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ABSTRACT

Grazing bifurcations occur when a small parameter variation in-
duces a change in the event sequence of a hybrid system, i.e., a
system where continuous dynamics and discrete events strongly
interact. At such a bifurcation, the system trajectory makes tan-
gential contact with (grazes) an event triggering hypersurface. This
bounding case separates regions of (generally) quite different dy-
namic behaviour. The paper formulates the conditions governing
grazing bifurcation points, and extends those conditions to limit
cycles. A shooting method is used to solve for bifurcating limit
cycles. The approach is applicable for general nonlinear hybrid
systems.

1. INTRODUCTION

Grazing bifurcations [1, 2, 3] refer to situations where a small
change in parameter value results in a change in event triggering,
with a subsequent divergence of dynamic behaviour. Figure 1
provides an illustration. For a certain value of parameter λ+,
the system trajectory encounters an event triggering hypersurface
at a point x+. The event occurs, and the trajectory continues
accordingly. However for a small change in parameter value to λ−,
the trajectory misses (at least locally) the triggering hypersurface,
and subsequently exhibits a completely different form of response.
At a parameter value λg , lying between λ+ and λ−, the continuous
trajectory tangentially encounters the triggering hypersurface. This
bounding case describes a grazing bifurcation, with λg referring to
the critical value of the bifurcation parameter.

Hybrid systems are typified by strong coupling between con-
tinuous dynamics and discrete events. For such systems, event
triggering generally has a significant influence over subsequent sys-
tem behaviour. Therefore identifying grazing bifurcations, where
small parameter changes alter the event triggering pattern, is par-
ticularly important. However the non-smooth nature of trajectories
has traditionally complicated this process.

Previous investigations of grazing bifurcations (and closely
related border collision bifurcations) have focused largely on clas-
sifying the (local) consequences of bifurcations through analysis
of eigenvalue behaviour. Efforts have been directed primarily to-
wards periodic systems. Computation of actual bifurcation points
has generally received little attention. With numerical packages
such as AUTO [4] unsuited to non-smooth systems, ad hoc ap-
proaches have prevailed. Computation of bifurcation points for
non-periodic systems was recently addressed in [5]. This current
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Fig. 1. Grazing bifurcation.

paper establishes a shooting method for finding bifurcating limit
cycles of nonlinear hybrid systems.

2. PROBLEM FORMULATION

2.1. Hybrid system model
It is shown in [6, 7] that the continuous/discrete dynamic behaviour
of hybrid systems can be captured by amodel that consists of a set of
differential-algebraic equations, adapted to incorporate impulsive
(state reset) action and switching of the algebraic equations. This
DA Impulsive Switched (DAIS) model can be written in the form,

ẋ = f(x, y) (1)

x+ = hj(x
−, y−) when yr,j = 0 (2)

0 = g(x, y) ≡ g(0)(x, y) +

s�
i=1

g(i)(x, y) (3)

where

g(i)(x, y) =

�
g(i−)(x, y)

g(i+)(x, y)

ys,i < 0
ys,i > 0

i = 1, ..., s (4)

and

• x ∈ �
n are dynamic states, and y ∈ �

m are algebraic
states;

• x+ denotes the value of x just after the reset event, while
x− and y− refer to the values of x and y just prior to the
event.

• yr, ys are selected elements of y that trigger state reset
(impulsive) and algebraic switching events respectively; yr

and ys may share common elements.
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A compact development of the equations describing grazing
bifurcations results from incorporating system parameters λ ∈ �

�

into the dynamic states x. This is achieved by introducing trivial
differential equations

λ̇ = 0 (5)

into (1), and results in the natural partitioning

x =

�
x
λ

�
, f =

�
f
0

�
, hj =

�
hj

λ

�
(6)

where x are the true dynamic states and λ are parameters.
Away from events, system dynamics evolve smoothly accord-

ing to the familiar differential-algebraic model

ẋ = f(x, y) (7)

0 = g(x, y) (8)

where g is composed of g(0) together with appropriate choices
of g(i−) or g(i+), depending on the signs of the corresponding
elements of ys. At switching events (4), some component equations
of g change. To satisfy the new g = 0 constraints, algebraic
variables y may undergo a step change. Impulse events (2) force
a discrete change in elements of x. Algebraic variables may again
step to ensure g = 0 is always satisfied.

