) > 0, will
occur when,

1
2∆xᵀ

∂2f

∂x2
(xj)∆x+ h.o.t. < 0. (4)

Assuming that the higher order terms are negligible, the error
will be present when the second-order term in the Taylor-series
expansion around xj is negative along the path between xi and
xj , implying concavity of f between xi and xj . If the function
is convex on this interval then the error will not be present and
the linearization at xi will be tight.

The loss function is convex in some directions and concave
in others when expressed in polar voltage coordinates. The
next section quantifies this claim and discusses the handling
of this nonuniform behavior when building a set of linear
inequalities.
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IV. CONVEXITY OF THE LOSS EQUATION IN POLAR
VOLTAGE COORDINATES

A. Eigenstructure of the Hessian

In polar voltage coordinates, the function describing losses
on a transmission line is an application of the law of cosines,

P lossij = gij |Vi − Vj |2

= gij

(
U2
i + U2

j − 2UiUj cos(δij)
)
, (5)

where P lossij is the active power loss on line i–j, gij is the
series conductance of the line, Vi = Uie

jδi and Vj = Uje
jδj

are the complex voltages at either end of the line, and δij =
δi − δj is the angle difference across the line.

To gain a better understanding of the behavior of the
loss function expressed in (5), a second-order Taylor-series
expansion can be formed by ignoring the higher-order terms
in (3),

P lossij (x+ ∆x) ≈ P lossij (x) +∇xP lossij (x)ᵀ∆x

+ ∆xᵀ
∇2
xxP

loss
ij (x)

2
∆x, (6)

where x ≡ [Ui Uj δij ]
ᵀ. The gradient is given by,

∇xP lossij (x) = 2gij

Ui − Uj cos(δij)
Uj − Ui cos(δij)
UiUj sin(δij)

 , (7)

and the Hessian by,

∇2
xxP

loss
ij (x)=2gij

 1 − cos(δij) Uj sin(δij)
− cos(δij) 1 Ui sin(δij)
Uj sin(δij) Ui sin(δij) UiUj cos(δij)

 .
(8)

Example: For an operating condition with voltage magni-
tudes fixed at 1 pu and a small angle difference of 0.05 rad
the gradient is given by,

∇xP lossij

 1
1

0.05

 = 2gij

0.00125
0.00125
0.04998

 . (9)

This supports the common hypothesis that voltage magnitudes
have limited effect on the loss function since their sensitivities
are close to zero. In contrast, the sensitivity of losses to angle
difference is about 50 times larger.

If the operating condition deviates slightly, however, the
effects of voltage magnitudes become more pronounced.
Consider the case with Ui = 1.02 pu, Uj = 1 pu, and
δij = 0.1 rad, which gives the gradient,

∇xP lossij

1.02
1.00
0.10

 = 2gij

 0.02500
−0.01490
0.10183

 . (10)

The sensitivity of losses to voltage magnitude has increased
greatly, with the sensitivity of losses to the angle difference
now only about 4 to 7 times larger. This suggests that inclusion
of voltage magnitude effects into the loss formulation could
result in nontrivial improvements in the model performance
for conditions away from a flat voltage profile. �

Unfortunately, with the inclusion of voltage magnitudes,
losses can no longer be expressed in a piecewise-linear form
as is done when only angle difference is considered. In
this situation, the formation of a set of linear inequalities
becomes useful. As discussed in Section III, it is desirable
to use a small number of constraints to capture the most
important function characteristics, and to ensure tightness of
the model by selecting linearization points from regions where
the function exhibits convexity.

The (local) convexity/concavity of the loss function (5), in
terms of bus voltage magnitudes and the angle difference,
is given by the eigenvalues of the Hessian (8). If all the
eigenvalues are positive then the function is convex in a region
around the operating point. If there are both positive and
negative eigenvalues then the function is a saddle, exhibiting
convexity in some directions and concavity in others. This
motivates the following theorem.

Theorem 1. The Hessian matrix (8) of the line loss function
(5) has exactly two positive eigenvalues over the region given
by Ui > 0, Uj > 0, δij ∈ [−π2 ,

π
2 ].

