Power System Parameter Estimation *

Ian A Hiskens and Alexander Koeman

SUMMARY

The nonlinear non-smooth nature of power system dynamics complicates

the estimation of parameters from system measurements. The paper proposes a Gauss-
Newton approach to computing a set of model parameters that give the best fit between
measurements and the model response. This approach involves trajectory sensitivities, i.e.,
the sensitivity of the model trajectory to small changes in parameters. An overview of
trajectory sensitivity analysis is provided. A small example, which exhibits both soft and
hard nonlinearities, is used to illustrate the estimation algorithm.

1 INTRODUCTION

System-wide measurements of power system distur-
bances are frequently used in post-mortem analysis
to gain a better understanding of system behaviour
12, In undertaking such studies, measurements are
compared with the behaviour predicted by a model.
Differences are used to tune the model, i.e., adjust pa-
rameters to obtain the best match between the model
and the measurements.

An example of the model tuning procedure, and the
importance of correct modelling, is provided in2 In
that case, the power system lost stability following a
large disturbance. A post-mortem analysis was un-
dertaken to explore the nature of that instability. It
was found that by using the ‘standard” set of param-
eters, the model did not replicate the unstable behav-
iour. However an exhaustive investigation showed
that correct behaviour could be predicted if a param-
eter in the load description was altered by a small
amount.

This example illustrates the need for a systematic ap-
proach to estimating power system model parameters.
The difficulty is that power system behaviour is
nonlinear. Models must therefore also be nonlinear,
and in fact may frequently contain hard nonlinearities,
i.e., discontinuities. Parameter estimation techniques
are quite well established for linear models . How-
ever parameter estimation for nonlinear systems is a
relatively new and unexplored field.

*

Paper first presented at the Australasian Univer-
sities Power Engineering Conference, 1998.

This paper develops an iterative technique for deter-
mining parameter values which produce the best
match between measured large disturbance system
behaviour and the model response. The technique
uses a Gauss-Newton approach, which in turn relies
on trajectory sensitivity analysis.

Similar ideas have been used previously for estimat-
ing parameters of generators and AVR/exciters *>5.
However the number of parameters that could be es-
timated using those earlier ideas was limited, because
the trajectory sensitivities were generated numerically
57, A more computationally efficient method of calcu-
lating trajectory sensitivities has recently been pre-
sented in 8. This has enabled the extension to estimat-
ing many system-wide parameters.

A brief review of modelling and trajectory sensitivity
concepts is given in Section 2. Those ideas are then
used in Section 3 to develop the desired parameter
estimation algorithm. Section 4 considers the appli-
cation of this algorithm in a simple yet illustrative
example. Conclusions are presented in Section 5.

2 MODEL AND TRAJECTORY SENSITIVITIES
2.1 Model

Power systems frequently exhibit a mix of continu-
ous time dynamics, discrete-time and discrete-event
dynamics, switching action and jump phenomena. It
is shown in ® that such systems, known generically as
hybrid systems, can be modelled by a set of switched
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differential-algebraic equations, coupled with equa-
tions to describe state resetting, i.e.,

i=f(xy) 1)
0=2"x,y) @)
)
0= g(.' )(L y)  Yar<0 i=1.d @
g xy) Yya.>0

£+=ﬂj(£“,y_) Ve, j=0 je{l....e} @)

where x=[x‘z 11", and

+  x are the continuous dynamic states, for example
generator angles, velocities and fluxes,

«  z arediscrete dynamic states, such as transformer
tap positions and protection relay logic states,

« y are algebraic states, e.g., load bus voltage
magnitudes and angles,

+ A are parameters such as line reactances, con-
troller gains and switching times.

In this model, the parameters A form part of the state
x. This allows a convenient development of trajectory
sensitivities. To ensure that parameters remain fixed
at their initial values, the corresponding differential

equations (1) are defined as) — (.