The flows of x and y are defined as

x(t) = φ1(x0, t) (9)

y(t) = φ2(x0, t) (10)

where x(t) and y(t) satisfy (1)-(4), along with initial conditions,

φ1(x0, t0) = x0 g
�
x0, φy(x0, t0)

�
= 0. (11)

2.2. Grazing bifurcations
A grazing bifurcation is characterised by a trajectory (flow) of the
system touching a triggering hypersurface tangentially. Let the
target hypersurface be described by

b(x, y) = 0 (12)

where b : �n+m → � . Vectors that are normal to b are given

by ∇b =
�

∂b
∂x

∂b
∂y

�T

≡ [bx by]T , and the tangent hyperplane is

spanned by vectors [uT vT ]T that satisfy

[bx by]

�
u
v

�
= 0. (13)

The vector [ẋT ẏT ]T is directed tangentially along the flow, so
it must satisfy (13) at a border collision bifurcation. Furthermore,
differentiating (8) and substituting (7) gives,

0 =
∂g

∂x
ẋ +

∂g

∂y
ẏ (14)

⇒ 0 = gxf(x, y) + gyv (15)

where for notational convenience v replaces ẏ.
A single degree of freedom is available for varying parameters

to find a bifurcation value. It follows from (6) that system para-
meters λ are incorporated into the initial conditions x0. Therefore

the single degree of freedom can be achieved by parameterization
x0(θ), where θ is a scalar.

Grazing bifurcation points are therefore described by combin-
ing together the flow definition (9) (appropriately parameterized by
θ), algebraic equations (8), target hypersurface (12), and tangency
conditions (13),(15), to give

F1(xg, θ, tg) := φ1(x0(θ), tg) − xg = 0 (16)

F2(xg, yg) := g(xg, yg) = 0 (17)

F3(xg, yg) := b(xg, yg) = 0 (18)

F4(xg, yg, v) :=

�
bx by

gx gy

�
(xg,yg)

�
f(xg, yg)

v

�
= 0. (19)

This set of equations may be written compactly as

Fg(xg, yg, θ, tg, v) = 0 (20)

where Fg : �
n+2m+2 → �

n+2m+2 . Solution of (20) can be
achieved using Newton’s method [5]. The solution process in-
volves numerical simulation to obtain the flow (16), and is therefore
classed as a shooting method.

2.3. Limit cycles
Periodic behaviour of limit cycles implies that the system state
returns to its initial value every cycle.1 This can be expressed
in terms of the flow as x∗ = φ1(x

∗, T ) where T is the limit
cycle period. For non-autonomous systems, the period T is a
known quantity. However it is not known a priori for autonomous
systems. The unknown period, or return time τr , can be found
using Poincaré map concepts [8]. It is a function of the limit cycle
starting point, so autonomous limit cycles can be expressed as

x∗ = φ1(x
∗, τr(x

∗)). (21)

Computationally this case is more interesting, so is the focus of the
paper.

For a limit cycle to undergo a grazing bifurcation, (16)-(19)
must be satisfied alongwith (21). These extra conditions can gener-
ically only be met by increasing the degrees of freedom beyond the
single parameter θ of (16). In fact it becomes necessary to allow
all initial conditions x0 to vary. Accordingly, (16) becomes

F ′
1(xg, x0, tg) := φ1(x0, tg) − xg = 0 (22)

and (21) can be expressed as

F5(x0) := φ1(x0, τr(x0)) − x0 = 0. (23)

Combining together (17)-(19), (22) and (23) gives

F (z) = F (xg, yg, x0, tg, v) =

�
����

F ′
1(xg, x0, tg)
F2(xg, yg)
F3(xg, yg)

F4(xg, yg, v)
F5(x0)

	



� = 0 (24)

where z = [xT
g yT

g xT
0 tg vT ]T andF : �2n+2m+1 → �

2n+2m+2 .
Notice though that F defines an over-determined set of equa-

tions, with one more equation than variable. This can be resolved
by allowing one free parameter λ. To see this, recall that if system

1Limit cycles also require that the periodic trajectory is isolated in state-
space.