Proof. The (scaled) Hessian matrix, H = 1
2gij
∇2
xxP

loss
ij (x),

can be expressed symbolically as,

H =

a b c
b d e
c e f

 . (11)

This matrix is symmetric and may be decomposed into factors
H = LDLᵀ where,

L =

 1 0 0
L21 1 0
L31 L32 1

 , D =

D1 0 0
0 D2 0
0 0 D3

 .
If the factorization exists, the signs of the diagonal elements
of D will match the signs of the eigenvalues of H [18]. The
elements of D can be expressed in terms of the entries in H
as,

D1 = a

D2 = d− b2

a

D3 = f −
(
c2

a
+

(ae− bc)2

a2d− ab2

)
.

Substituting for terms from (8) and simplifying gives,

D1 = 1 (12a)

D2 = sin2(δij) (12b)

D3 = −(U2
i + U2

j + UiUj cos(δij)), for δij 6= 0. (12c)

When δij 6= 0, (12) provides a well-defined decomposition
of H , with D1 and D2 both positive and D3 negative. This
implies that H has two positive eigenvalues and one negative
eigenvalue. When δij = 0, D3 is ill-defined due to a 0

0 term
and the decomposition does not exist. However, in this case
substituting δij = 0 directly into (8) gives,

H =

 1 −1 0
−1 1 0
0 0 UiUj

 ,
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which has eigenvalues 0, 2 and UiUj . Since the voltage magni-
tudes are assumed to be strictly positive, the Hessian will have
two positive eigenvalues and a single zero eigenvalue.

The eigenvalues λ and eigenvectors v of the Hessian matrix
∇2
xxP

loss
ij (x) can be used to establish conditions which ensure

the second-order term of the Taylor-series expansion (6) is
positive,

∆xᵀ∇2
xxP

loss
ij (x)∆x ≥ 0. (13)

Let ∆x be expressed as a linear combination of the eigenvec-
tors,

∆x = av1 + bv2 + cv3.

Then (13) becomes,

(av1 + bv2 + cv3)ᵀ∇2
xxP

loss
ij (x)(av1 + bv2 + cv3) ≥ 0. (14)

Since v1, v2, and v3 are the eigenvectors of ∇2
xxP

loss
ij (x), this

gives,

(av1 + bv2 + cv3)ᵀ(aλ1v1 + bλ2v2 + cλ3v3) ≥ 0. (15)

Because ∇2
xxP

loss
ij (x) is symmetric, the eigenvectors can be

expressed orthonormally so that vᵀi vi = 1 and vᵀi vj = 0 for
i 6= j ∈ {1, 2, 3}. Accordingly, (15) becomes,

a2λ1 + b2λ2 + c2λ3 ≥ 0. (16)

Since one of the eigenvalues is nonpositive while the other
two are positive, equality in (16) describes an elliptic cone
in the eigenbasis coordinates a, b, c. When the inequality is
strictly greater than zero, it describes an elliptic hyperboloid.
Any directions lying outside the cone will cause the second-
order term in (6) to be positive. The centerline of the cone
is given by the eigenvector associated with the negative
eigenvalue. The minor and major axes of the elliptic cross-
section of the cone are defined by the eigenvectors associated
with the positive eigenvalues. The span of the two eigenvectors
associated with the positive eigenvalues defines a plane which
is perpendicular to the centerline of the cone. Figure 2 shows
these surfaces for a typical voltage realization.

B. Loss model

The analysis of the Hessian motivates a loss model which
(approximately) captures the variation in losses as voltages
change from a given base voltage condition. This loss model
comprises the loss linearization at the base voltage condition
together with a set of loss linearizations formed by selecting
neighboring voltage realizations. These neighboring points lie
on the plane defined by the two eigenvectors associated with
the positive eigenvalues. They are very likely to satisfy the
convexity criterion necessary for a tight model as long as
they remain sufficiently close to the original base operating
point. This enables the model to capture the local convex
nonlinearity of losses while largely eliminating the influence
from the concave direction.

If prior knowledge of system behavior is available, the
model can also be tuned to improve its accuracy for the
likely changes. For instance, as shown in Fig. 2, one of the
eigenvectors with a positive eigenvalue points primarily in the
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Fig. 2. Cone and plane defined by the eigen-decomposition of the loss
function Hessian matrix. The second-order term of the Taylor-series expansion
is positive for points outside the elliptic cone. The plane describes the span
of the eigenvectors associated with the two positive eigenvalues.

direction of ∆δij with minimal changes to Ui and Uj . The
other points primarily in the direction +∆Ui, −∆Uj with
minimal changes to δij . If it is known that voltage magnitudes
will not vary significantly, more linearization neighbors can be
biased in the direction of the first eigenvector to better capture
the nonlinearity in that direction.