Away from events, system dynamics evolve smoothly
according to the familiar differential-algebraic model

i=f(xy) ®)
0=g(x,y). (6)
At switching events (3), some component equations
of g change. Algebraic variables y may undergo a cor-
responding step change. Reset events (4) force a dis-
crete change in some z . Algebraic variables may again

step to ensure g is always satisfied.

We shall define the flows of x and y respectively as
2()=x(x,.1) %)

W)=y (x,.1) (8

where x(t) and y(t) satisfy (1) - (4), along with initial
conditions,

¢i(lo.fo)=lo 9

g(xo,0, (x0,10))=0. (10)

2.2 Trajectory sensitivities

Trajectory sensitivities provide a way of quantifying
the variation of a trajectory which results from changes
to parameters and/or initial conditions °. Recent
power system applications, apart from those relating
to parameter estimation, can be found in 7", The
main concepts are summarized in this section and Ap-
pendix A. Further details can be found in 2.

To obtain the sensitivity of the flows ¢, and ¢, to
initial conditions, and hence to parameter variations,
we form the Taylor series expansions of (7), (8). Ne-
glecting higher order terms gives

Ax(r)= af(t)Aﬁo =X, (14X, (11)
Xy

Ay(r) = ‘;y(t) Axg =Yz, (DAXy (12)
Xp

It is important to keep in mind that X incorporates
A, so sensitivity toxyincludes sensitivity to A. Equa-

tions (11), (12) provide the changes Ax(r) and Ay(r) in
a trajectory, at time ¢ along the trajectory, for a given
(small) change in initial conditions

Axy={Axy Azy AXT.

An overview of the computation of Xx and Yz, is
given in Appendix A.

3 PARAMETER ESTIMATION
3.1 Introduction

Measurements of power system dynamic behaviour
are typically obtained using data acquisition systems
(DASs) ' which produce sequences m of samples
Mo, M1, M, e 1T of system variables. The aim of pa-
rameter estimation is to find the set of model param-
eters which gives the best fit between the measure-
ments and the model. It is assumed that the number
of samples g is sufficiently large, as it is necessary to
have atleastq+1=p samples to estimate p unknowns
(the parameters). This is normally the case.

Usually a DAS provides measurement sequences for
many different quantities. However for clarity the
parameter estimation algorithm will initially be de-
veloped assuming a single measurement sequence.
This assumption will then be relaxed.
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The development of the parameter estimation algo-
rithm assumes that measurements correspond to al-
gebraic states. This does not restrict the application
of the algorithm though, as it is always possible to
add extra algebraic constraints

gi(x.y)=yi—p(x.y)=0

to generate an ‘output’ ¥, which matches the meas-
urement. These new functions augment the original
algebraic constraints g given by (2) - (3).

3.2 Parameter estimation from a single measurement

The algebraic state corresponding to the measurement
m will be denoted j. The estimation process involves

varying initial conditions x, z, and parameters A to
obtain the best match between the sequence m of

measured samples and the flow j(¢), provided by the
model (8). A Gauss-Newton approach is proposed.

The model produces the flow i(&) 1) forall 7 > 1. But

the samples in the sequence m are measured at cer-
tain time instants. Therefore for each time instant

g,k =0]l:-,q, corresponding to each measurement
sample, it is possible to create the model sample

¥i(xp)=¥(xg.1), resulting in the sequence
Yo (10 ). (10 ) Vg (10 ). The aim of the parameter es-

timation process is to determine the value of Xy, i.e.,
parameters and initial conditions, which makes the

model response ¥ (x,) closest to the measured sam-
ples m,_ for all k.

Let the mismatch between the measured value and
the model output at each sample time be

ex(x)=We(xg)-m  k=01-q

or in vector form

e(xg)=7(xo) (13)

where

9(50):[‘30(5_0) e1(£0)"'¢q(£0)]t

¥(x0)=[30(x0) Vi(x0) - Va(x0)]'

m= [mg m,-umq]'.

