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ABSTRACT

The development of trajectory sensitivity analysis for power sys-
tems is presented in the paper. A hybrid system model which has
a differential-algebraic-discrete structure is proposed. Crucial to
the analysis is the development of jump conditions describing the
behaviour of sensitivities at discrete events, such as switching and
state resetting. A power system example which involves a mix of
continuous and discrete behaviour is presented to illustrate various
aspects of the theory. It is shown that trajectory sensitivities pro-
vide insights into system behaviour which cannot be obtained from
traditional simulations.

1. INTRODUCTION

Power systems exhibit dynamic behaviour which is governed by
a mix of constrained continuous-time dynamics, discrete-time and
discrete-event dynamics, switching action and jump phenomena.
Analysis of this dynamic behaviour is vital in system design and
operation. However the nonlinear nonsmooth nature of dynamic
behaviour generally precludes the use of simple systematic anal-
ysis techniques. Power system analysts therefore rely largely on
simulation.

The advantage of simulation is that it is applicable for arbitrar-
ily complicated models. A disadvantage is that it provides informa-
tion about a single scenario. Generally it is not possible to confi-
dently extrapolate results, even for small changes in system condi-
tions. Each change to the system requires another simulation. For
large systems, such as power systems, this often involves a large
computational cost.

Trajectory sensitivity analysis offers some relief from the rig-
ors of repetitive simulation. The approach is based upon lineariz-
ing the system around a nominal trajectory, rather than around an
equilibrium point [1, 2, 3]. It is therefore possible to determine di-
rectly the change in a trajectory due to a (small) change in initial
conditions and/or parameters. The analysis is straightforward for
smooth systems, but can also be applied to systems which contain
discontinuities [1, 3, 4].

Trajectory sensitivities were originally associated with a num-
ber of areas in control and parameter estimation [1]. More recent
applications have included stability assessment of power systems
[5, 6].
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2. MODEL

Power systems can be generically described by a parameter depen-
dent differential-algebraic-discrete (DAD) model of the form,

_x = f(x; y; z;�) (1)

0 = g
(0)(x; y; z;�) (2)

0 =

�
g(i�)(x; y; z;�)

g(i+)(x; y; z;�)

yd;i < 0
yd;i > 0

i = 1; :::; d (3)

z
+ = hj(x

�
; y
�
; z
�;�) ye;j = 0 j 2 f1; :::; eg (4)

_z = 0 ye;j 6= 0 8j 2 f1; :::; eg (5)

where

x 2 X � Rn ; y 2 Y � Rm ; z 2 Z � Rl ; � 2 L � Rp

yd = Dy

ye = Ey

f : Rn+m+l+p ! Rn

g =

2
6664

g(0)

g(1)

...
g(d)

3
7775 : Rn+m+l+p ! Rm

hj : Rn+m+l+p ! Rl j = 1; :::; e

andD 2 Rd�m ; E 2 Re�m are matrices of zeros, except that each
row of each matrix has a single 1 in an appropriate location. There
is no restriction on yd and ye sharing some common elements. In
(4), x�, y�, z� refer to the values of x, y, and z just prior to the
reset condition, whilst z+ denotes the value of z just after the reset
event.

In this model, which is similar to a model proposed in [7], x are
continuous dynamic state variables, y are algebraic state variables,
z are discrete state variables, and � are parameters. In the power
system context x would include machine dynamic states such as
angles, velocities and fluxes, y would include network variables
such as load bus voltage magnitudes and angles, z could represent
transformer tap positions and/or relay internal states, and � may be
parameters such as loads and/or fault clearing time.

Note that the model does not allow discontinuities in the dy-
namic states. This is not a restriction forced by the analysis; in
fact later analysis is directly applicable to cases where x undergoes
jumps. The model adopts the philosophy that the dynamic states of
real systems cannot undergo step changes.
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However the proposed model (1)-(5) captures all the important
aspects of power system behaviour, namely the interaction between
continuous and discrete states as they evolve over time. The contin-
uous states are driven by the differential equations (1), with the dis-
crete states evolving according to the reset condition (4). The alge-
braic equations (2),(3) establish the interconnections between con-
tinuous and discrete components of the system, and ensure the sys-
tem satisfies physical constraints. They also allow the event vari-
ables yd and ye to describe arbitrarily complicated sets of condi-
tions.