V. TRENDS IN THE EIGENDECOMPOSITION OF LOSSES

When voltage conditions across the line change, the eigen-
vectors and eigenvalues of the Hessian matrix of the loss func-
tion will also change. For the greatest accuracy, the position
of the neighboring linearization points relative to the base
voltage condition should also be updated by finding the new
eigenvectors of the Hessian. Doing so will ensure that the most
significant nonlinearity of the function is captured by the loss
model. However, if computational limits require more rapid
implementation of loss model updates, the eigenvectors need
not be recomputed for small changes in voltage conditions.

A. Consistency in eigenvector orientation

Over the range of typical power system voltages, Ui, Uj ∈
[0.9, 1.1] pu and |δij | ∈ [0, π/6] rad, the orientation of the
eigenvectors of the loss Hessian remain relatively constant.
Figure 3 shows the three eigenvectors over the set of voltages,
Ui, Uj ∈ {0.9, 1, 1.1}, |δij | ∈ {0, π/60, π/30, . . . , π/6}. The
eigenvector v3 associated with the larger positive eigenvalue
is identified by black squares. It remains almost unchanged
in the direction [∆Ui ∆Uj ∆δij ] = [− 1√

2
1√
2

0]. As the
angle difference across the line increases in magnitude, the
other two eigenvectors rotate slightly around v3. Changes in
voltage magnitude have negligible effect on the orientation of
the eigenvectors. When |δij | ≈ 0, the eigenvector v2 with the
smaller positive eigenvalue, identified by blue circles, points
in the general direction [∆Ui ∆Uj ∆δij ] = [0 0 1], and
the eigenvector v1 with the negative eigenvalue, indicated by
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Fig. 3. Eigenvectors of the loss Hessian for typical network voltages,
Ui, Uj ∈ {0.9, 1, 1.1}, |δij | ∈ {0, π/60, π/30, . . . , π/6}. Eigenvectors
are ordered by sorting the eigenvalues from negative to positive.

red triangles, points in the direction [∆Ui ∆Uj ∆δij ] =
[ 1√

2
1√
2

0].
Based on these observations, the eigenvectors of the loss

Hessian may not need to be updated when changes in the
angle difference across the line are less than 10 degrees.
Using the previous eigenvectors to define the directions of
the neighboring linearizations will still adequately capture the
nonlinearity of the new loss condition and will save time in
the computation of the updated loss model.

B. Eigenvalue magnitudes

Over typical operating voltages, the eigenvalues of the
loss Hessian change in a predictable manner. Both positive
eigenvalues are significantly larger in magnitude than the
negative eigenvalue. Figure 4 shows the eigenvalues of the
scaled loss Hessian, 1

2gij
∇2
xxP

loss
ij (x), over the set of voltages,

Ui, Uj ∈ {0.9, 1, 1.1}, |δij | ∈ {0, π/60, π/30, . . . , π/6}. The
larger positive eigenvalue, λ3 in Fig. 4, remains relatively con-
stant over all typical voltage conditions. The smaller positive
eigenvalue, λ2, increases as voltage magnitudes increase while
the negative eigenvalue, λ1, remains mostly unchanged. When
the angle difference across the line increases in magnitude,
λ1 decreases (becomes more negative) while λ2 increases at
almost the same rate. For small angle differences, the negative
eigenvalue is approximately zero.

Although the proposed loss model does not include addi-
tional linearization neighbors in the direction of the eigenvec-
tor associated with the negative eigenvalue, the loss function
exhibits very little nonlinearity in this direction. The negative
eigenvalue, λ1, is much smaller in magnitude than the two
positive eigenvalues. This means that the linearization at the
base voltage condition will sufficiently describe the behavior
of the loss function in this direction and any overestimation
of losses will be slight.

−0.3
−0.2

−0.1
0

0.9

1

1.1

1.2

1.3
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1.9

1.95
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λ1

λ2

λ 3
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Fig. 4. Eigenvalues of the scaled loss Hessian, 1
2gij
∇2

xxP
loss
ij (x),

for typical network voltages, Ui, Uj ∈ {0.9, 1, 1.1}, |δij | ∈
{0, π/60, π/30, . . . , π/6}. Eigenvalues are ordered by sorting from negative
to positive.