Then the best fit is obtained by the X, which mini-
mizes the least squares cost

q

I(xo)= 1y |ek (£0)|2 - %“e(lo )"2 (14)

2 k=

The problem has been reduced to a nonlinear least
squares formulation which can be solved using the
Gauss-Newton method 2. Thisis an iterative approach

which is based on linearizing ¢(x, ) around the point

&’), ie,

8e(£é)
dxo

2(xo-xd) = e(x9)* (20-20)  «5)

From (13) it follows that

Notice that this matrix is composed of the trajectory
sensitivities yx, evaluated at the time steps fp, %, **1g.

Therefore S(gé) shall be referred to as the sensitivity

matrix. Substitution of S(ﬁ 6) into (15) gives
E(ﬁoﬁé) = e(£6)+ S(ﬁé )(10 ~xh )

The value of X, obtained at the ( j+1)'h iteration is

114 2
that value which minimizes E“e(éo,«lé )"2, ie.,

; argmin | N
xyt = Helxo.xd)|
Xo (2 2

N
Assuming S({ é) S({é) is invertible, this minimization

gives

17)
An estimate of x; which (locally) minimizes the

cost function J(x,) in (14) is obtained when

A{é = 56“ —_)56 is close to zero. Note that this proce-
dure will only give local minima though, as it is based
on linearization. However if the initial guess for x,

is good, which is generally the case in power system
studies, then a local minimum is sufficient.
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3.3 Parameter estimation from more than one meas-
urement

Normally a DAS (or a number of DASs scattered
around a power system) will provide many measure-
ments of a disturbance. Ideally all the available infor-
mation should be used to give the best estimate of the
initial conditions and parameters.

Assume there are | measurement sequences,
m' m? ., m' and the corresponding model flows are
' 32.--..5'. Asensitivity matrix §¢ corresponding to

each j' can be defined as in (16). We now define

=1 1

y m

_ y2 m2
Hxo)=|". | m=|"".
oy !

m

and make corresponding changes in the definition of

e(x, ); see (13). The sensitivity matrices are arranged
as

Then (17) can again be used to obtain the optimal value
of Xy. In this case, the optimal x, provides the best
fit of the model to all the measurements.

Note that if some measurements are known more ac-
curately than others, then weighting factors can be
used to weight the relative importance of the meas-
urements.

4 EXAMPLES

The two machine infinite bus system shown in Fig. 1
will be used to illustrate the parameter estimation
process. The dynamic behaviour of the system is gov-
erned by the swing equations of the two machines.

In order to introduce a hard nonlinearity (switching
action) into this simple system, the mutual admittance
between the generators has been modelled as

1.5 when (8, —62)2 <0.03°

Yi2=
0.67 when (81 - 62)2 <003*

(18)

This could (crudely) represent voltage support devices
running out of range as the angle across the line in-
creased beyond a certain threshold. The modelling
details are not so important; the main aim is to test

v, /0 Voo o

jlo

Figure 1: Two machine infinite bus system.

parameter estimation ideas in the presence of
discontinuities.

For now it is assumed that the only available meas-
urement is that of the real power flow from generator
1 to the infinite bus. Accordingly, the model is aug-
mented by the algebraic equation

0=y-sind;
where j is the measured power flow.

The behaviour of this system, for a particular distur-
bance, is shown in Fig. 2. The measured power flow

y is plotted. The sensitivity of this trajectory to vari-

ations in the parameters M;,M,, D;,D,, the machine
inertia and damping constants, is shown in Fig. 3.

Measured Power Flow

L L L L L
0 0.5 1 1.5 2 25 3
Time {sec)

Figure 2:  System trajectory.