At an event given by yd;i = 0, the algebraic states y often un-
dergo a discontinuity. However the discrete states z remain con-
stant and the dynamic states x are continuous through the event. At
an event described by ye;j = 0, at least one of the discrete states is
reset, i.e., undergoes a step change. This may result in a disconti-
nuity in y, but the x are again continuous through the event. Let the
times at which events occur be given by f�k : t0 < �1 < �2 < :::g.

Initial conditions for the model (1)-(5) are given by

x(t0) = x0; y(t0) = y0; z(t0) = z0 (6)

where y0 is a solution of

g(x0; y0; z0;�) = 0: (7)

Note that in solving for y0, the constraint switching described by
(3) must be taken into account.

Trajectories of the DAD system (1)-(5) describe the behaviour
of the dynamic statesx, the algebraic states y, and the discrete states
z over time. To formalize these concepts we define the flows of x,
y and z respectively as

x(t) = �x(x0; z0; t; �)

y(t) = �y(x0; z0; t; �)

z(t) = �z(x0; z0; t; �)

where

d

dt
(�x(x0; z0; t; �))

= f (�x(x0; z0; t; �); �y(x0; z0; t; �); �z(x0; z0; t; �);�)

0 = g (�x(x0; z0; t; �); �y(x0; z0; t; �); �z(x0; z0; t; �);�)

and�z(x0; z0; t; �) is piece-wise constant, with step transitions be-
tween the constant sections described by the reset equations (4).
From the definitions of the flows, it is clear that �x(x0; z0; t0; �) =
x0, �y(x0; z0; t0; �) = y0 and �z(x0; z0; t0; �) = z0.

Notice that �y has been defined in terms of x0 and z0 rather
than y0. This reflects the dependence of y0 on x0, z0 and �, as de-
scribed by (7). Therefore the definitions of �x, �y and �z establish
the dependence of the flows on x0, z0 and �.

It is clear that the notation can quickly become unwieldy. There-
fore in the sequel we will generally write the model more compactly
as

_x = f(x; y) (8)

0 = g
(0)(x; y) (9)

0 =

�
g(i�)(x; y)

g(i+)(x; y)

yd;i < 0
yd;i > 0

i = 1; :::; d (10)

x
+ = hj(x

�
; y
�) ye;j = 0 j 2 f1; :::; eg (11)

where

x =

2
4 x

z
�

3
5 2 X = X � Z � L � Rn=n+l+p

f =

2
4 f

0
0

3
5

hj =

2
4 x

hj
�

3
5 :

The system flow is defined accordingly as

�(x0; t) =

�
�x(x0; t)
�y(x0; t)

�
=

�
x(t)
y(t)

�
: (12)

Notice that the definition of f ensures that z and � remain con-
stant away from reset events (11). Further, hj ensures that x and �
remain unchanged at a reset event. Over each of the open time in-
tervals (�k; �k+1) the system is described by a smooth DA model

_x = f(x; y) (13)

0 = g(x; y) (14)

where g is composed of (9) together with functions from (10) cho-
sen depending on the signs of the elements of yd. (Recall that the
definition of the �k ensures that no elements of yd can change sign
during the period (�k; �k+1).)

3. TRAJECTORY SENSITIVITY ANALYSIS

3.1. General concepts

The flow � of a system will generally vary with changes in param-
eters and/or initial conditions. Trajectory sensitivity analysis pro-
vides a way of quantifying the changes in the flow that result from
(small) changes in parameters and initial conditions. The develop-
ment of these sensitivity concepts will be based upon the compact
form of the DAD model (8)-(11). Recall that in this model, x0 in-
corporates the initial conditions x0 and z0, as well as the parame-
ters �. Therefore the sensitivity of the flow to x0 fully describes its
sensitivity to x0, z0 and �.