VI. APPLICATION TO LOWER DIMENSIONAL MODELS

A. Fixing one bus voltage magnitude

The model discussed in Section IV assumes that both the
voltage magnitudes and the angle difference between them are
allowed to vary. However, the presence of buses with fixed
voltage magnitudes, such as generator buses, may mean that
one or more of the voltage magnitudes in the line loss model
remain constant. The effect of this modification is reflected in
the eigenvalues of the Hessian in the resulting two-dimensional
space.

Removing the row and column from (8) associated with
a fixed voltage magnitude Ufix ∈ {Ui, Uj} results in the
Hessian matrix,

∇2
xxP

loss
ij (x) = 2gij

[
1 Ufix sin(δij)

Ufix sin(δij) UfreeUfix cos(δij)

]
,

(17)
where x ≡ [Ufree δij ]

ᵀ. This matrix will always have at
least one positive eigenvalue due to the ‘1’ on the main
diagonal and will be positive definite within the operating
range 0.5 ≤ Ui, Uj ≤ 1.5 pu, |δij | ≤ π

6 rad. If the voltage
magnitudes are closer to one, the angle difference criterion
relaxes to about π

4 rad. The positive definite characteristic of
the Hessian means that any direction can be used to establish
neighboring linearizations for the line-loss relaxation.

B. Fixing both bus voltage magnitudes

When both bus voltage magnitudes are fixed and only the
angle difference across the line is allowed to vary, the Hessian
matrix reduces to a single term,

∇2
xxP

loss
ij (δij) = 2gijUiUj cos(δij). (18)

This term is positive in the operating region 0 < Ui, Uj and
|δij | < π

2 rad. The resulting model in this situation is very
similar to a typical piecewise-linear approximation except that
it provides a better loss estimate around the specified base
voltage condition by utilizing the true voltage magnitudes
instead of assuming they are fixed at 1 pu.
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VII. DEMONSTRATION

A. Modelling process

The steps required to set up the proposed loss model for a
single transmission line are outlined as follows:

1) Find the eigenvalues and eigenvectors of the Hessian
matrix of the loss function, ∇2

xxP
loss
ij (x0), for the base

voltage condition.
2) Select neighboring voltage realizations, x1, . . . , xn,

within a relatively small ball on the plane spanned by the
eigenvectors associated with the two positive eigenvalues
of the Hessian matrix.

3) Define the linear inequality,

P loss,appij (x) ≥ P lossij (xk) +∇xP lossij (xk)ᵀ(x− xk),

for the loss equation at each point xk ∈ {x0, x1, . . . , xn}
using (5) and (7). The complete loss model can then be
expressed as,

P loss,genij (x) = max
{

0,

max
k∈{0,...,n}

{
P lossij (xk) +∇xP lossij (xk)ᵀ(x− xk)

}}
,

(19)

where the outer ‘max’ ensures that the loss model cannot
return a negative value. The superscript ‘gen’ identifies
this as the generalized model, which will be referred to
in later discussions as AC-GEN.

4) Confirm that each inequality is the binding constraint
at its own linearization point, i.e. P loss,appij (xk) =

P lossij (xk) for each k = 0, ..., n. Discard any constraints
which do not satisfy this criterion.

If the neighboring voltage realizations conditions are selected
well by remaining relatively close to the base voltage condi-
tion, step 4) should rarely discard any constraints.

This process can be tuned to improve performance when
specific voltage changes are likely or more significant. For
instance, in networks where voltage magnitudes change little,
linearization neighbors can be biased in the direction of the
eigenvector which emphasizes changes in angle difference.

B. Case-study description

The performance of the proposed approach (AC-GEN) is
compared against two common linear loss models. The first
is a simple first-order Taylor-series expansion of the line
loss equation (5) in terms of voltage magnitudes and angle
difference,

P loss,linij (x) = P lossij (x0) +∇xP lossij (x0)ᵀ(x− x0), (20)

which will be referred to as AC-LIN. The second is a
piecewise-linear approximation of the squared angle difference
which ignores voltage magnitudes (DC-PWL) [13]. Each loss
modelling technique is employed to approximate the line loss
equation (5) for every line in a network.