IV - 698

➡ ➡



parameters λ ∈ �
� are incorporated into x as in (6), then (5) en-

sures that for the λ component of x, φ1(x0, t) = x0 always. The
associated equations in (23) are redundant and can be eliminated
with no loss of information. It follows that in order to achieve an
exactly determined problem, one equation should be eliminated,
implying that λ should be a scalar. If dim(λ) = � > 1, the prob-
lem becomes under-determined, resulting in a solution manifold of
dimension � − 1, rather than point solutions. In the remainder, it
shall be assumed that � = 1, and that scalar λ is the n-th element
of x. Accordingly, the last equation in F5 is deleted from F in
(24).

3. SHOOTING METHOD

3.1. Algorithm
Numerical solution of (24) using Newton’s method amounts to
iterating on the standard update formula

zk+1 = zk −
�
DF (zk)

�−1

F (zk) (25)

where DF is the Jacobian matrix

DF =

�
������

−In 0 Φ1 f 0
gx gy 0 0 0
bx by 0 0 0

f tbxx + bxfx + vtbyx f tbxy + bxfy + vtbyy 0 0 by

f̂ tgxx + gxfx + v̂tgyx f̂ tgxy + gxfy + v̂tgyy 0 0 gy

0 0 DF5− 0 0

�
������ ,

(26)

with In the (n × n) identity matrix, and

f̂ =

�
������

f
f

f
. . .

f

�
������ ∈ Rmn×m

v̂ =

�
������

v
v

v
. . .

v

�
������ ∈ Rm2×m

gxx =

�
������

∂2g1
∂x2

∂2g2
∂x2

...
∂2gm

∂x2

�
������ ∈ Rmn×n, gyx =

�
������

∂2g1
∂y∂x

∂2g2
∂y∂x

...
∂2gm
∂y∂x

�
������ ∈ Rm2×n

gyy =

�
������

∂2g1
∂y2

∂2g2
∂y2

...
∂2gm

∂y2

�
������ ∈ Rm2×m, gxy =

�
������

∂2g1
∂x∂y

∂2g2
∂x∂y

...
∂2gm
∂x∂y

�
������ ∈ Rmn×m.

The entry Φ1 in (26) gives the sensitivity of the flow (9) to
perturbations in initial conditions x0,

Φ1(x0, t) ≡ ∂φ1

∂x0
(x0, t).

The variational equations describing the evolution of trajectory
sensitivities Φ1, Φ2 are given in [7]. Note that these quantities are
defined for non-smooth trajectories generated by hybrid systems.
Furthermore, if an implicit numerical integration technique is used,
these sensitivities incur minimal additional computational cost.

The submatrix DF5− refers to the Jacobian of F5 in (23), with
the last row removed. It is shown in [8] that DF5 is given by

DF5(x) =

�
I − f |τr(x)σ

T

σT f |τr(x)

	
Φ1(x, τr(x)) − I (27)

where σ is a unit vector normal to the hyperplane Σ defining the
Poincaré map.