In Section 2 we defined the system flow � in terms of x0. The
dependence of � on y0 is not explicit, but follows from (7). There-
fore, in determining trajectory sensitivities, we will not directly es-
tablish the sensitivity of flows to changes in y0. Rather, such sen-
sitivity is given implicitly by sensitivity to x0.

Trajectory sensitivities follow from a Taylor series expansion
of the flows �x and �y. Referring to (12), the expansion for �x can
be expressed as

�x(t) = ��x(x0; t)

=
@�x(x0; t)

@x0
�x0 + higher order terms.

Neglecting the higher order terms and using (12), we obtain

�x(t) �
@x(t)

@x0
�x0

� xx0
(t)�x0 (15)
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where xx0 2 R
n�n. From (15), the sensitivity of the flow �x to

(small) changes �x0 is given by the trajectory sensitivities xx0(t).

A similar Taylor series expansion of �y yields

�y(t) = ��y(x0; t)

=
@�y(x0; t)

@x0
�x0 + higher order terms.

Again neglecting the higher order terms and using (12) results in

�y(t) �
@y(t)

@x0
�x0

� yx0(t)�x0 (16)

where yx0 2 R
m�n . In this case the sensitivity of the flow �y to

(small) changes �x0 is given by the trajectory sensitivities yx0(t).
Once the trajectory sensitivities xx0(t) and yx0(t) are known,

the sensitivity of the system flow � to small changes in initial con-
ditions and parameters, which are described by �x0, can be deter-
mined from

��(x0; t) =

�
�x(t)
�y(t)

�
=

�
xx0

(t)

yx0(t)

�
�x0: (17)

We have yet to consider the calculation of the trajectory sensitivi-
ties. Details are provided in the following sections.

3.2. Sensitivity Evolution Away from Events

In this section we discuss the calculation of the trajectory sensitivi-
ties xx0(t) and yx0(t) over the open time intervals (�k; �k+1), i.e.,
away from events. The behaviour of sensitivities at switching and
reset events is presented in Section 3.3.

Away from events, the system model is given by (13),(14). Dif-
ferentiating this DA system with respect to the initial conditions x0
results in

_xx0 = f
x
(t)xx0 + f

y
(t)yx0 (18)

0 = gx(t)xx0 + gy(t)yx0 : (19)

Note that f
x

, f
y

, gx, gy are evaluated along the flow �(x0; t), and

hence are time varying matrices.
Initial conditions for xx0 on the first time interval [t0; �1) are

obtained by differentiating the x and z conditions of (6) with re-
spect to x0,

xx0
(t0) = I (20)

where I is the identity matrix. Initial conditions for yx0 follow
from (19),

0 = gx(t0)xx0(t0) + gy(t0)yx0(t0):

On other time intervals, say (�k; �k+1), the initial sensitivities
xx0

(�+k ), yx0(�
+
k ) are given by the jump conditions described in

Section 3.3.

3.3. Sensitivity Behaviour at Events

In Section 3.2 we established equations (18),(19) describing the
evolution of the sensitivitiesxx0 and yx0 over the intervals between
switching and reset events. To fully describe the sensitivities th-
ough, we must quantify their behaviour at these discrete events that
are characteristic of hybrid systems. To determine this behaviour,
we will consider the system at a single event. Accordingly, atten-
tion is focused on the model

_x = f(x; y) (21)

0 =

�
g�(x; y)
g+(x; y)

s(x; y) < 0
s(x; y) > 0

(22)

x
+ = h(x�; y�) s(x; y) = 0 (23)

which is directly related to the compact DAD model (8)-(11). A
number of comments should be made about this model:

� In this model, the switching and reset events are triggered
by the condition s(x; y) = 0 rather than by an element of y
passing through zero. This modification helps to identify the
role of the triggering condition. We will later revert to the
situation where the event is described by a condition yk =
0.

� Notice that the model describes a coincident switching and
reset event when s(x; y) = 0. This is the most general
case. Sensitivity behaviour at independent switching and re-
set events follows from this general case.