To initially illustrate the parameter estimation proc-
ess, the plot of Fig. 2 will be used as the measure-
ment. The actual parameters in this case are

M;] [00138

. M| _|00276
D, 00570 | (19)
D, 0.1140
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Sensitivity of Measured Power Flow

. Sensitivity to M‘
— — — Sensitivity 10 M2

Sensitivity to D1

- Sensitivity to D2
6 L s L I n
0 0.5 1 15 2 25 e
Time (sec)

Figure 3: Sensitivity of y to parameters.

Those actual values are assumed to be unknown, so a
guess of A=10.012 0.020 0.05 0.05]' was made. A
measurement time interval of 0.1 seconds was used.

The parameter estimation process (17) converged from
the initial guess to the actual parameter values in 5
iterations. The convergence process is illustrated in
Fig. 4. The trajectories shown correspond to the ini-
tial (guessed) parameters and the subsequent 5 itera-
tions. The measurement samples, (based on the ac-
tual parameter values in this case), are also shown.
The changes in parameters at each iteration are given
in Table 1. The parameters D, D, are the slowest to
converge. This is consistent with Fig. 3, which shows
that the trajectory is least sensitive to those param-
eters. Convergence in 5 iterations is quite acceptable,
as the error in the initial guess of the parameter val-
ues was rather high.
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0.2- o\ r‘/ L o b
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&
w
5 0.15 E
2
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a
o1r ¢ ¢ ¢ O Measurement samples (noise added) b
Initial parameter guess
0.05F — — — — lterations b
———  Final estimate
o . L L L '
[¢] 05 1 1.5 2 25 3
Time (sec)
Figure 4: Convergence process. No noise in meas-

urement samples.

Table 1
Parameter changes at each iteration.
Iter. aM, aM, aD, aD,
1 0.0004 -0.0007 -0.0108 -0.0380
2 -0.0022 -0.0026 -0.0012 -0.0352
3 -0.0002 -0.0050 0.0039 0.0086
4 0.0001 0.0007 0.0010 0.0004
5 0.0000 0.0000 0.0000 0.0001

To further explore the estimation process, noise was
added to the 'measurement’. The noise was normally
distributed, with a mean of 0 and a standard devia-
tion of 0.01. Again the estimation process converged
in 5 iterations from the same initial guess as before.
The parameter changes at each iteration were similar
to those given in Table 1. The convergence process is
illustrated in Fig. 5. Notice that the trajectory con-
verged to a filtered version of the noisy measurement.
The estimated parameters were A = [0.0133 0.0264
0.0579 0.1019}. These values are good estimates of
the actual values given in (19). This is especially so,
considering the level of noise added to the measure-
ment, and the small number of measurement samples.

o2r
E3
o
'S
50151
3
2
01’» if O O O O Measurement samples (actual parameter values)-
Initial parameter guess
0.05+ | -~ — — lterations b
Final estimate
o L . . . L
0 05 1 1.5 2 25 3
Time (sec)
Figure 5: Convergence process. Noisy measure-

ment samples.

The sensitivity of the estimation process to the noise
level was investigated by increasing the noise stand-
ard deviation four-fold, to 0.04. With a maximum
parameter change tolerance of 0.005, the estimation
procedure converged in 5 iterations. The estimated
parameters were A =[0.0134 0.0242 0.0530 0.0772}.
Results are illustrated in Fig. 6. This figure provides a
feel for the corruption caused by the noise. It can be
seen that the actual system trajectory is extremely well
disguised in the noisc. Yet the estimated parameters
are close to the actual values, and fairly accurately
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Figure 6:  Convergence process. High noise in

measurement samples.

reproduce the actual system behaviour. The main er-
ror lies in the estimate of D,. Reasons for that include:

»  The estimation algorithm sees the noise as poorly
damped oscillations. This is because of the small
number of samples and high level of noise.

+  Fig.3 shows that the measured power flow is quite
insensitive to variations in D,.