Both the AC-GEN and DC-PWL models require various
input parameters. DC-PWL requires the maximum possible
angle difference across the line and the number of segments
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(b)

Fig. 5. Sample representations for DC-PWL and AC-GEN. (a) DC-PWL
only considers variation in angle difference. (b) AC-GEN behavior on the
plane spanned by the eigenvectors associated with the positive eigenvalues of
the Hessian. White dots indicate linearization points. Shading indicates the
regions where each linear inequality is binding.

to use in the piecewise linear approximation. For this analysis,
the maximum angle was set to 2.5 times the angle at the line
rating, δmaxij = 2.5XijP

lim
ij using a dc power flow approx-

imation. This range was broken into 25 segments. AC-GEN
requires the distance from the base voltage condition, x0, to the
neighboring voltage realizations, x1, . . . , xn. For this analysis,
eight evenly spaced neighboring realizations were selected
from the edge of a circle on the plane spanned by the two
eigenvectors associated with positive eigenvalues. The radius
of this circle was chosen to be 0.005 pu. Figure 5 exemplifies
how each of these modelling approaches sectionalizes the
space of voltage variables, [Ui Uj δij ], to approximate the
nonlinear losses.

To demonstrate the operational characteristics on a re-
alistically large network, the MATPOWER [19] test case
based on the 2383-bus Polish grid for the 1999-2000 winter
peak was used for the discussions in this section. This test
network provides a wide variety of realistic voltage and
impedance characteristics. Since losses are only affected by
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series conductance, gij , the R/X ratios of the lines do not
directly affect the various loss models. However, different
impedance characteristics cause the voltages across lines to
vary in different ways, providing a variety of test conditions
for the three loss models.

Testing was undertaken for 25 different scenarios. Five
random base-case power flow scenarios were generated and
then five random demand deviations were established for each
base-case. For each of the 25 scenarios, a power flow captured
the true line losses and the voltage deviations from the
corresponding base-case. The voltage deviations were applied
to each loss model to calculate its estimated losses. The
models for AC-GEN and AC-LIN require a starting voltage
condition and were updated for each base-case scenario. The
DC-PWL model does not depend upon initial voltages so was
generated once at the start of testing. Each base-case scenario
was created by randomly perturbing active and reactive power
loads. Active power loads were uniformly distributed over the
range ±50% of their values given in the MATPOWER case,
while reactive power loads were uniformly distributed over
the range ±30% of their MATPOWER values. The deviation
cases were likewise created by randomly perturbing active and
reactive power loads, in this case over the ranges ±50% and
±30%, respectively, of their values in the corresponding base-
case scenario.

C. Accuracy comparison

The errors between the actual line losses and the losses
predicted by each model, for all lines in the Polish network
across all 25 tests, giving a total of L = 2896 × 25 =
72, 400 cases, are summarized in Fig. 6 and Table I. The results
of Fig. 6a show the loss prediction error, Err` = est` − act`,
in per unit, while Fig. 6b provides additional perspective by
normalizing these errors, %Err` = 100 × (est` − act`)/act`.
Normalized errors were ignored for loss values less than
1 × 10−4 pu. The AC-GEN model (19) and the DC-PWL
model [13] are structured such that they do not allow negative
losses. Consequently, their normalized errors cannot fall below
−100%. This limit is evident in Fig. 6b. In contrast, losses
computed by the AC-LIN model (20) are directly dependent
upon voltage values and therefore may go negative. Fig. 6b
also highlights the tendency for AC-GEN and AC-LIN to
underestimate the loss function since it is convex in most
directions and only weakly concave otherwise.

As expected, the AC-GEN and AC-LIN methods are both
more accurate than the DC-PWL method for small changes in
voltage conditions, as shown in Fig. 6a for voltage changes
between 0 and 0.02 pu. Both AC-GEN and AC-LIN start from
a tight approximation of losses due to the linearization around
the base-case whereas DC-PWL has no mechanism for using
base-case information. For voltage changes beyond 0.005 pu,
AC-GEN improves upon AC-LIN due to the additional lin-
earizations at neighboring voltage realizations, but both meth-
ods show quadratic growth in their error for large voltage
deviations. This is due to their underlying local linearization
structure. In contrast, the broader nonlinear characteristic of
the DC-PWL method helps to suppress some of this behavior.

(a)

(b)

Fig. 6. Errors between actual and estimated line losses for 25 tests
on the Polish 2383-bus network. The x-axis position is determined using√

∆U2
i + ∆U2

j + ∆δ2ij . (a) Error in pu, Err = est − act. (b) Error in
percent, %Err = 100 × (est − act)/act. Percent error for losses less than
1× 10−4 pu is ignored.