� We are investigating a single event. However the extension
to the usual case where there are multiple events, each sep-
arated by a finite time interval, is straightforward.

Define the triggering hypersurface as

S = f(x; y) 2 CnI : s(x; y) = 0g:

We are interested in the sensitivity of trajectories which pass thr-
ough S . It is convenient to assume that the trajectory starts from
a point where s(x; y) < 0, passes through S , and proceeds to a
point where s(x; y) > 0. There is no loss of generality in this
assumption. Let �(x0; t) = [x(t)t y(t)t]t be such a trajectory,
which starts from �(x0; t0) = [xt0 yt0]

t, intersects S at the point
�(x0; � ) = [x(�)t y(� )t]t, and proceeds to the point �(x0; t1) =
[xt1 y

t
1]
t. The intersection point (x(�); y(� )) is called the junction

point, and � is called the junction time.
The concept of trajectories passing throughS is important. Sen-

sitivities cannot be defined for trajectories which are tangential to
S . Consider such a trajectory. Then there exists an incremental
change in the initial conditions x0, such that the intersection point
disappears. But for a different small change in x0, the intersection
point persists. Therefore at the tangent point, the trajectory is in-
finitely sensitive to initial conditions. To overcome this difficulty
we make the following assumption.

Assumption 1 Trajectories are transversal to the triggering hy-
persurface S .

It is also necessary to make the assumption,

Assumption 2 The triggering function s(x; y) has a unique nor-
mal rs(x; y) at points in S .
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The transversality condition of Assumption 1 ensures that the
junction point depends continuously on initial conditions x0 [2].

We also need to ensure that the switching and reset events are
consistent with s(x; y) changing sign as S is crossed. The follow-
ing assumption is therefore made.

Assumption 3 At a junction point (x(�); y(�)) 2 S ,

s(x(��); y(��))� s(x(�+); y(�+)) < 0:

This assumption is generically satisfied for realistic systems.
If it was not satisfied, then the trajectory could reach an ‘impasse’
at the triggering hypersurface. Upon encountering S , the algebraic
equations would switch from g� to g+. But then if
s(x(�+); y(�+)) � 0, the model would be forced to switch back
to g�, which may result in switching to g+ again, and so on.

Based on the model (21)-(23), it is shown in [8] that the jump
conditions are given by

xx0
(�+) = h

�

x xx0
(��)�

�
f
+ � h

�

x f
�

�
�x0 (24)

where

h
�

x =
�
hx � hy(g

�

y )�1g�x

����
��

(25)

�x0 = �

�
sx � sy(g

�

y )�1g�x
���
��

xx0
(��)�

sx � sy(g
�

y )�1g�x
���
��

f�
(26)

and f+, f� are given by

f� = f(x(��); y�(��))

f+ = f(x(�+); y+(�+)):
(27)

In developing the jump conditions, we chose to use an arbitrary
trigger function s(x; y). It can be seen that this function influences
the jump conditions through �x0 . Reverting back to the original
system description (8)-(11), the trigger function becomes

s(x; y) = yk

for some k. Therefore sx = 0 and sy = [0:::
k

1 :::0]t = 1k.
Substituting into (26) gives

�x0 = �
1k

�
(g�y )�1g�x

���
��

xx0
(��)

1k
�
(g�y )�1g�x

���
��

f�
:

4. EXAMPLE

The small power system of Figure 1 provides a practical example
of a system where continuous and discrete dynamics interact. The
real power load has recovery dynamics [9], and is modelled by

_xp =
1

Tp
(P 0

s � Pd) (28)

Pd = xp + PtV
2
3 (29)

where xp is the load state driving the actual load demand Pd. The
rate of recovery is dictated by the load time constant Tp.

An important aim of this example is to illustrate the ability of
the DAD structure (1)-(5) to model logic-based systems. Therefore
a relatively detailed representation of the automatic voltage regu-
lator (AVR) of the tap changing transformer has been adopted. The

mm
?

V1\0 V1\�1 V2\�2 = �1 V3\�3

Supply
Point

Bus 1 Bus 2 Bus 3

jX1
1 : n jX2

Pd
Qd = 0

Figure 1: Power system example.