Care must be taken in evaluating the terms of (24) and (26)
that relate to trajectory solution. The flow term φ1(x

k
0 , tk

g) of
(22) evaluates, via numerical integration, to the value of x at time
tk
g along the trajectory that has initial value xk

0 . The associated
Jacobian entries Φ1 and f in the first row of DF should also
be evaluated at time tk

g along that trajectory. Similarly, F5 in
(23) involves the flow term φ1(x

k
0 , τr(x

k
0)). This evaluates to x

at the point where the trajectory, starting from xk
0 ∈ Σ, re-

encounters Σ.2 The associated Jacobian entry DF5−(xk
0) is also

evaluated at the return point, see (27).
The matrices gxx, gyx, gxy and gyy are usually extremely

sparse. It has been found that often the error introduced into DF
by ignoring them has negligible effect on convergence. However
situations can arise where they do affect convergence. Efficient
computation of these matrices is discussed in [5].

4. EXAMPLE

A model of the compass gait biped robot is discussed in detail in
[9], with a summary given in [10]. The biped robot can be treated as
a double pendulum. Figure 2 provides a schematic representation
and identifies important parameters, including the incline angle γ.
The robot configuration is described by the support angle θs and
the non-support angle θns.

Dynamic equations describe the evolution of the state vector
x = [θns θs θ̇ns θ̇s]

T ∈ �
4 during the swing phase. An event oc-

curs when the non-support (swinging) leg collides with the ground.
This establishes the triggering condition θns + θs + 2γ = 0. The
biped robot is therefore an example of a hybrid system, with walk-
ing motion corresponding to a periodic orbit.

To illustrate the shooting algorithm, a target hypersurface was
established by b(x, y) = x3−2.5 = 0wherex3 ≡ θ̇ns. This could
be interpreted as a maximum allowable non-support leg velocity.
(Perhaps the robot falls apart at higher velocities!) Walking motion
that just satisfied this constraint was achieved by varying the incline
angle γ. Solution progress is given in Table 4, and illustrated in
Fig. 3. The figure shows the initial trajectory, and final grazing
limit cycle.

2This occurs at return time τr(xk
0), though that time is not explicitly

determined.
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γ

Fig. 2. Compass gait biped robot.

Iter
Limit cycle initial point, x0 Grazing values

θns θs θ̇ns θ̇s γ (deg) tg

0 -0.3500 0.2100 0.1 -1.0000 3.00 0.2800
1 -0.4076 0.2253 0.1 -1.1408 4.66 0.2742
2 -0.4107 0.2223 0.1 -1.1278 5.07 0.2762
3 -0.4095 0.2220 0.1 -1.1215 4.99 0.2764

Table 1. Shooting method convergence to grazing bifurcation.

The Poincaré hyperplane Σ = {x : x3 = 0.1}, with normal
vector σ = [0 0 1 0]T . A projection of this hyperplane is shown
in Fig. 3. The initial trajectory started from, and returned to, this
hyperplane. It was not a limit cycle. The final solution started from
a point on the hyperplane and returned to that same point. Along
the way it grazed the surface b(x, y) = 0.

The characteristic multipliers for the grazing limit cycle are:
−1.549, −0.1873 and 0.0970. Because one of these eigenvalues
lies outside the unit circle, this limit cycle is non-stable. Even so,
shooting method convergence was fast and reliable. On the other
hand, locating this limit cycle by repeated simulations would be
extremely difficult.

It can be seen from Figure 3 that this example exhibits non-
smooth (hybrid) behaviour. In this case, only one event (impact)
occurs per cycle. However the shooting method is more widely
applicable, to systems that undergo any (finite) number of events
per cycle.

5. CONCLUSIONS

Hybrid systems, where discrete events have a significant influ-
ence over system behaviour, are susceptible to grazing bifurcations.
This form of bifurcation refers to the situation where the system
trajectory is tangential to an event triggering hypersurface. The en-
counter is not transversal, as required for well-defined behaviour.

Grazing bifurcation points of limit cycles can be described
by a set of nonlinear, algebraic equations. Iterative solution via
Newton’s method requires numerical integration of the system tra-
jectory, and therefore has the form of a shooting method. The
associated Jacobian incorporates trajectory sensitivities, which can
be efficiently computed along with the trajectory. The shooting
method is therefore practical for arbitrarily large hybrid systems.
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