The effect of multiple measurements on the estima-
tion algorithm was examined by adding an extra meas-
urement; that of the real power flow over the line from
generator 2 to the infinite bus. All previous cases were
repeated. In all cases, the extra measurement led to
faster convergence. Table 2 gives the parameter
changes at each iteration for the zero noise case. A
comparison with Table 1 shows the faster convergence
rate. For this case, the final estimated parameter val-
ues were exactly the same as earlier. For the other
cases, the noise in the extra measurement let to slightly
different final values. The estimated parameter val-
ues were consistent with those found earlier though.

Table 2
Parameter changes at each iteration. Multiple
measurements.
lter. AM, aM, AD, AD,
1 0.0002 -0.0016 -0.0004 -0.0472
2 -0.0016 | -0.0041 -0.0100 | -0.0233
3 -0.0005 | -0.0021 0.0036 0.0061
4 0.0000 0.0001 -0.0001 0.0003

5 CONCLUSIONS

A parameter estimation procedure has been proposed
for finding power system parameters from measure-
ments of system disturbances. The procedureis based
on solving a nonlinear least squares problem using a
Gauss-Newton approach. This requires trajectory sen-
sitivities, which effectively provide gradient informa-
tion at each iteration. The algorithm works reliably,
even when measurements are corrupted by significant
noise.

Whilst the estimation algorithm has been proposed
for obtaining parameters which best fit measurements,
it can easily be adapted for model reduction purposes®.
In that case, the 'measurements’ are provided by the
full model. The estimation process provides param-
eter values for the reduced model, such that a best fit
between trajectories of the reduced and full models is
achieved for scenarios of interest.
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APPENDIX A

TRAJECTORY SENSITIVITY COMPUTATION

Away from events, where system dynamics evolve
smoothly, the sensitivities Xx and Yy are obtained

by differentiating (5), (6) with respect to x,. This gives

Xe, =L (N + (Dyx, (20)
0=g£(t)££0 +gy(’))’.10 21

of
where f, ===, and likewise for the other Jacobian

X dx’
matrices. Note that LX*£y~g§~gy are evaluated along

the trajectory, and hence are time varying matrices. It
is shown in ® that the solution of this (potentially high
order) DA system can be obtained as a by-product of
solving the original DA system (5), (6).

Initial conditions for Xy, are obtained from (9) as

5.10(,0):[

where [ is the identity matrix, and for Yy, from (21),

0=2gx(f0)+8y(t0)yx, (10).
Equations (20), (21) describe the evolution of the sen-

sitivities Xx  and Yx, between events. However atan

event, the sensitivities are generally not continuous.
It is necessary to calculate jump conditions describing

the step change in Xx and Yx,. For clarity, consider

a single switching/reset event, so the model (1)-(4)
reduces to the form

1= f(xy) (22)

0 {8_(£vY) s(x.y)<0 25

g (xy) s(xy)>0
x"=h (1_,}1‘) when s(x,y)=0. (24)

Let (x(7),y(1)) be the point where the trajectory en-

counters the hypersurface s(x,y)=0, i.e., the point
where an event is triggered. This point is called the
junction point and 1 is the junction time.

Just prior to event triggering, at time T~ , we have
x =xA17) = 0x(x0.7)

y =y (77)=s{x0.7)

where

0=g‘(£'»y").

Similarly, x*,y* are defined for time 7+, just after the
event has occurred. It is shown in 8 that the jump
conditions for the sensitivities Xy are given by

2, ()= By, () (L0 - 13Ny, @9)

where

) (sa“sy(g;)‘lﬁ’z_)

The sensitivities ¥y immediately after the event are
given by
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N eran! are . next event. The jump conditions provide the initial
¥x, (T ) = —(gy (T )) 8x (T )}_ x, (T ) conditions for the post-event calculations.
Real power systems involve many discrete events. The
p y y
more general case follows naturally though, and is
8 y 4
presented in 2.

Following the event, i.e., for ; 5 ¢*, calculation of the
sensitivities proceeds according to (20), (21), until the
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