TABLE I
AVERAGE LOSS ERROR OVER 25 TESTS ON THE POLISH 2383-BUS

NETWORK.

Method
1

L

L∑
`=1

Err`, pu
1

L

L∑
`=1

|Err`|, pu
1

L

L∑
`=1

|%Err`|, %

AC-GEN −4.6× 10−5 4.6× 10−5 5.88

AC-LIN −1.0× 10−4 1.0× 10−4 13.46

DC-PWL −2.6× 10−4 4.4× 10−4 24.21

The summary in Table I assists in clarifying the overall
performance of each method. The error summations given in
the first column take into account the sign of the error and
therefore provide an indication of the total system-wide error
(with positive and negative errors partially cancelling). The
other columns consider the absolute value of the error, giving
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Fig. 7. Perturbations in line voltages expressed in eigenbasis coordinates for
all lines of the 25 tests on the Polish 2383-bus network. Eigenvectors of the
Hessian for each line are ordered by sorting the eigenvalues from negative to
positive.

a better indication of the overall trend in line-by-line errors. In
that sense, the right-most column is most relevant, providing
a comparison of the average absolute value of the normalized
errors. The AC-GEN method is more than twice as accurate as
the AC-LIN method and more than four times as accurate as
the DC-PWL method. Even though the 25 test cases exhibit
significant variation in active and reactive power loads, and
hence in network voltages, the AC-GEN loss model generally
provides very good accuracy.

D. Tuning the AC-GEN model

The results shown in Fig. 6 and Table I indicate that even an
untuned application of the proposed loss model can result in
appreciable improvements in accuracy compared to existing
methods. In those tests, the distance to the linearization
neighbors was the same for every line. However, voltages
change much more noticeably on some lines than others
and the AC-GEN model can easily be tuned to capture this
effect. Additionally, voltage changes tend to be much larger
in the direction of the eigenvector with the smaller positive
eigenvalue than in the direction of the eigenvector with the
larger positive eigenvalue. This trend can also be used to better
model the unique loss characteristics of each line.

The perturbations in voltages for each of the 25 tests can be
transformed into the eigenbasis coordinates of the loss Hessian
for each line, [∆Ui ∆Uj ∆δij ]

ᵀ = ∆v1 × v1 + ∆v2 × v2 +
∆v3 × v3 where ∆vi is the scalar coordinate associated with
eigenvector vi. Figure 7 shows this eigenbasis representation.
It is apparent that voltage changes lie primarily in the direction
of v1, the eigenvector with a negative eigenvalue. Modest
changes occur in the direction of v2, the eigenvector with the
smaller positive eigenvalue, and only limited changes occur
in the direction of v3, the eigenvector with the larger positive
eigenvalue. Although AC-GEN avoids linearization neighbors
in the direction of v1, the loss function is approximately
linear in this direction and the base linearization sufficiently
describes these changes.

Analyzing the results of Fig. 7 reveals that voltage changes
in the direction of v2 are approximately five times larger than
those in the v3 direction. To better capture this pattern, the

Fig. 8. Errors between actual and estimated line losses for 25 tests on the
Polish 2383-bus network. AC-GEN has been tuned for each line. The x-axis
position is determined using

√
∆U2

i + ∆U2
j + ∆δ2ij . The y-axis shows error

in pu, Err = est− act.

circle of white dots shown in Fig. 5b was flattened into an
ellipse whose axis in the direction of v2 is five times the
length of the axis in the direction of v3. Additionally, two
extra linearization neighbors were added in the direction of v2
at twice the distance from the base condition. These helped
capture even larger voltage changes in this direction.

The majority of voltage changes in Fig. 7 are very close
to the origin. However, some lines tend to experience much
larger changes in voltage than others. Such prior knowledge
can be used to establish, on a line-by-line basis, the length of
the minor axis of the ellipse that describes the locations of the
linearization neighbors.

The tuned AC-GEN model was tested on the same data as
previously. The results are shown in Fig. 8. Comparing with
Fig. 6a, it can be seen that tuning has resulted in additional
improvements in overall accuracy and has eliminated the
larger errors. The mean absolute error in the loss prediction,
1
L

∑L
`=1 |Err`|, is reduced to 3.0 × 10−5 pu or 2.55%. This

type of tuning could easily be implemented in practice by
using readily available historical data and performing more
sophisticated data analysis.