Taps on upper limit?

Voltage in deadband, V2 > Vlow?

Enable timer

Reset and block timer
?

?

-
?

no

no

yes

yes

Timer reached Ttap?

Change tap (n+ = n
� + nstep)

Reset timer

?

yes

Figure 2: Tap changing transformer AVR logic.

logic flow of the AVR for low voltages, i.e., for increasing tap ratio,
is outlined in Figure 2. It is shown in [8] that this AVR logic can
be modelled by (1)-(5).

The system was disturbed at t = 10 seconds by increasing the
impedance X1. This simulated the loss of a feeder from the supply
point to the transformer. The behaviour of the voltage at bus 3 is
shown in Figure 3, along with the load demand Pd. The system
was clearly stable, though the voltage underwent a large excursion.
The voltage stabilized to a value that was below the pre-disturbance
level because the transformer encountered its maximum tap.
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Figure 3: Voltage and load behaviour.

Figure 4 shows the sensitivity of the voltage V3 trajectory to
the parameters Tp and Ttap. These sensitivities are used in Figure 5
to approximate voltage behaviour when both Tp and Ttap are per-
turbed. Figure 5 shows the trajectory V3(5; 20) corresponding to
the nominal parameter values Tp = 5, Ttap = 20. It also shows the
trajectory V3(5:5; 22) which corresponds to perturbed parameters
Tp = 5:5 and Ttap = 22. The third curve,

V
approx
3 (5; 20) = V3(5; 20) + 0:5

@V3

@Tp
(5; 20) + 2

@V3

@Ttap
(5; 20)
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Figure 4: Trajectory sensitivities.
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Figure 5: Trajectory approximation.

uses the sensitivities @V3
@Tp

and @V3
@Ttap

, evaluated for the nominal case,

to approximate V3(5:5; 22). The approximation is very close, ex-
cept around the times where tapping occurs. As discussed in detail
in [8], if parameter variations cause a change �� in the timing of
an event, then the sensitivities cannot capture behaviour during that
�� period. In this case, the increase in Ttap results directly in de-
laying the tap changing events.

Trajectory sensitivities provide helpful insights in the analysis
of system behaviour. Consider first the sensitivity with respect to
Tp. It can be seen from Figure 4 that an increase in Tp will lead
to an increase in the voltage over the first 80 seconds of the tra-
jectory, but after that it will result in a decrease in voltage. This is
consistent with physical intuition. An increase in Tp corresponds
to slower load recovery. During the initial voltage drop, the load is
less than its steady state value P 0

s ; see Figure 3. Therefore slower
load recovery means the load is smaller for longer, so the voltage is
higher. However over the latter section of the transient, whenever
the voltage steps up due to a tap change, the load overshoots P 0

s .
So the slower recovery corresponds to the load staying higher for

longer, and hence to reduced voltage.
Now consider Ttap. From Figure 4 it can be seen that an in-

crease in Ttap leads to a decrease in voltage. Again this is consis-
tent with intuition. It is clear that the voltage recovery is due to
the increase in the tap ratio. Increasing Ttap delays the tap changes,
so the voltage stays lower for longer. The tap delay due to an in-
creasedTtap accumulates with each tap change. Therefore the effect
on the voltage becomes more pronounced with each subsequent tap
change. This is evident in Figure 4.

For this simple example, the sensitivities do not provide quali-
tative information beyond that which is intuitively obvious. (Though
they do provide quantitative information which is not otherwise avail-
able. For example, it can be seen from Figure 4 that a 1 second
change in Tp would have a larger effect on the voltage trajectory
than a 1 second change in Ttap.) However for more complicated
systems, where the interpretation of parameter influences is not so
straightforward, sensitivities can be extremely useful. Such a situ-
ation is explored in [6].

5. CONCLUSIONS

In this paper the concept of trajectory sensitivities has been extended
to differential-algebraic-discrete systems. Application to a small
power system containing a tap changing transformer and a dynamic
load has been shown. Future work involves the extension to larger
systems and resolution of the associated computational issues.
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