E. Computational comparison

In addition to considering the model accuracy, it is important
to evaluate the influence of the loss model on the speed of op-
timization and control applications. To test this characteristic,
each of the three models was applied within a simple quadratic
program (QP) which sought to drive voltage magnitudes and
angles towards specified values while also minimizing total
network losses.1 This QP was run for each of the 25 test cases.
The only constraints in each program were the loss models
relating line losses to network voltages and a single summation

1The QP was not meant to address any real problem, but rather provide
a means of establishing the relative computational costs of the three loss
modelling formulations.
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TABLE II
QP TEST RESULTS FOR VARIOUS LOSS MODELS.

Method EQs INEQs VARs Build Time SOLN Time

[µs/line] [s]

AC-GEN 1 26064 7663 167. 1.14

AC-LIN 2897 0 7663 3.14 0.02

DC-PWL 8689 0 85855 12.7 0.78

of all line losses into total losses. Testing was performed on
an HP ProBook 6470b with a 2.90 GHz Intelr i7 processor
and 8 GB of RAM. The QP was formulated in MATLABr

and solved in Gurobi [20].
A summary of the QP constraint sets and the time required

to build the loss model and solve each QP for each of the
25 test cases is presented in Table II. The AC-LIN method
has the smallest set of constraints and can be built and solved
significantly faster than both the untuned AC-GEN and DC-
PWL methods. The untuned AC-GEN method requires the
most time to build and solve and takes about 46% longer to
solve than the DC-PWL method. If the eigenvectors are not
updated when building the AC-GEN model, the build time can
be reduced by around 30%.

F. Discussion of results

From the results of the case-study tests, it is apparent that
trade-offs exist for each of the three methods. Subject to
the formulation requirements discussed in Section II, AC-
GEN offers the greatest accuracy in predicting line losses.
However, this improvement in accuracy requires an increase
in the time to build and solve the model. Alternatively, if
memory and time constraints are of primary concern, a simple
linear model may provide acceptable accuracy depending on
the application.

Several challenges may arise from incorporating a line-loss
model into optimal power flow problems for both operational
cost minimization and expansion planning. When negative
prices are possible, any relaxation method (e.g. AC-GEN or
DC-PWL) may cease to provide a tight solution as fictitious
losses can reduce the overall cost [21], [22]. In this situation,
a heuristic is necessary to remove the fictitious losses. For the
AC-GEN method, the simplest solution is to use the AC-LIN
model on any line connected to a bus with negative price. Also,
[14] points out that the types of loss models discussed here can
slow convergence by inducing oscillations as they approach a
solution. Unfortunately, the nonconvexity of the loss function
when voltage magnitude variations are considered prohibits
the extension of the method in [14] where successive “cutting
planes” are added. However, to limit oscillations in the AC-
GEN method, the distance to the linearization neighbors can
be reduced as the solution is approached.

Another challenge with loss models which require updates
as operating conditions change (e.g. AC-GEN and AC-LIN) is
that these steps require additional computation. For the AC-
LIN method, these costs are very small but AC-GEN may
require some consideration depending on the application. For

best results, AC-GEN should be updated whenever network
voltages change. However, if these changes are small and re-
main within the region bounded by the linearization neighbors,
it may be acceptable to retain the previous model. Ultimately,
the design needs of the specific application will determine
whether accuracy or speed is more important.

VIII. CONCLUSION

This paper proposes a new relaxed loss formulation for
computing losses on a transmission line when voltages are
expressed in polar coordinates and voltage magnitudes may
vary. A systematic approach is developed to build a set of
linear inequalities which underbound the true losses. In a
region around the base voltage condition, the resulting loss
model is more accurate than existing linear and piecewise-
linear formulations. The model can be tuned to capture voltage
behavior on specific lines and offers the potential to achieve
improved performance in applications which require accurate
loss calculation on a line-by-line basis.

The application environments which are likely to benefit the
most from the AC-GEN formulation are those which model
losses on a small number of lines, require a linear constraint
formulation, but also require good accuracy. Examples include
controllers that thermally model lines near their flow limit [23].
In situations where line losses are required to predict thermal
behavior, small improvements in the line loss accuracy can
result in amplified improvements in the temperature prediction.
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